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ABSTRACT: A growing number of software tools have been developed for metabolomics data processing and analysis. Many new
tools are contributed by metabolomics practitioners who have limited prior experience with software development, and the tools are
subsequently implemented by users with expertise that ranges from basic point-and-click data analysis to advanced coding. This
Perspective is intended to introduce metabolomics software users and developers to important considerations that determine the
overall impact of a publicly available tool within the scientific community. The recommendations reflect the collective experience of
an NIH-sponsored Metabolomics Consortium working group that was formed with the goal of researching guidelines and best
practices for metabolomics tool development. The recommendations are aimed at metabolomics researchers with little formal
background in programming and are organized into three stages: (i) preparation, (ii) tool development, and (iii) distribution and
maintenance.

Over the past decade, the field of metabolomics has been
revolutionized by advances in chromatography, mass

spectrometry (MS), nuclear magnetic resonance (NMR), and
many other analytical technologies. These advances have
enabled researchers to not only identify and measure a broad
diversity of cellular metabolites but also assess changes in
metabolic pathway activity or flux. The growth in instrument
capabilities has spurred a concurrent proliferation of software
tools for processing and analyzing metabolomics datasets and
for predicting chemical properties measured by these instru-
ments. In order to convert the vast amounts of data produced
by modern metabolomics experiments into interpretable
results, analytical chemists often face the necessity of
automating data processing workflows or supervising pro-
grammers and data analysts who perform software develop-
ment tasks. For most metabolomics projects, measurement
acquisition and data analysis go hand-in-hand, and software
needs should be assessed at an early stage of experimental
design to ensure that the raw data can be appropriately
processed and interpreted. Furthermore, the format of the raw
data and the type of analytical instruments have major impacts
on how the data should be analyzed.
General data processing tools are typically provided by

instrument manufacturers and are intended to meet a wide
range of customer needs within a user-friendly package.

However, there are many advanced metabolomics applications
that demand software solutions contributed by the scientific
research community. These tools may address a niche area that
is beyond the scope of vendor software, or they may enable
entirely new metabolomics approaches to be developed and
tested. Furthermore, it is often necessary to combine a
sequence of tools together into innovative metabolomics
workflows, which requires understanding of the ontology of
tools and their usage requirements. For these reasons,
analytical chemists and other metabolomics researchers are
intimately involved in the process of selecting, creating,
extending, and applying software tools according to their
research needs.
A common reality is that most metabolomics researchers

lack formal training in computer science or software develop-
ment. Consequently, numerous pitfalls can arise from the lack
of knowledge about good software practices. For example,
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inappropriate code revision could lead to inaccurate results
when the code is used by other scientists. Poor user interface
design could hinder adoption of the software by non-
specialists. Lack of proper documentation can render a
codebase impossible to update or even use effectively once
the developers transition to other projects. This Perspective is
intended to provide a practical summary of considerations that
arise at multiple stages of the software development process
(Figure 1), aimed at metabolomics researchers with little

formal background in programming. The experience from
several metabolomics-oriented software development projects
has been compiled to help beginners avoid some of the more
common mistakes. Rather than presenting a list of non-
negotiable rules, we provide essential background information
and recommended guidelines to facilitate the software
development process and enhance the impact of the final
product. Much of the discussion is centered around mass
spectrometry due to its wide use in metabolomics studies and
the prevailing expertise of the authors, but we expect that the
principles discussed can be readily generalized to other
measurement technologies as well. This is not intended to
be an endorsement of a specific platform or to exclude other
technologies, but simply reflects our inability to be fully
comprehensive in a paper of this length and scope.

■ STAGE 1: PREPARATION
Defining crucial aspects of the project before starting to write
code can help avoid future shortcomings and delays in tool
development. The most important points to consider during
the pre-development stage are described in the following
sections.
Identify the Goal and Scope of the Tool. Software tools

for metabolomics studies generally fall into one of six
categories based on their functions:
Data pre-processing sof tware automates the picking, decon-

volution, matching, and alignment of signals (i.e., peaks)
present in the raw data.1 For MS data pre-processing, this
workflow can also include operations such as baseline
correction, noise reduction by smoothing and filtering, or de-
isotoping the peaks.
Molecular structure identif ication sof tware (also called

annotation software) matches the processed peaks with
databases in order to attribute evidence for the presence of a
specific molecular compound or to directly predict a chemical
structure (i.e., using electron diffraction or NMR measure-
ments). The databases could be public or private repositories
derived from analysis of authentic chemical standards, or from
in silico property predictions. These tools are central to

analyzing untargeted metabolomics datasets, as a pre-defined
list of target compounds is not required prior to searching for
potential database “hits”.
Statistical analysis sof tware compares data from multiple

samples in order to identify important features of the dataset
that vary significantly in an experiment. For univariate analysis,
basic methods such as analysis of variance (ANOVA) or t-tests
can be implemented. However, most metabolomics experi-
ments require advanced multivariate statistical methods that
account for multiple experimental factors and can analyze
datasets with more features (i.e., variables) than samples.
Principal components analysis (PCA) is an unsupervised
method often used as a first approach to characterize the
variation in metabolomics datasets. On the other hand,
supervised methods such as partial least squares discriminant
analysis (PLS-DA) and orthogonal partial least squares
(OPLS) can be used to identify features of the data that
distinguish experimental groups. Other supervised and
unsupervised machine learning methods (e.g., clustering, linear
discriminant analysis, random forest, neural networks) are
oftentimes implemented in statistical analysis software tools.
Additional data processing steps may be required prior to
statistical analysis: e.g., batch correction, normalization,
filtering, and imputation of missing values.
Functional analysis sof tware generally uses information on the

annotated peaks and their corresponding properties (i.e., areas,
widths, isotope ratios, etc.) to infer changes at different
functional levels such as metabolic reaction modules, pathways,
or sub-networks to facilitate biological interpretation. The
most common approach involves analyzing peak intensities
from multiple samples to determine which metabolic pathways
are altered in an experiment. However, the “function” of a
metabolomic marker can also be associated with a disease,
phenotype, molecular mechanism, or class of metabolites
rather than a pathway.2 Usually functional analysis requires a
list of known or inferred metabolites to integrate into the
species- and context-dependent metabolic network of the
biological system under investigation. In many cases, this
involves reconstruction of the network based on prior
knowledge of enzymes, reactions, and pathways using
automated text mining or manual curation.
Chemical property prediction sof tware is designed to build or

augment libraries of chemical properties that can be measured
in metabolomics experiments (i.e., relative intensities, m/z,
retention times, collision cross sections, chemical shifts, MS/
MS spectra, isotopic signatures, etc.). Libraries can consist of
properties derived from laboratory analysis of authentic
reference standards (the traditional gold standard approach)
or from the use of property prediction software to create in
silico libraries, which can be applied to “standards-free”
methods of identification.3,4 Historically, predicted m/z values
have been routinely used in MS-based metabolomics analysis,
as this property is readily calculated at higher accuracy than is
achievable experimentally. Recently, software based on
molecular dynamics, quantum chemical calculations, and
deep learning has been used to predict NMR chemical shifts,
ion-mobility collision cross sections, chromatographic reten-
tion times, MS fragmentation patterns, adducts or isotopic
signatures, and other chemical properties.
Metabolic modeling sof tware facilitates the development of

kinetic or flux models of metabolic networks. These tools
convert lists of enzymes or biochemical reactions into a system
of coupled mass balance equations, which are augmented with

Figure 1. Recommended guidelines at each stage of the software
development pipeline.
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appropriate kinetic and thermodynamic parameters to convert
into a mathematical model. The models provide a dynamical
assessment of metabolic networks and enable prediction or
estimation of metabolic fluxes from metabolomics measure-
ments.5−7

To avoid the creation of redundant software that duplicates
the base functionality of other domain- or data-specific tools,
developers should first familiarize themselves with existing
software before “reinventing the wheel”. Several compilations
of available software tools within each of the aforementioned
categories have been published and can be consulted for
further information.8−10 Naturally, existing tools may not
support a new data type or implement the latest breakthrough
algorithm. In this case, extending a previously developed tool
by adding a new module or companion program may be the
best way to move a project forward while avoiding unnecessary
effort and minimizing adoption barriers. In most cases, it is
more efficient to create a module that can be integrated with
existing metabolomics workflows, rather than recreating the
entire workflow within a single piece of software (Figure 2).

However, adding functionality to software developed by
another group often requires a collaborative effort and
necessitates planning and mutual trust between the groups to
ensure fair attribution. If it is not feasible to build onto an
existing tool, e.g., because the existing software is no longer
actively developed, is not open-source, or uses an obscure
programming language, it may be necessary to implement (or
refactor) the desired functionality into a new software package.
In this case, it is important to precisely define what elements
are missing from the currently available tools and which input/
output formats allow for optimal data exchange with existing
software and databases.
Choose an Appropriate Programming Language.

Before selecting a programming language, an important
consideration is that software maintenance and integration
can be significantly more costly than the initial software
development. If a project is intended for continuation beyond
3−5 years, the codebase should be limited to mainstream
programming languages. If the software will be integrated with
other software or frameworks, the technology of those
companion projects should also be considered. For a small,
standalone project to address a short-term research problem, it

is acceptable to experiment with new languages and tools.
However, for any long-term project, a developer must consider
how the software can be maintained and updated while
adapting to personnel turnover, available expertise, and change
of technologies over time.
The most popular general-purpose programming languages

include C-family languages (Java, C#, PHP, C++, C) and
Python, as corroborated by the recent Stack Overflow survey.11

The platform independence of Java is a key advantage over
other C-family languages, but it comes at the expense of slower
performance. The popular network visualization tool Cyto-
scape,12 the MS/MS analysis software SIRIUS,13 and the
general-purpose metabolomics program MZmine 214 are all
written in Java. Other scientific or general-purpose program-
ming languages may be preferred for certain applications,
based on their desktop graphical user interface (GUI)
frameworks, specialized libraries or built-in functions (e.g.,
MATLAB toolboxes), or the available skill set of the developer.
For many scientific applications, including bioinformatics and
data science, the most popular languages are Python and R.15

Both are high-level, interpreted languages that prioritize the
developer’s productivity. While use of these languages may
raise concerns over efficiency of execution, the performance
penalty is negligible for many applications since both Python
and R utilize low-level function libraries that are implemented
in C or Fortran, which provide optimized runtime performance
for critical steps.
R is a programming environment dedicated for statistical

computing and graphics that offers several built-in and publicly
available packages covering a wide variety of statistical analyses.
Although it has a less conventional syntax that may feel
unusual to users with experience in a general-purpose
programming language, this has not stopped it from occupying
an important niche in areas like functional genomics and
metabolomics. The differences between Python and R are also
reflected in the available libraries for both languages. Python
has many numerical libraries such as Numpy, SciPy, Pandas,
and TensorFlow, while R facilitates flexible plotting and
graphics, is a leading resource for statistical analyses, and can
be extended with many advanced bioinformatics packages. In
particular, the Bioconductor R repository provides a wide
range of cross-compatible bioinformatics tools (e.g., XCMS16).
Python is the fastest-growing major programming language,

is ubiquitous across the sciences and in industry (especially
deep learning applications), is intuitive and approachable, and,
thus, is widely taught in computer science classes. It is the basis
of the CoreMS17 mass spectrometry framework and many
other public metabolomics software projects. Python has a very
large and active community in the sciences, which has only
grown in recent years. The Software Carpentry18 initiative has
created and maintains reusable courseware for teaching and
learning Python and R. The rich ecosystem of Python makes it
a top choice for projects involving scientific computing, as it
can be easier to port between desktop/laptop, high-perform-
ance computing, and cloud computing resources than other
languages. Ultimately, however, the best choice of program-
ming language will depend on the needs of users, the expertise
of the development team, and the intended use/functionality
of the tool.

Choose the Software Development Environment.
The programming environment for software development
includes code editors, version control software, and testing
tools. Many excellent code editors are available, including free

Figure 2. Overview of a typical metabolomics workflow for analysis of
MS datasets.
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ones such as Atom, Sublime, Vim, and VS Code. Version
control is an integral part of software development, and Git19

has become the most common choice today. Older systems
such as Subversion (SVN) or Concurrent Versions System
(CVS) may also still be in use by some groups. Version control
systems are highly recommended when working in teams and/
or for the long-term maintenance of software.
The combination of a code editor and a full stack of tools

compiler/interpreter, project management, and version con-
trolis often referred to as an integrated development
environment (IDE). Famous examples of IDEs include Visual
Studio, NetBeans, IntelliJ IDEA, PyCharm, Spyder, RStudio,
and Eclipse, which enable developers to test the code regularly
and easily. For web development, a local test server is usually
needed, and it is now included in many IDEs. For desktop
applications that use a platform-specific runtime environment
or compiler, testing under different operating systems (OSs) is
a major undertaking. Although Microsoft Windows, Mac OS,
and Linux are the major OSs, each has many different versions
and/or distributions. Developers often turn to virtual machines
to test programs on different OSs or use online services for
continuous integration that automatically test software every
time new code is committed to the online repository. Cloud
technologies like Kubernetes, Docker, and Singularity contain-
ers have become very popular since they allow packaging of
dependencies with the software tool itself in order to avoid
incompatibilities when deployed under different OSs.20 As a
result, containers also become a part of the local development
environment, especially for cloud applications.
Assess Needs for Cloud Computing and Virtualiza-

tion. Cloud computing has become increasingly versatile and
offers transparent and portable use of workflows, protocols,
and datasets. XCMS Online21 and MetaboAnalyst22 have
already migrated to cloud servers for improved performance
and accessibility. Aside from enabling portability, cloud
technologies force a developer to document dependencies
and settings needed to run a software stack. This can be
particularly important where a tool relies on a specific database
(version) or where a tool is built as a helper application
extending another open-source tool. The cloud runs on
instances, a concept similar to that of a virtual machine.
However, cloud instances are assembled on the fly and run off
a shared infrastructure. True cloud platforms, such as those
hosted by Amazon Web Services (AWS), Google Cloud
Platform (GCP), Microsoft Azure, and the open-source

OpenStack, make use of containers for deploying cloud
infrastructure. A container is a virtual runtime environment
that emulates the OS and other program dependencies needed
to execute a particular software tool.
The most popular container platform is Docker. A Docker

container is an execution environment that uses a “Docker file”
to assemble software together with its dependencies to create a
unique environment that can be reproduced easily on any
computer. MetaboAnalyst, NWChem,23 and other tools are
available as a Docker image, which enables them to be
downloaded and installed locally on a lab server or cluster.
Singularity is another important platform, especially as it
contains several security features that allow for its use under
compliance regimes, such as may be required in classified
research. Kubernetes is an orchestration framework, often
discussed in companion with Docker, which enables cloud
instances to be programmatically started or “spun up” and
closed. One reason Docker is popular is because of Docker
Hub, a free and open way to share Docker containers. When
popular software is released, it is common for software
publishers to include updated Docker containers on Docker
Hub. There are several tutorials for creating Docker files. The
PhenoMeNal24 project has curated a set of tutorials with
metabolomics software developers in mind.
For cloud applications, Jupyter25 notebooks are used

routinely to ensure all processes and outputs are available
seamlessly to the user community. A Jupyter notebook is a web
application that blends different data such as text, live code and
its output, data visualization, and multimedia in a single
computable document. Its main components include the web
application (web server) that creates and edits notebook
documents, the kernel that executes the code in the document,
and the web browser through which the user interacts with the
notebook. The web server can be run on a local host or a
remote server. This simple yet powerful architecture, combined
with open-source software and the ability to share notebooks,
promotes collaboration and increased productivity among
research groups. The functionality of notebooks can be
enhanced with an ever-expanding list of add-ons developed
by the community.

Plan to Use Standard Input/Output File Formats.
Many metabolomics software tools have import and export
options for a variety of standard data formats (Table 1).
Building support for these existing formats is recommended to
enable facile exchange of data between different tools and to

Table 1. Standard Data Formats Supported by Widely Used Metabolomics Softwarea

software category import export

MetaboAnalyst22 general purpose NetCDF, mzXML, mzDATA, .csv, .txt,
mzTab

.SVG, .png, .csv, .txt, report
(.pdf)

MZmine 214 general purpose Vendor formats, mzML, mzXML, NetCDF,
mzTab

.csv, mzTab, XML, SQL, .msp

MS-DIAL26 preprocessing .ABF .mgf, .msp, .txt, .mat
XCMS27 preprocessing NetCDF, mzXML, mzDATA .csv
GNPS28 statistics/pathway analysis/metabolite

identification
mzXML, mzML, mgf .graphML, .csv

XCMS online21 general purpose NetCDF, mzXML, mxData .csv
Mummichog29 pathway analysis .txt, .tsv .xlsx, .csv
Chemical Property Prediction
Tools

cheminformatics/molecular modeling/quantum
chemistry

SMILES, InChI, .xyz, .mol2, .sdf, .pdb SMILES, InChI, .xyz, .mol2, .sdf,
.pdb

MS PepSearch30 metabolite identification .msp, .mgf .csv
aThis table does not include proprietary software formats, data formats used to save intermediate results of analysis sessions, or raw MS data
containers.
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avoid fragmentation of metabolomics data into many
incompatible file formats. It also enables files to be readily
transferred to/from metabolomics data repositories such as
MassIVE,31 Metabolomics Workbench,32 or MetaboLights.33

The choice of data exchange format depends on the type of
data and what other programs should be able to read the files.
Some of the most popular file types for analysis of
metabolomics data are detailed in the Supporting Information.
In general, open data formats have become indispensable for
data exchange and analysis in the metabolomics community.
However, they have weaknesses as well. First, they do not
capture raw data in its entirety, and therefore it is important to
keep a copy of the raw data in each instrument’s proprietary
format. Second, they are not specifically designed for efficient
computation and storage. Despite these weaknesses, it is still
strongly encouraged that metabolomics software tools be
designed to read and write open data formats. In particular,
mzML and mzTab, as the de facto standard open data formats,
should be supported for most MS data analysis tools.

■ STAGE 2: DEVELOPMENT
Metabolites isolated from a biological sample commonly
produce tens of thousands of “features” when analyzed by LC/
MS, where a feature is defined as a measured ion having a
unique pair of retention time and m/z values. Generally, there
are three approaches that an investigator can apply to analyze
the results: targeted data processing, untargeted data
processing with pre-configured software, and advanced data
processing with customized software. Each requires a different
level of user expertise, as briefly described below. Based on
these distinctions, we explore the elements that should be
implemented in a metabolomics software tool and their
respective design considerations. We note that this classi-
fication of users is arbitrary and used only to guide our
discussion.
Characteristics of Basic Users of Targeted Software.

We consider targeted software users to be those who are only
interested in extracting information about a small number of
metabolites (e.g., TCA cycle intermediates), even though their
datasets may be more comprehensive in nature. This level of
analysis can typically be performed by users with pre-packaged
software and limited coding experience. For targeted analysis
of MS data, the user typically inputs an m/z value of interest
and an error window over which it should be monitored. The
software then creates an extracted ion chromatogram, which is
a plot of the specified ion current as a function of time. For
quantitation, the extracted ion chromatogram can then be
integrated automatically by the software. Depending on the
program, each MS dataset may need to be processed
separately. It is feasible to perform such analysis for a limited
number of metabolites. However, for global processing of the
data in an untargeted manner, these simple manual-processing
steps become impractical.
Desirable program features for targeted users include

capabilities that suggest input parameters to facilitate the
rapid processing of individual data files based on previously
analyzed samples or experiments. Additionally, options
extending integration bounds that are manually input by a
user for a single run to the entire dataset are important for
quantitative reliability and speed when a large number of
samples are to be analyzed. Given that targeted users are not
interested in comprehensive profiling, the considerations
described below are not applicable to these researchers.

Characteristics of Basic Users of Untargeted Soft-
ware. This group of users is interested in processing
metabolomics data in a more comprehensive manner, but
they do not have extensive experience in bioinformatics or
coding. It is important to emphasize that for untargeted
metabolomics, the processing workflow described above is
impractical because thousands of features would have to be
individually inspected. Thus, some MS vendors offer software
for the global processing of metabolomics data to support
untargeted workflows. A limitation is that vendor solutions are
only compatible with data generated from a specific
manufacturer’s instrument. Notably, vendor-agnostic “plug-
and-play” software platforms have also been created in recent
years. Some of these solutions are freely available (e.g., XCMS
Online, MetaboAnalyst), while others are commercial (e.g.,
Progenesis). A common theme of these programs is that, in
principle, an understanding of the underlying algorithms is not
required. Moreover, given that each solution has its own
graphical user interface, no expertise in computer program-
ming is needed to use the tools.
At a high level, the “plug-and-play” options perform three

basic functions: (i) feature detection, (ii) feature alignment,
and (iii) statistical analysis. In brief, this allows the average
intensity of a feature to be compared between sample groups.
A complication is that performance is parameter-dependent. It
is common for users of these platforms to have a limited
understanding of the parameters, which can lead to improper
processing of the data files. Additionally, like any area of
scientific research, there are opportunities to improve the
algorithms. Even when optimal parameters are selected, each
platform is susceptible to processing artifacts caused by
challenges like establishing consistent baselines or integration
bounds. Finally, the functionalities of these software platforms
are mostly limited to simple experimental designs such as
comparisons of one or more experimental groups with a
control group. Automated metabolite identification and
advanced experimental designs, like the modeling of isotope
labeling patterns, kinetic time courses, or dose−response
curves, are generally not supported.34

Characteristics of Advanced Users. We consider
advanced users to be comfortable with coding and/or
developing their own custom metabolomics workflows versus
using pre-packaged software. The overwhelming majority of
algorithms that have been developed for analysis of untargeted
metabolomics data are only available with a command-line
interface and custom workflows, which require more advanced
programming skills.10 In part, this is because creating an
intuitive GUI requires a substantial investment of resources.
Typically, only well-established algorithms that are widely used
by the community evolve into such GUI-based platforms. It
has become increasingly common for research laboratories
performing untargeted metabolomics to have at least one
investigator who is proficient in computer programming
languages (R, C, Python, MATLAB, etc.) to investigate new
algorithms or for dealing with new instrument data types. At
the most basic level, these researchers allow laboratories to
apply metabolomics programs that would otherwise be
inaccessible. This could be particularly useful to investigators
interested in using the newest processing methods or to
laboratories with specialized data-processing needs that are not
satisfied with the standard plug-and-play options.
Advanced users typically require custom solutions with

modified algorithms and advanced processing functionalities to
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support experimental designs beyond simple pairwise compar-
isons. They can improve upon existing programs by modifying
code, or they can assemble entirely new workflows by chaining
existing modules together in sequence. It is our perspective,
however, that there are two general levels of researchers with
competence in computer programming: users and coders.
Users are able to run existing programs in languages like
Python and R, but do not have an extensive understanding of
the functions being implemented. Coders, on the other hand,
have a working knowledge of the underlying algorithms and
can modify functions as needed. When creating new programs,
we recommend that developers recognize that much of the
target audience is likely to be users rather than coders and
thoroughly document their code and create user manuals (or
additionally, provide working examples with toy data), as
described in Stage 3.
Provide Graphical and/or Interactive User Interfaces

Appropriate for Target Users. The user interface (UI) is an
important bridge between users and software that allows users
to control program execution.35,36 The goal of a UI design is to
provide an easy, efficient, and friendly environment for
software operation. Both GUIs and command-line interfaces
(CLIs) are commonly used for bioinformatics software. For
example, MZmine,14 MS-FINDER,37 and iMet-Q38 are tools
with GUIs, and XCMS,27 CAMERA,39 IPO,40 MOBCAL,41

ISiCLE,42 and DarkChem43 are command-line tools. Some
tools provide both options (e.g., BioTransformer,44 CFM-ID,45

etc.), which is the most flexible approach, as it targets all levels
of users and can be deployed in a range of different computing
environments (e.g., both interactive use on a personal
computer and batch processing on a lab server or cluster). A
comprehensive survey comparing the strengths and weaknesses
of GUIs and CLIs has been previously published,46 and the
Metabolomics Tools Wiki47 is a useful resource that classifies
tools based on their UI and other software features.
In general, GUIs should be implemented in software for

basic users in order to guide them through the sequential
analysis steps. This makes GUI-driven software easier to learn
and simpler to operate.48 On the other hand, CLI-driven
programs are often preferred by software developers and
advanced users, as they provide ultimate flexibility to create
novel data analysis pipelines and automate tedious procedures
through the development of custom scripts that interact with
the software programmatically.49 Furthermore, some GUI or
web-based tools are not amenable to high-performance or
cloud computing architectures, nor to data management
systems that analyze data in real-time as it is produced.
Providing multiple interfaces for accessing the same software
application can be a successful strategy to meet a broad range
of needs as the user base grows. In order to design user-
friendly program interfaces, it is recommended to consider the
following principles:
Provide a User Interface for Automated Installation. If a

software tool needs to be installed on users’ computers, an
automated interface that guides users step-by-step through the
installation process is recommended. As reported by Mangul et
al., the number of citations significantly increased when
authors provided an easy installation process.36 The increasing
adoption of Docker and cloud technologies will greatly
facilitate the installation of bioinformatics software with
many dependencies.
Use Intuitive Function Names in the User Interface. The

menus and labels in the UIs should be intuitive and clear so

that users can understand each operation, and so the
processing steps can be easily repeated (thus increasing
reproducibility). In addition, it is now a common practice to
provide user manuals, FAQs, and tutorials to explain each step,
key parameters, and common errors (see Stage 3 for further
details).

Classify Parameters and Options as “Basic” or “Ad-
vanced”. To provide different functionalities, a software tool
may have several parameters and options. Classifying these
settings as “basic” or “advanced” and providing default values
are helpful practices that enable users with little background
knowledge to easily navigate the program.50

Report Progress and Error Messages Promptly. A software
tool should provide real-time processing and error reports so
users can easily monitor the status of data processing and
respond to any errors during the process. Ideally, these should
be saved in a log file to facilitate troubleshooting or recreating
the process after the analysis session has ended (see Stage 3).

Provide User Interfaces to Allow the Exploration and
Validation of Outputs. While most software tools export
results in a plain text file format, it is useful to provide graphical
interfaces that allow users to interact with results within the
tool (see Supporting Information). For example, it is important
for a compound identification tool to provide an interface for
comparing search spectra against a library match. For a
quantification tool, an interface that allows users to
interactively examine the extracted ion chromatograms and
their isotopic peaks is critical.

Code to Standards to Ensure Accessibility. For application
and web-based software, there are existing standards for
ensuring a product is usable by people that require assistive
technology. This can include people with sight impairments,
using screen readers, but also those with the need to increase
font sizes. Color vision deficiency (CVD) is much more
common than developers might imagine, and it is important to
not use color alone for meaning. CVD-optimized colormaps
have been developed for rendering plots of scientific data.51

For example, an indicator should use text and a color or a
shape and a color. By using standards such as the W3C’s Web
Content Accessibility Guidelines (WCAG),52 one can create
applications that are not only accessible but will work on a
variety of devices from computer screens to phones and
tablets.
Although software tools with interactive GUIs are desirable

for many users, it requires significant effort by developers to
implement both efficient computational tools and user-friendly
interfaces at the same time. Many metabolomics tools were
initially developed to run as command-line driven software and
only later were adapted to run within a GUI or web interface to
keep pace with popular demand. For example, XCMS was
originally a collection of R scripts,27 while INCA was initially a
package of MATLAB functions.5 As these programs evolved to
include user-friendly interfaces, they maintained access to the
programmatic layer by exposing core software functions to the
user (in the case of INCA) or by continuing to offer the
command-line version as an alternative software package (in
the case of XCMS). Other software such as MetaboAnalyst was
initially released as a web application but now provides access
to the underlying R code that is generated by each analysis
step, which can be run as R commands using the companion
software MetaboAnalystR.53 An alternative solution is to
integrate newly developed tools into existing GUI-driven
programs. For example, MZmine14 and Galaxy-M54 provide
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easy-to-use graphical interfaces that allow developers to embed
their tools and avoid the need to create a standalone GUI.
Develop Simple, Efficient, Modular, and Reprodu-

cible Data Processing Workflows. At a high level, data
analysis software is successful due to its usefulness, its
intuitiveness, and its flexibility. Researchers should want to
use the software, and the software should not just support but
also encourage modification to adapt to changing needs. To
satisfy these criteria, developers must consider the software
experience from the unique perspective of their target user,
since each group has different expectations and requirements.
From a basic user’s perspective, the ideal tool is sufficiently
powerful to complete the required task but also does so with
minimal complexity. On the other hand, it is sometimes
important to provide features that address the computing
needs of more advanced users. Otherwise, the software will not
be able to adapt along with its users as they become more
experienced and as their requirements evolve, leading them to
abandon the tool in search of other programs that offer greater
flexibility.
Regardless of the expertise of the user, software tools for

metabolomics applications should have capabilities to
automate repetitive tasks and batch process multiple data
files from the same experiment. Critical data pre-processing
steps should be streamlined to maximize computational
efficiency and minimize the need for user interaction. Data
post-processing steps involving statistical or functional analysis
should follow a modular design with flexibility to expand as
new approaches are developed or in response to user
feedback.55,56 Exposed configuration parameters should be
strategically limited and explained in detail, along with
potential positive and negative outcomes that can result
when making adjustments. For a GUI, this is achieved through
tooltips and searchable menus, with in-menu links to more
verbose documentation. For CLIs, help outputs at various
interaction levels (e.g., module, sub-module) should provide
minimal but sufficient guidance with the option to access
further detail.
Software should be implemented such that it is modular and

thus encourages reusable functionality. This is reflected by
meaningful module, class, and function/method names and the
use of an intuitive, object-oriented layout that mirrors the
typical analysis pipeline. Currently, most metabolomics
applications involve customized workflows with modular
sequences that go from raw data to a given biological output.
For instance, LC/MS raw data analysis, statistical analysis,
comparisons across experimental groups, identification and
enrichment of metabolites, placing metabolites in the bio-
logical context of function and pathways, and developing
quantitative models can all be chained together into a
workflow paradigm (Figure 2). However, there is no
monolithic workflow that suits all conditions. Ideally, each
computing task is categorized within an ontological framework
that enables researchers to custom-build workflows by
association of modules in the desired hierarchical order
ensuring compatibility of input-output features at each step.
This plug-and-play approach requires the development of
application programming interfaces (APIs) that facilitate
concatenating software to achieve workflows.
To ensure an efficient and modular software design, one

should consider (i) the source and format of input data, (ii)
each step required to process the data through various possible
workflows, and (iii) the final destination and format of output

data. Discrete analysis tasks (e.g., noise mitigation, peak
detection, alignment, etc.) should be implemented at the
module level, with associated functionality exposed therein.
Importantly, this paradigm enables useful compartmentaliza-
tion of core functionality. For example, a user may only want to
use the peak detection algorithms from a given tool and can
only do so easily if that functionality is reasonably separated
from the rest of the processing/analysis modules. The core
computational routines should also be separated from the user
interface code, which enables the routines to be easily
integrated into other programs or accessed through alternative
user interfaces or APIs. Thus, the software must work
seamlessly as a whole, from data input to final output
generation, but each sufficiently distinct piece of functionality
must also be usable with minimal inputs/assumptions,
independent of the greater workflow.
Most analysis pipelines depend on parameter settings or

other explicit interaction from the user, and providing features
that automate data provenance is key to achieving reproducible
results. Designing software to automatically record the data
analysis steps and parameter settings involved in producing a
given output (e.g., by generating a log file) ensures the
metadata required for reproducibility is stored and is available
to the user if needed. This concept can be further extended to
abstract out other sources of necessary tedium and/or
complexity, for example, benchmarking, fault tolerance,
checkpointing and resuming tasks, scalability to high-perform-
ance computing resources, etc.

■ STAGE 3: DISTRIBUTION AND MAINTENANCE
Document Software Thoroughly. Software documenta-

tion is a general term for any text, figure, or other content that
supplements code and supports the usage of the software tool.
Many of the most successful and well-established software
tools have invested in good documentation with the use of
multiple formats, such as a navigable HTML interface with a
quick start guide. However, improper or missing documenta-
tion may result in additional effort for the developer to answer
user questions or result in users ultimately discontinuing the
use of the tool, thereby reducing its impact on the research
community.57 Many metabolomics software tools suffer from
inadequate documentation because developers are typically not
properly trained in software engineering and principles of good
documentation.35

Several reviews have highlighted best practices for
documentation and promoting software usability,35,57−59 and
these practices also apply to software specifically designed for
metabolomics data. Software documentation should be
designed to reach a wide audience and use a variety of
formats.57 Documentation can be targeted toward software
developers (e.g., comments in the code), beginners (e.g.,
tutorials, videos), or advanced users (e.g., reference manual).59

We describe the most common formats below, which are
detailed in the references35,57−59 and can be classified into two
main groups: code-related and use-related.

Code-Related Documentation. Source Code Com-
ments. This is critical for understanding the specific code in
the software. There are numerous online references for code
documentation and style, which can be tailored to a specific
programming language (R, Python, Java, etc.). Many languages
also support the use of “docstrings” (Python, Julia, etc.), which
allow the programmer to assess comments during program
runtime. There is an additional advantage of automatically

Analytical Chemistry pubs.acs.org/ac Perspective

https://dx.doi.org/10.1021/acs.analchem.0c03581
Anal. Chem. 2021, 93, 1912−1923

1918

pubs.acs.org/ac?ref=pdf
https://dx.doi.org/10.1021/acs.analchem.0c03581?ref=pdf


generating documentation that is synchronized to each
software version (e.g., using Sphinx for Python), so that
documentation does not become obsolete over time.
Progress Messages. Software tools should communicate

when the software is entering different stages of execution so
that users can identify when there is an unexpected event
during the program workflow.
Error Messages. Software tools should communicate to the

user when problems occur (e.g., data values not supported,
algorithmic or numeric problems).
Use-Related Documentation. Readme File. This file is

typically short and provides basic information about the
software (e.g., short description, programming language,
versions, licensing, required dependencies) and installation
details.
Reference Manual/Users Guide. This is the most

comprehensive document that describes the purpose of each
function, the expectations of input/output formats, the syntax
for running the function, and the explanation of default
parameters. Although comprehensive, this document is
typically intended for experienced users.
Quick Start/Tutorial/Demo. A software tool should also

include documentation for the beginning user. The purpose of
a “quick start”, “tutorial”, or “demo” is to provide example code
and data to enable a user to quickly run the software tool on a
typical dataset, which should be provided with the software
package. The user should be able to run the code and get the
same results (e.g., tables, figures, screenshots) that are
described in the document.
In summary, we recommend using multiple formats within

the categories described above to have the most impactful
software. Indeed, many of the most established and commonly
used metabolomics software use multiple formats, as well as
dissemination strategies that will be addressed in the next
section (Table 2). Although much of the documentation
burden is on the software developer, it is also critical for the
software users to promote reproducible research by providing
documentation for how software was applied in publications,
reports, and presentations including the (i) tool name and
version number, (ii) parameters, (iii) functions called, and (iv)
citations for specific functionalities or modules within the
software.
Publicize and Disseminate. After the development of

new software, it should be widely publicized to maximize use.
Below we describe a few approaches for publicizing and
disseminating software tools:
Dedicated Website. This will serve as a central reference

point for users to access or download the tool. It will also
contain news and updates, list version changes, bug fixes,
upgrades, or other changes. A regularly updated News section
also conveys that the software tool is well maintained. For
software suites or software tools with many components, a
summary may be useful for users to understand their

interoperability (i.e., the context of how the different tools or
components work together). This can be in the form of a
flowchart that shows the input and output files and formats
required for different tools. The website’s dashboard view
enables one to analyze the behavior of visitors on the site and
to identify their location and domain (e.g., university, institute,
industry, government). Marketing applications such as “Google
Analytics” may also be considered to better track downloads or
user traffic. It is recommended to collect detailed information
(name, contact information, job function, etc.) from visitors
who request to download or license the software using a web
form. This is an efficient way to build an email list for sending
announcements to potential users or to obtain statistics that
are required in reports to sponsors or employers.

Mailing List or User Forum. If the user base is large, an
archived mailing list or user forum may be an efficient format
to share knowledge among developers, experienced users, and
newcomers.

FAQs. A Frequently Asked Questions (FAQ) document or
link is another format for communicating answers to common
questions from a large user base.

Academic Publications. The traditional approach to
publicizing software developed as a result of non-commercial
research is to publish a peer-reviewed article that describes
each newly introduced tool, typically with examples of its
application to a relevant research topic. However, some tools
may not be suitable for peer-reviewed publications, either
because they represent an incremental improvement to an
existing tool or because the developers simply do not have the
resources to pursue publication. Under the European Open-
AIRE program,60 the open-access repository Zenodo61 was
developed in 2015 that provides a digital object identifier
(DOI) for research software, reports, and datasets. A DOI can
be cited by authors to acknowledge their use of a given tool,
thus providing a mechanism for tool developers to receive
recognition for their work in publications.

Notebooks. Notebooks, such as those created with Jupyter
or R Studio, can help demonstrate how to use your software.
This can be particularly important for command-line tools.
Notebooks can be linked from the dedicated website and
hosted on GitHub, MyBinder, or your institution’s Jupyter-
Hub.

Workshops and Conferences. Another way to disseminate
information and obtain feedback about a given tool is to
introduce the software in training programs or workshops
organized by institutes or research centers.62 This will provide
opportunities for different users to ask questions or provide
feedback. Software examples and best practices can also be
presented at conferences and meetings.

Community Websites and Social Media. Links to software
tools can be placed on scientific community websites, such as
Metabolomics Workbench.32 Video tutorials can be produced

Table 2. Example Metabolomics Software with Available Documentation Formats

code-related details and examples maintenance and communication

source
code

progress
message

error
message readme manual tutorial news mailing list FAQ

summary
figure

MZmine 214 Y Y Y Y Y Y Y (website) Y (GitHub to
report issues)

Y

XCMS27 Y (via R) Y Y Y Y Y Y (website and
register w/email)

Y (register
w/email)

Y

MetaboAnalyst22 Y (via R) Y Y Y Y Y (R vignette) Y (website) Y Y
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to highlight specific features of the tool, which can be posted to
websites or social media.
Software Maintenance and Sustainability. Bioinfor-

matics software should be usable, accessible, and archivally
stable. However, many bioinformatics tools, web servers, and
databases become obsolete with each successive year.
According to a recent study,63 citations are the strongest
predictor of the availability of a bioinformatics software over
time following publication. This directly speaks to the
usefulness of a toolif it is heavily used by the community,
it is more likely to be sustained. Therefore, the scientific
content and quality of a piece of software play the most
important roles in determining the lifespan of the tool. Here
we provide some practical tips to help ease the task of long-
term sustainability and maintenance of software:
Write Maintainable Code. The initial excitement upon

release of a new software tool gradually settles, and developers
soon notice that they spend increasing time in the less
“glamorous” maintenance cycle of the software such as fixing
bugs, addressing bottlenecks, and adding new features. These
activities directly define the lifespan of the software. Even
though funding agencies have made efforts in improving or
hardening pre-existing software, since these activities often do
not result in publications, the motivation is not as strong. To
minimize time and effort spent in maintenance, it is critical to
use an established programming language with a long life span,
follow a consistent coding standard, use modular design,
separate code and data, write readable and clean code, keep the
code simple, avoid deep nesting, and routinely refactor code.
Use Your Tool Regularly. We recommend to routinely use

your tools and experience them from a user’s perspective, so
that small glitches are quickly identified and fixed, and new
features are implemented in a timely manner. This is the case
for XCMS Online,21 ISiCLE,42 INCA,5 and MetaboAna-
lyst22the research teams responsible for these tools also use
them on a regular basis so that developers and users share the
same motivation to maximize the quality and productivity of
the software. Many successful bioinformatics tools are created
by top researchers in the field to fulfill an analysis need for
their group and are subsequently shared with the scientific
community.64 In this case, long-term maintenance is naturally
tied to the major research activities of the lab.
Use Version Control and Online Repositories. Project

management and version control, which are standard practices
in industrial software engineering, are often ignored by small
academic groups that are the main contributors of scientific
software. This can create barriers to future collaboration and
irreproducible research. It is of critical importance to use a
well-adopted IDE, such as NetBeans for Java developers,
RStudio for R developers, and Atom or PyCharm for Python.
The built-in version control systems such as Git65 can be
configured to connect with an online repository such as
Bitbucket66 or GitHub,67 which are both free for academics.
These repositories essentially serve as an online electronic lab
notebook for software development.
Embrace Open-Source. The field of bioinformatics has

benefited tremendously from free, open-source software
repositories: from Perl/BioPerl (for sequence analysis) to R/
Bioconductor (for statistics and visualization). Bitbucket or
GitHub are also used widely for code sharing. These
repositories encourage, and sometimes enforce, standard
practices to improve the quality and maintainability of the
code. The open-source nature also allows the original software

tools to be extended and improved by other groups, such as
the case for XCMS68 and MZmine 2.69 Open-source licenses
are increasingly encouraged or even required by funding
agencies and publishers, and some universities have adopted a
preferred open-source license for academic developers (MIT,
BSD, Apache, etc.).

Plan for Long-Term Maintenance. Many bioinformatics
software tools are developed by one or a handful of people,
consisting mainly of graduate students or postdoctoral fellows.
This can often cause issues when the main developer(s)
relocates (i.e., due to graduation or because funding for the
project ends). Therefore, it is critical to create a maintenance
plan, such as choosing a programming language and framework
that are familiar within the team at the development stage,
strategically training next-generation developers during the
transition period, or transferring the program into an open-
source community project when the software grows beyond
the maintenance capacity of the original development team
(e.g., Cytoscape70 or Galaxy71). To address the needs and
concerns related to software development and maintenance,
the US National Science Foundation (NSF) has recently
funded the conceptualization of a U.S. Research Software
Sustainability Institute (URSSI) to serve as a community hub
and support scientists to create improved, more sustainable
software.72

■ CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

We have outlined a series of practical guidelines for
metabolomics software development based on the collective
experience of the authors. Even though not all guidelines may
apply to a given project, we encourage developers to consider
how these recommendations can be implemented in order to
avoid common pitfalls and avoid wasted time and effort. We
have summarized several of the most important guidelines in
the Best Practices section that follows. We also encourage
advanced researchers to delve into other literature on good
programming practices for scientific software develop-
ment.35,50,57,58,62 An emerging facet of modern metabolomics
software is to provide capabilities for integration with other
types of omics data, such as transcriptomics, proteomics, and
(meta)genomics. Multi-omics profiling can increase the
statistical power of pathway-based analyses, identify co-
regulated species that span multiple functional levels and
overlay these disparate measurements onto a common network
of biological interactions.73,74 As metabolomics technologies
advance from analysis of single experiments to mining
information from large, multi-dimensional datasets, there is a
growing need for researchers who are trained to merge the
knowledge of computer algorithms (e.g., machine learning,
kinetic modeling) and software development with an under-
standing of basic biological and chemical science. In this
regard, implementing and sustaining projects that assist with
the development of better data analysis tools will become just
as important as efforts to promote the collection of new
metabolomics datasets.

■ BEST PRACTICES FOR METABOLOMICS TOOL
DEVELOPMENT

• Identify who will use the tool and why, to avoid
redundancy.
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• Consider available libraries, long-term maintenance,
interoperability, and cloud computing needs when
choosing a programming language/environment.

• Use standard file formats for data input and output.
• Provide user interfaces that are intuitive, interactive,

accessible, and appropriate for the target audience.
• Plan for simple, efficient, modular, and reproducible data

processing workflows.
• Provide advanced capabilities for power users that

extend the reach of the software.
• Include capabilities for data export and visualization to

promote easy sharing of results.
• Document software thoroughly using a variety of

formats.
• Publicize and disseminate the software through websites,

publications, notebooks, and workshops.
• Be a user of your own tool, and have a plan for its

sustainability and maintenance.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.analchem.0c03581.

A detailed guide to common data formats used in
metabolomics, including a description of vendor and
open formats for raw MS data as well as data formats for
specific applications such as library matching, functional
analysis, property prediction, and data export and
visualization, along with program-specific data formats
and considerations related to file size and file
compression (PDF)
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