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Graphical Abstract

1. Our study comprehensively studied the tumor microenvironment (TME)and
intra-tumor heterogeneity (ITH) in different stages of LUAD by both scRNA-
seq and bulk RNA-seq analyses.
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2. Based on these high-quality cells derived from different tissues, our results
revealed the cellular diversity and molecular complexity of cell lineages in
different stages of LUAD.

3. This study,which serves as a basic framework and valuable resource, can facil-
itate exploration of the pathogenesis of LUAD and identify novel therapeutic
targets in the future.
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Abstract
Background: Lung adenocarcinoma (LUAD) patients with different American
Joint Committee onCancer stages have different overall 5-year survival rates. The
tumormicroenvironment (TME) and intra-tumor heterogeneity (ITH) have been
shown to play a crucial role in the occurrence and development of tumors. How-
ever, the TME and ITH in different lesions of LUAD have not been extensively
explored.
Methods:We present a 204,157-cell catalog of the TME transcriptome in 29 lung
samples to systematically explore the TME and ITH in the different stages of
LUAD. Traditional RNA sequencing data and complete clinical informationwere
downloaded from publicly available databases.
Results: Based on these high-quality cells, we constructed a single-cell net-
work underlying cellular and molecular features of normal lung, early LUAD,
and advanced LUAD cells. In contrast with early malignant cells, we noticed
that advanced malignant cells had a remarkably more complex TME and higher
ITH level. We also found that compared with other immune cells, more differ-
ences in CD8+/CTL T cells, regulatory T cells, and follicular B cells were evident
between early and advanced LUAD. Additionally, cell-cell communication anal-
yses, revealed great diversity between different lesions of LUAD at the single-cell
level. Flow cytometry and qRT-PCR were used to validate our results.
Conclusion: Our results revealed the cellular diversity and molecular complex-
ity of cell lineages in different stages of LUAD. We believe our research, which
serves as a basic framework and valuable resource, can facilitate exploration of
the pathogenesis of LUAD and identify novel therapeutic targets in the future.

Abbreviations: DEGs, differential expression genes; GEO, gene expression omnibus; ITH, intra-tumor heterogeneity; LUAD, lung adenocarcinoma;
PPIs, protein-protein interactions; RNA-seq, RNA sequencing; scRNA-seq, single-cell sequencing; TCGA, The Cancer Genome Atlas; TME, tumor
microenvironment; UMAP, uniform manifold approximation and projection; VEGF, vascular endothelial growth factor
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1 INTRODUCTION

Lung cancer is the most common cancer, with more
than 1,700,000 new cases every year.1,2 The current
histopathologic classification indicates that lung adeno-
carcinoma (LUAD) comprises the majority of all lung
cancers. Although the treatment of LUAD has dramat-
ically improved, LUAD patients with different Ameri-
can Joint Committee on Cancer stages exhibit different
characteristics and survival,3,4 indicating LUAD is more
complicated than previously appreciated. Increasingly, the
tumor microenvironment (TME), which plays a signifi-
cant role in the occurrence and development of tumors,
has been shown as a crucial source of intra-tumor het-
erogeneity (ITH) in many studies.5,6 ITH, which is recog-
nized as a common characteristic of tumors, contributes to
therapeutic failure, drug resistance, and ultimately lethal
outcomes.7,8
Consequently, it is essential to comprehensively char-

acterize the TME and ITH in different stages of LUAD.
Additionally, most studies investigating the transcriptome
profile of LUAD were based on bulk RNA technologies,
which can fail to detect the cellular diversity and molec-
ular complexity of tumor cells.9 To compensate for the
disadvantages of traditional RNA sequencing (RNA-seq),
10x genomics single-cell sequencing (scRNA-seq), which is
focused on cellular andmolecular characteristics, has been
widely used in tumor research.10,11
Here, we comprehensively studied the TME and ITH

in different stages of LUAD by both scRNA-seq and bulk
RNA-seq analyses. Based on cells derived from different
tissues, a single-cell transcriptome atlas for non-malignant
lung tissues, early stage LUAD, and advanced stage LUAD
was built. By analyzing the single-cell transcriptome atlas,
single-cell networks for different lung conditions were
constructed. We characterized the expression profiles of
alveolar, early-stagemalignant, and advanced-stagemalig-
nant cells at the single-cell level. The cellular diversity and
molecular complexity of immune cell lineages in different
stages of LUADwere also explored. Moreover, our analysis
established a landscape of cellular metabolism and com-
munication for malignant and immune cells. In this study,
we offer insight into the TME and ITH in the different
stages of LUAD, which may help identify new therapeutic
targets.

2 RESULTS

2.1 Single-cell transcriptomic profiling
from normal lung, early LUAD, and
advanced LUAD tissues

A total of 29 samples, including 12 normal lung sam-
ples (five from Human Cell Atlas Data database and
seven from ArraryExpress database), 11 early LUAD sam-
ples (from Department of Thoracic Surgery, Zhongshan
Hospital, Fudan University database [FDZSH]), and six
advanced LUAD samples (three from FDZSH and three
from ArraryExpress), were obtained from 26 patients in
our study for downstream analysis (Figure 1A and Table 1).
Among them, 13 were active/former smokers; the remain-
ing were non-smokers. The R package “Harmony” was
applied to integrate the samples from different databases.
As shown in Figure S1, cells grouped primarily by dataset
were mixed after integration by the “Harmony” package,
which showed the well-integrated scRNA-seq data. After
quality control, a total of 204,157 cells that met the inclu-
sion criteria were selected for subsequent analysis (includ-
ing 82,065, 76,100, and 45,992 cells from normal samples,
early LUAD, and advanced LUAD, respectively).
We conducted dimensionality reduction and unsuper-

vised clustering analysis to identify cell type and revealed
nine cell type clusters. Then, based on the SingleR pack-
age, CellMarker dataset, and previous studies, we detected
the following cell types: B cells (marked by CD79A and
IGKC), T cells (marked by CD3D and CD3E), myeloid
cells (marked by LYZ and CD68), fibroblasts (marked by
DCN and C1R), endothelial cells (marked by PECAM1
and RAMP2), and mast cells (marked by TPSB2 and
CPA3) (Figure 1B). To identify epithelial cells, cancer cells,
and alveolar cells, we distinguished malignant and non-
malignant lung cells in the following ways. First, we used
the SingleR package and the knownmarkers of cancer and
alveolar cells to identify a cancer cluster and alveolar clus-
ter; EPCAM and SOX4 were used to mark the cancer clus-
ter; SFTPC and SFTPA1 to mark the alveolar cluster; CAPS
and TPPP3 to mark epithelial cells. Detailed information
of the marker genes for each cluster is shown in Figure 1C
and Figure S2A. Subsequently, we identified cells derived
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F IGURE 1 A single-cell atlas of normal lung tissues, early LUAD, and advanced LUAD. (A) Workflow depicting collection and
processing of specimens of normal lung, early LUAD, and advanced LUAD for scRNA-seq analysis. (B) The UMAP plot and the proportion of
204,157 high-quality cells to visualize cell-type clusters based on the expression of known marker genes. (C) Expression of marker genes for
each cell type. i. Violin plots displaying the expression of well-known representative markers across each cell type identified in the
non-malignant and malignant lung tissues. The y-axis shows the normalized read count. ii. The sample origin of the cells and feature plot of
malignant/non-malignant epithelial cells. (D) Heatmap showing large-scale CNVs of each cell type. The expression values for cells (except
alveolar and cancer cells) are plotted in the top heatmap, and the alveolar and cancer cells are plotted in the bottom heatmap, with genes
ordered from left to right across the chromosomes. (E) The most enriched pathways for marker genes in fibroblast and endothelial cells,
respectively



4 of 18 CHEN et al.

TABLE 1 Characteristics of the 26 LUAD patients included in this study for scRNA-seq analysis

Sample Age Sex Stage Location Gene mutation Smoking history Dataset
Patient 1 85-90 Male – RUL – Former ArrayExpress
Patient 2* 65-70 Male IIIB RUL – Former ArrayExpress
Patient 3* 60-65 Female IIB LUL – Former ArrayExpress
Patient 4 60-65 Male – LUL – Former ArrayExpress
Patient 5* 60-65 Male IIIA LUL – Former ArrayExpress
Patient 6 60-65 Male – LUL – Former ArrayExpress
Patient 7 50-55 Female – RUL – Active ArrayExpress
Patient 8 70-75 Female – – – No HCAD
Patient 9 40-45 Female – – – No HCAD
Patient 10 65-70 Male – – – Former HCAD
Patient 11 55-60 Male – – – Active HCAD
Patient 12 65-70 Female – – – Non HCAD
Patient 13 60-65 Female IB RUL EGFR No FDZSH
Patient 14 55-60 Male IB LLL EGFR No FDZSH
Patient 15 70-75 Male IB LLL EGFR No FDZSH
Patient 16 65-70 Female IB RLL EGFR No FDZSH
Patient 17 70-75 Male IB LUL EGFR Active FDZSH
Patient 18 75-80 Male IA LUL EGFR No FDZSH
Patient 19 60-65 Female IB RUL EGFR Active FDZSH
Patient 20 55-60 Female IB RML EGFR Active FDZSH
Patient 21 60-65 Male IA LUL EGFR No FDZSH
Patient 22 55-60 Female IA RUL HER-2 No FDZSH
Patient 23 50-55 Female IIB LLL EGFR No FDZSH
Patient 24 65-70 Female IB RML EGFR No FDZSH
Patient 25 70-75 Male IIA RUL EGFR Active FDZSH
Patient 26 45-50 Female IIIA RUL EGFR No FDZSH

Abbreviations: FDZSH, Department of Thoracic Surgery, Zhongshan Hospital, Fudan University;HCAD, human cell atlas data database; LLL, left lower lobe;
LUL, left upper lobe; RLL, right lower lobe; RML, light middle lobe; RUL, right upper lobe.
*The patients provided the tumor and corresponding normal samples in our study.

from LUAD samples, and those with high expression lev-
els of tumor marker genes were identified as "cancer clus-
ter." Based on cellular origin, we found that "cancer clus-
ter" cells were all derived from LUAD samples. By con-
trast, cells in the "alveolar cluster” and "epithelial cluster”
were mostly derived from normal lung tissues (Figure 1C),
strongly indicating that cells in "cancer cluster" should be
malignant cells and cells in “alveolar cluster” and “epithe-
lial cluster are normal lung cells.
Previous studies have shown that compared with other

normal cells, malignant cells had significantly higher copy
number variations (CNVs); thus, the "infercnv" package
was applied to calculate CNVs for “Cancer cluster” and
“Alveolar cluster,” respectively (Supplementary Materials
Details). In Figure 1D, reference cells defined as normal
cells are plotted in the top heatmap,while cells in the “alve-
olar cluster” and “Cancer cluster” are plotted in the bot-
tom heatmap. Compared with reference cells, we observed

that the “cancer cluster” had remarkably higher CNV lev-
els than reference cells, while the “alveolar cluster” had
similar CNV levels with reference cells. Moreover, we also
re-clustered the alveolar and cancer cells and plotted these
cells with each cell color-coded for its sample type of ori-
gin, the associated cell type, and malignancy score (which
was calculated based on the CNV value). As shown in Fig-
ure S2B, cancer cells were all derived from LUAD samples,
while alveolar cells originated from both LUAD and non-
malignant samples. We also noticed that cancer cells had a
higher malignancy score than alveolar cells. Overall, these
studies suggested reasonable cell annotation in our study
(Figure 1B).
The “scPred” package was also applied to validate our

results (Supplementary Materials Details). As shown in
Figure S3, we noticed that most cells that were identified
as “cancer cluster” cells in Seurat object were not classified
as “alveolar cluster” or “epithelial cluster” cells in scPred
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F IGURE 2 The single-cell transcriptomes of each cell type in normal lung tissues and different conditions of LUAD. (A) The proportion
of each cell type in normal lung, early LUAD, and advanced LUAD. (B) Heatmap showing the expression patterns of multiple cell types in
normal lung tissues and different conditions of LUAD (only shown top 10 DEGs in each condition of lung samples). (C) Boxplot illustrates
transcriptional noise by conditions of LUAD and cell type for the indicated number of cells. For all boxplots, the box represents the
interquartile range, the horizontal line in the box is the median, and the whiskers represent 1.5 times the interquartile range. Blue and red
colors indicate early stage and advanced stage cells, respectively. The asterisk indicates significant changes (Wilcoxon’s rank-sum test,
adjusted p-value < 0.05). Cell types are ordered by decreasing the transcriptional noise ratio between advanced and early cells. (D) The
expressions of innate immune response-associated genes across the group

object and cells identified as “Alveolar cluster” or “epithe-
lial cluster” in the Seurat object were also identified as
non-malignant lung cells in the scPred object. Thus, our
scPred results confirmed the identification of cancer and
non-malignant cells.
To characterize each cell population, functional enrich-

ment analyses based on cell type gene markers were per-
formed for each cell population in our study (Supplemen-
tary Materials Details). For example, as shown in Fig-
ure 1E, fibroblast cells are mainly involved in extracellular
matrix organization, and endothelial cells play an essen-
tial role in angiogenesis. Detailed information of the func-
tional enrichment analyses for other cell types is shown in
Figure S4.

2.2 Construction of the single-cell
network in normal lung tissues and
different lesions of LUAD

To characterize the single-cell transcriptome from normal
lung tissues to advanced LUAD, 204,157 cells were selected
for subsequent analysis. As shown in Figure 2A, the pro-

portion of myeloid cells increased significantly in non-
malignant lung samples, fibroblast cells increased signif-
icantly in advanced LUAD cells, and T cells had similar
proportions among different types of lung samples.
Next, the Wilcoxon rank-sum test was used to detect

differentially expressed genes (DEGs) in different lung
sample conditions (false discovery rate [FDR] < 0.01 and
fold change > 0.5). Then, the DEGs in the same lung sam-
ple conditions were merged and set as condition-related
genes (Figure 2B and Table S1). As shown in Figure 2B,
we found that compared with other conditions, genes
related to anti-inflammatory and poor prognosis (e.g.,
SPP1 and TNFSF10) were mainly detected in advanced
LUAD conditions,12,13 while genes related to inflammation
and normal alveolar function (e.g., SFTPC and S100A8)
were mainly identified in normal lung samples.14,15 Addi-
tionally, we also found that SCGB3A1/2 and SCGB1A1
were enriched in early LUAD. Previous studies had
reported that these genes belong to the cytokine-like
small molecular weight secreted protein family and play
a vital anti-inflammatory role in many tumors, especially
lung tumors.16,17 Overall, our research revealed unique
condition-related genes in each lung sample condition.
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Functional enrichment analyses revealed that early
LUAD condition-related genes were mainly enriched in
metabolic pathways, while condition-related genes for
advanced LUAD were closely related to cell proliferation
and differentiation (Figure S5).
It is known that transcriptional noise plays an essen-

tial role in heterogeneity.18 Thus, we determined the tran-
scriptional noise for each cell type by exploring cell-cell
variance shifts in different LUAD lesions (Supplemen-
tary Materials Details). As shown in Figure 2C, in con-
trast with cells in early LUAD, most cells (except epithe-
lial cells) in advanced LUAD had higher transcriptional
noise, especially B cells and alveolar cells. Previous studies
have demonstrated that the primary function of B cells is
the innate immune response.19,20 Therefore, we explored
innate immune response-associated genes21 across the
groups.
We observed that genes that play an essential role in

promoting inflammation (e.g., IL6, IL10, and CCL2) were
highly expressed in normal lung samples (Figure 2D).
Intriguingly, we also noticed that some innate immune
response-related genes (e.g., TLR3, MYD88, and DDX5)
were mainly enriched in the advanced LUAD group. Some
have beenwell characterized in LUAD. For example, TLR3,
which belongs to the family of type I integral membrane-
associated receptors, has been reported to play an impor-
tant role in immune and inflammatory responses.22 Tavora
et al23 reported that TLR3 could induce the expression of
SLIT2 and promote cancer progression. Further investiga-
tion of the expression of innate immune response-related
genes B cells will be important.
To comprehensively characterize both cellular and

molecular changes from normal lung tissues to advanced
LUAD, a single-cell transcriptomic network was built by
describing the correlations between each pair in the cell
populations (followed by detection of marker genes for
each cell type) in normal lung tissues and different lesions
of LUAD (Figure 3A). Protein-protein interaction (PPI)
analysis for primary cell types andmetabolism analysis for
each cell type was also performed to show dynamic alter-
ations in each lung sample condition.We observed a strong
connection between each cell population in normal lung
tissues, early LUAD, and advanced LUAD (Figure 3A).
In metabolic re-programming analysis, we noticed

that in contrast with other cell types, the upregulated
metabolic pathways were mainly enriched in cancer
cells and myeloid cells in early LUAD. By contrast, for
advanced LUAD, the upregulated metabolic pathways
mostly appeared in cancer, alveolar, and epithelial cells,
which revealed the different metabolic re-programming
patterns in different lesions of LUAD (Figure 3B and Table
S2). These results revealed that the metabolic reprogram-

ming of cell type within the TME (especially glycolytic and
oxidative phosphorylation pathways) might block the anti-
tumor effects of immune cells; this has not been previously
reported in LUAD at the single-cell level.

2.3 Malignant cell differences across
lesions and tumor clonal heterogeneity

We selected patients with more than 500 cancer cells for
downstream analysis; nine patients with 68,089 tumor-
derived cells (six early LUAD and three advanced LUAD)
were included (Figure 4A). Heterogeneity, which is well
known as a prominent characteristic of tumors, is con-
sidered an important cause of therapeutic failure, drug
resistance, and ultimately lethal outcomes. Thus, it makes
sense to investigate heterogeneity in LUAD, especially in
malignant cells. As shown in Figure 4B, we observed
that 21,861malignant cells formed patient-specific clusters,
which revealed significant heterogeneity in each patient.
To further explore whether the level of ITH in advanced
LUAD was higher than in early LUAD, we applied a for-
mula to estimate tumor cell-specific transcriptomic diver-
sity scores in our study (SupplementaryMaterials Details).
Intriguingly, the diversity scores in advanced LUAD were
higher than in early LUAD (p = 0.023); in particular, the
top three diversity scores were all from advanced LUAD
(Figure 4C).
Next, to evaluate the role of heterogeneity in bio-

logical function, we performed GSVA analysis of
malignant cells from each patient (Supplementary
Materials Details). As shown in Figure 4D, our results
suggested that compared with early malignant cells,
pathways were mostly upregulated in advanced malig-
nant cells, especially in patient 25. Although mainly
pathways had higher expression levels in advanced
tumor cells, pathways involved KRAS_SIGNALING_DN,
WNT_BETA_CATENIN_SIGNALING, and ESTRO-
GEN_RESPONSE_EARLY were preferentially
expressed in patient 25, while pathways involved
REACTIVE_OXIGEN_SPECIES_PATHWAY, INTER-
FERON_ALPHA_RESPONSE, and ANGIOGENESIS
were expressed in patient 23. Moreover, we also found
that pathways associated with reactive oxygen species
(ROS), inflammation, and angiogenesis were upregulated
in advanced LUAD patients (Figure 4D). Previous studies
have suggested that pathways associated with ROS and
apoptotic pathways can contribute to inflammation24–26;
therefore, we evaluated ROS and apoptotic gene expres-
sion signatures between advanced and early LUAD groups
(Supplementary Materials Details). Then, as shown in
Figure S6A and Table S3, advanced LUAD patients had
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F IGURE 3 The single-cell transcriptome network underlying non-malignant lung, early LUAD, and advanced LUAD. (A) Cellular and
molecular changes from normal lung tissues to advanced LUAD. Top: The nodes stand for each epithelial cell type in ESCC and
non-malignant esophageal tissue, and the thickness of edges in the network denotes the Pearson correlation coefficient between each cell
type. Bottom: Protein-protein interactions (PPIs), which were based on the signatures (FDR < 0.01 and fold change > 1.5) for each
representative cell type in different stages. The size and color for nodes represent the combined scores of PPIs. (B) Metabolic pathway
activities in different lung samples. Left: Metabolic pathway activities in normal lung, early LUAD, and advanced LUAD. Centre: Metabolic
pathway activities in early LUAD. Right: Metabolic pathway activities in advanced LUAD
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F IGURE 4 The scRNA and bulk profiles for malignant cell lineages in early LUAD and advanced LUAD. (A) UMAP plot of 68,089
tumor-derived cells from nine LUAD patients, with each cell color-coded for (left to right): the associated cell type, its sample type of origin
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significantly higher expression levels of MPO, FEZ1,
PPP2R4, and CREBBP than early LUAD. We also per-
formed qRT-PCR to confirm our results (Figure S6B and
S6C). In summary, our study confirmed both inter- and
intra-tumoral transcriptomic heterogeneity in different
LUAD lesions.
To better describe the gene regulatory network

between early and advanced tumor cells, we conducted
SCENIC analysis (Supplementary Materials Details).
Genes regulated by EHF_extended, BATF_extended,
and CD59_extended were highly upregulated in
advanced tumor cells, while genes regulated by ATF3,
JUNB_extended, and FOSB_extended were upregulated
in early tumor cells (Figure 4E). Next, to characterize
the single-cell expression profiles for malignant cells
in different lesions of LUAD, differential expression
analysis was applied in our study. As a result, we found
that TNFSF10, ECM1, and RNF213 were the top three
upregulated genes in advanced LUAD. By contrast, early
LUAD had increased expression of SCGB3A2, SCGB3A1,
and SFTPC (Table S4). To validate the marker genes of
different conditions of LUAD in our study, flow cytometry
and qRT-PCR were performed. As shown in Figure S6
based on EPCAM, amarker of malignant cells, tumor cells
in early and advanced LUAD were selected. Our qRT-PCR
results revealed that the expression levels of TNFSF10
(p < 0.01), ECM1 (p < 0.01), and RNF213 (p < 0.01) were
significantly increased in advanced LUAD tumor cells,
whereas the expression of SCGB3A2 (p < 0.01), SCGB3A1
(p < 0.01), and SFTPC (p < 0.01) was increased in early
LUAD (Figure S6B and S6C). These findings indicated
that these genes could serve as new alarm signals for
LUAD.
Furthermore, based on gene markers for advanced

LUAD, 454 LUAD patients in The Cancer Genome Atlas
(TCGA) database and 1061 LUAD patients in the gene
expression omnibus (GEO) database were selected to iden-
tify prognostic markers for LUAD patients (Supplemen-
tary Materials Details). Consequently, CEACAM6, CTSE,
SQSTM1, and VEGFA were identified as prognostic stage-
related genes in our study (Figure S7). As shown in Fig-
ure 4F, we found that in the prognostic model, which was
contrasted by stage-related genes, patients were divided
into high-risk and low-risk groups in both the TCGA and
GEO databases, suggesting that our prognostic model can
accurately predict the prognosis of LUAD patients.

2.4 Characterization of the single-cell
expression profiles for immune cells and
lineages in different lesions of LUAD

Immune cells are an essential part of the TME and play
an important role in tumor development and therapy
failure. Thus, it is necessary to compare the immune
cells and lineages in different lesions of LUAD for the
development of novel therapeutic targets. Here, to com-
prehensively investigate immune cells, we re-clustered T
cells, B cells, and myeloid cells (Figure 5A). T cells were
divided into CD8+/CTL T cells (marked by CD8B), CD4+
T cells (marked by CD4), regulatory T cells (marked by
IL2RA), and natural killer cells (marked by FGFBP2); B
cells were re-clustered as follicular B cells (marked by
MS4A1), MALT B cells (marked by JCHAIN), and plasma
B cells (marked by IGHG1);myeloid cells were divided into
macrophages (marked by CD163), granulocytes (marked
by S100A12), Langerhans cells (marked by FCER1A), and
monocyte-derived dendritic cells (marked by CLEC9A and
DUSP4).Detailed information of themarker genes for each
cluster is shown in Figure 5B.
To investigate the similarities of these immune lineages

between early and advanced LUAD, we calculated the pro-
portions of each cell proportion for each LUAD lesion
in our study. We found that compared cell proportions
within early LUAD to those within advanced LUAD, we
observed the frequencies of CD8+/CTL T cells, regula-
tory T cells, andmacrophages were significant increases in
advanced LUAD. By contrast, the frequency of follicular B
cells, Langerhans cells, and CD4+ T cells decreased signif-
icantly in advanced LUAD (Figure 5C). Next, we assessed
CD8+/CTL T cells, regulatory T cells, macrophages, follic-
ular B cells, Langerhans cells, and CD4+ T cells to study
the changing immune trend in HLA-related genes. As
shown in Figure S8, we found that major histocompatibil-
ity complex (MHC) class Imolecules (e.g., HLA-A,HLA-B,
and HLA−C) were highly expressed on all immune cells.
By contrast, MHC II molecules (e. g., HLA-DQA1/2, HLA-
DMA/B, and HLA−DRA/B1) were only overexpressed in
cells with decreased frequency in early LUAD, especially
in macrophages. Previous studies have demonstrated that
MHC II can mediate the presentation process of exoge-
nous antigens.27 Alspach and colleagues reported that acti-
vation of CD4+ T cells by MHC II molecules could play
an important anti-tumor role.28 Our study showed that

(early or advanced LUAD), and the corresponding patient. (B) UMAP plot of 21,861 LUAD cells from nine LUAD patients, with each cell
color-coded for (left to right): the corresponding patient and its sample type of origin (early LUAD or advance LUAD). (C) Diversity score of
LUAD samples. Data are presented as means ± SEM. (D) Pathway activities were scored in nine LUAD patients using GSVA. (E) SCENIC
analysis for LUAD cells from early LUAD or advance LUAD. (F) Kaplan-Meier (KM) survival curve of five advanced LUAD-related prognostic
signatures. i. KM- survival curve in the TCGA database. ii. KM- survival curve in the GEO database
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F IGURE 5 The scRNA profiles for immune cell lineages in normal lung, early LUAD, and advanced LUAD. (A) UMAP plot of T cells, B
cells, and Myeloid cells, respectively. (B) Violin plots and feature plots of immune marker genes. i. Violin plots. ii. Feature plots. (C) The
proportion of T cells, B cells, and myeloid cells, respectively. (D) Quantification of differences between major immune lineages in early LUAD
and advanced LUAD. Each dot stands for a sub-sample of 400 cells from PCA space for early LUAD and advanced LUAD or a sample of 400
cells from a random group. The height of the bar is the mean of the subsample
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F IGURE 6 The scRNA profiles for macrophages in normal lung, early LUAD, and advanced LUAD. (A) UMAP plot of macrophages in
normal lung, early LUAD, and advanced LUAD. (B) Pie charts showing the proportions of cells originating from each condition of lung
samples detected in each cluster, colored by condition. (C) Scatterplots showing M1 and M2 scores (left panel) and pro- and anti-inflammatory
scores (right panel) for each color-coded macrophage clusters. (D) Pathway activities scored in all 17 macrophage clusters

compared to macrophages in early LUAD, macrophages
in advanced LUAD had significantly lower MHC II gene
expression. Together, our results indicate that the eleva-
tion of macrophages with lower expression of MHC II
molecules and the decrease in CD4+ T cells in advanced
LUAD might explain the immune escape of LUAD, and
MHC II overexpressing macrophages could be a potential
immune therapy target.
We then focused on myeloid cells and found that

althoughmyeloid cells were present in a higher proportion
in non-malignant patients than early and advanced LUAD
patients, macrophages cell represented the most preva-
lent cell type in myeloid cells at different conditions of

lung samples (Figure 5C). We also noticed that the propor-
tions ofmacrophages gradually increasedwith disease pro-
gression. Together, these results suggest that macrophages
play an essential role in the development of LUAD. There-
fore, we re-clustered macrophages and identified a total
of 17 sub-clusters (Figure 6A). We analyzed cellular con-
tributions to each cluster and found that eight clusters
had cells (≥60%) from the sole individual state (Fig-
ure 6B); we defined these eight clusters as "domain" clus-
ters (including four normal lung clusters, one early LUAD
domain cluster, and three advanced LUAD domain clus-
ters). These results indicate a pervasive heterogeneity in
macrophages.
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Next, to study the relationship between macrophages
and disease progression, we explored macrophage func-
tion. We calculated the M1 and M2 polarization and pro-
inflammatory and anti-inflammatory scores based on pre-
vious studies.29 As shown in Figure 6C, both M2-like and
anti-inflammatory phenotypes in advanced LUADdomain
clusters (clusters 2, 8, and 15) were identified. Next, we
performed GSVA analysis among all 17 sub-clusters to fur-
ther evaluate functional changes in different clusters. As
shown in Figure 6D, we found that inflammatory path-
ways (e.g., IL6/STAT3, Notch, and IL2-STAT5 signaling
pathways) related to poor prognosis were mainly enriched
in advanced LUAD domain clusters. Overall, our results
revealed thatmacrophages in advancedLUADhave a dom-
inant anti-inflammatory phenotype, which could promote
LUAD growth.
The distance between each type of immune cell (includ-

ing 400 cells in each group) was also estimated by Bhat-
tacharyya distance (Supplementary Materials Details).
Obvious differences between early and advanced LUAD
were identified in CD8+/CTL T cells (3.02-fold change,
p < 0.001), follicular B cells (1.35-fold change, p < 0.001),
and regulatory T cells (1.31-fold change, p < 0.001); while
other cell types, such as myeloid cells, were less similar
between early and advanced LUAD (Figure 5D). Therefore,
we selected CD8+/CTL T, regulatory T, and follicular B
cells for downstream analysis.
We selected 2345 follicular B cells (954 from the

early LUAD group and 1391 from the advanced LUAD
group) for subsequent analysis. Differential expres-
sion analysis revealed that HLA-DRB5, PSMB9 IGLC3,
and PSMB9 were mostly expressed in advanced follic-
ular B cells, whereas MT2A and RPL41 were mainly
detected in early follicular B cells (Table S4). Gene
regulatory analysis showed that genes regulated by
JUND_extended, JUNB_extended, and CREM were
mainly enriched in early follicular B cells, while genes
regulated by XBP1, BHLHE40, and JUN_extended were
highly upregulated in advanced follicular B cells (Fig-
ure 7A). We also found that advanced follicular B cells
were enriched in INTERFERON_GAMMA_RESPONSE,
KRAS_SIGNALING_DN, and SPERMATOGENESIS
compared to early follicular B cells (Figure 7A).
To quantitatively track T cell reprogramming in the nor-

mal, early LUAD, and advanced LUAD state, we performed
trajectory analysis (Supplementary Materials Details). As
shown in Figure 7B, the state that only contains a sin-
gle cell type (cells in this state were primarily from nor-
mal tissue) was set as the “root” state in our study.
Our results showed differentiation paths from normal-
specific natural killer cells to tumor-derived CD8+/CTL
T cells, tumor-derived CD4+ T cells, and tumor-derived
regulatory T cells. Focusing on the branch from root

to early and advanced LUAD, we found that CD4+
T cells were observed as an intermediate state, while
CD8+/CTL and regulatory T cells were mainly exited in
the advanced LUAD group. These findings show the com-
plex reprogramming of T cells between early and advanced
LUAD.
Next, we focused on CD8+/CTL and regulatory T cells.

A total of 6597 CD8+/CTL T cells (including 417 early
LUAD and 6150 advanced LUAD group cells) were eval-
uated in our study. Differential expression analysis was
applied to identify distinct signatures in early or advanced
CD8+/CTL T cells. We noticed that advanced CD8+/CTL
T cells had higher expression of CXCL13, HAVCR2, and
RBPJ, while RPL41, EEF1A1, and RPL39 were the top
three upregulated genes in early CD8+/CTL T cells (Table
S4). For regulatory T cells, a total of 2396 cells (with 474
early LUAD and 1922 advanced LUAD group cells) were
obtained for differential expression analysis. Advanced
regulatory T cells had higher expression of CXCL13,
IFI27, and CCL5, while LMNA, MT2A, and RPL39 were
overexpressed in early regulatory T cells (Table S4). These
results indicated that compared to early LUAD, a higher
infiltration of CD8 cytotoxic and regulatory T cells express-
ing CXCL13 and a lower infiltration of follicular B cells in
advanced LUAD could constitute a prognostic factor for a
patient with LUAD, consistent with previous studies.30,31
SCENIC analysis revealed that advanced CD8+/CTL T
cells had a greater activity of BHLHE40_extended and
KLF6_extended, whereas advanced regulatory T cells had
higher activity of YBX1_extended and CHD2 (Figure 7C).
We also found that advanced CD8+/CTL T cells were
more closely related to INFLAMMATORY_RESPONSE,
APICAL_JUNCTION, and KRAS_SIGNALING_DN
pathways, while KRAS_SIGNALING_DN, INTER-
FERON_ALPHA_RESPONSE, and COMPLEMENT
pathways were over-upregulated in advanced regulatory T
cells (Figure 7D). In summary, our results suggested that
enrichment for activation of KRAS signaling in advanced
LUAD could be a potential therapeutic target.

2.5 Crosstalk between cancer and
immune cells

Tumors are heterogeneous mixtures of cells, and crosstalk
between cancer and immune cells has been shown to
play an important role in the evolution of tumors. The R
package “CellTalker” was used to evaluate the interactions
between cancer and immune cells. We classified cell-cell
communications into common interactions (interactions
existing in more than two lung sample conditions) and
unique interactions (interactions only occurring in one
lung sample condition).
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F IGURE 7 Trajectory analysis, and gene set variation analysis, and SCENIC analysis for T Cells, B cells, and myeloid cells. (A) i.
SCENIC analysis for follicular B cells. ii. GSVA analysis for follicular B cells. (B) Trajectory analysis in T cells. (C) SCENIC analysis for T cells.
i. SCENIC analysis for CD8+/CTL T cells. ii. SCENIC analysis for regulatory T cells. (D) GSVA analysis for T Cells. i. GSVA analysis for
CD8+/CTL T cells. ii. GSVA analysis for regulatory T cells
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F IGURE 8 Circos plot showing the interactions between ligands and receptors across cell types in non-malignant lung, early LUAD, and
advanced LUAD. Left to right: the cell-cell communications in between normal lung and LUAD, the cell-cell communications in between
early LUAD and other lung samples (normal lung and advanced LUAD), the cell-cell communications in between advanced LUAD and other
lung samples (normal lung and early LUAD)

Using CellTalker, we identified 4, 20, and 50 unique
interactions in normal lung, early LUAD, and advanced
LUAD tissues, respectively. In contrast with early LUAD,
the pairs GNAI2-DRD2, GNAI2-LHCGR, and C4B-CD46
were only detected in advanced LUAD, while COL3A1-
MAG, FN1-MAG, HLA-C-SLC9C2, and COL2A1-MAG
were uniquely expressed in early LUAD (Figure S9). Our
study revealed that compared with normal lung and early
LUAD tissues, advanced LUAD had a more unique set of
circumstances for cell-cell communication, which may be
a source of the distinctive features of advanced LUAD. The
detailed cell-cell communication pairs are shown in Fig-
ure 8 and Table S5.

3 DISCUSSION

LUAD, which is characterized as one of the most com-
mon and fatal carcinomas in adults, results in enor-
mous economic and medical burdens every year, espe-
cially for advanced LUAD.2,32 Although great progress in
recent decades has beenmade in LUAD treatments, greatly
improving the prognosis for early-stage LUAD, the over-
all outcomes for advanced stage LUAD remain poor.33,34
Thus, comprehensive investigation of the cell lineages
within LUAD lesions is worthwhile.
Here, using single-cell transcriptome profiles, we

included 204,157 cells from normal lung, early LUAD, and
advanced LUAD tissues to explore the cellular dysregu-
lation and biological changes in the TME of each LUAD
lesion. We constructed a single-cell atlas for different sam-
ple conditions and identified gene expression signatures
for each lung tissue condition. We also analyzed alveolar,
early-stagemalignant, and advanced-stagemalignant cells

across different conditions. Next, we used Bhattacharyya
distance to quantitatively compare the similarity of these
immune lineages between early and advanced LUAD.
CD8+/CTL T cells, regulatory T cells, and follicular B
cells, which showed apparent differences between early
and advanced LUAD, were also analyzed to characterize
shifts in the TME from early to advanced LUAD. Cell-cell
interaction analysis was also applied in our study for
potentially applicable in clinical practice for advanced
LUAD.
The TME is an important component of tumor tissues;

it plays an active role in cancer progression and thera-
peutic responses.5 Our study revealed large differences
in CD8+/CTL T cells, regulatory T cells, and follicular
B cells between early and advanced LUAD. Strikingly,
differential expression analysis showed that CXCL13 was
mainly expressed in advancedCD8+/CTLand regulatory T
cells, consistent with previous studies.35,36 The chemotac-
tic cytokine CXCL13 has been shown to play a critical role
in cell proliferation, invasion, and survival.37 Within the
TME, CXCL13 induces its receptor CXCR5.38,39 Biswas et al
demonstrated that co-expression of the ligand-receptor
pair CXCL13–CXCR5 directly regulates the epithelial to
mesenchymal transition in tumors and enhances tumor
migration and invasion,40 indicating that CXCL13 may be
a valuable prognostic indicator and a therapeutic target for
patients with advanced LUAD.
Heterogeneity is a general characteristic for most car-

cinomas, especially LUAD.41,42 Previous analyses have
demonstrated that genomic and transcriptomic alterations
are a universal source for ITH in many tumors.43 Ma
et al44 revealed great heterogeneity in LUAD tumor cells
and demonstrated that the heterogeneity of immune
module expression (IFN-γ signaling pathway genes) will
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improve prognoses of immunotherapies. Our study esti-
mated tumor cell-specific transcriptomic diversity scores
and performed GSVA and inferCNV analyses to provide
an intuitionistic way to measure intra- and inter-tumor
heterogeneity at different stages of LUAD. Since current
technologies for whole-genome or whole-exome sequenc-
ing at the single-cell level are still not mature enough
to apply in reality, CNVs inferred by transcriptome pro-
files have been extensively applied to evaluate genomic
shifts.45 In the present study, we found that compared
with non-malignant cells, malignant cells had higher CNV
levels. We also noticed that in contrast with early LUAD
cells, malignant cells in advanced LUAD had the highest
CNV levels, which suggested that advanced LUAD might
have a higher level of heterogeneity. Based on scRNA-
seq data, similar results were also found in transcrip-
tional noise and heterogeneity score analyses. Ma et al41
showed that patients with tumors with higher hetero-
geneity levels also had poorer prognoses, and hypoxia-
dependent vascular endothelial growth factor (VEGF)may
be a key factor associated with heterogeneity of TME
polarization. Previous studies have suggested that hypoxia
could induce HIF1A to activate hypoxia signaling, stimu-
late polarization of fibroblasts,macrophages, and endothe-
lial cells within the TME, and accelerate tumor progres-
sion via VEGF.46,47 The role of VEGF in heterogeneity
has not yet been fully investigated; further studies are
needed.
Metabolic reprogramming is an indispensable compo-

nent of biochemical reactions as it supplies tumor cells’
energy to survive and maintain cellular function.48 Tumor
cells consume a large amount of glucose via glycolysis to
obtain energy even in the presence of adequate oxygen;
consequently, a large amount of lactic acid produced via
the glycolytic pathway promotes an acidic TME.49 Previous
studies have also revealed that the anti-tumor immunolog-
ical effect, which is mainly mediated by tumor-infiltrating
lymphocytes, is weakened within the acidic TME.50 In
the present study, we found that glycolytic and oxida-
tive phosphorylation pathways were upregulated in early
and advanced LUAD cells. Interestingly, compared with
early LUAD, we also observed that more cell types were
involved in the upregulated glycolytic and oxidative phos-
phorylation pathways, which may further downregulate
anti-tumor effects in advanced LUAD.
KRAS mutation is thought to be the most com-

mon activating lesion in human tumors, especially pan-
creas, lung, and colon carcinomas, and is considered
a predictor of poor patient outcomes.51,52 Intriguingly,
we found that compared with cells in early LUAD,
cells in advanced LUAD were generally enriched in the
KRAS_SIGNALING_DN pathway; previous studies have

revealed that the multiple genes regulated by KRAS
activation play important biological roles in prolifera-
tion, metabolism, and TME reprogramming of tumors.53
Although there has not yet been successful clinical appli-
cation of agents targeting KRAS activation, recent studies
have suggested drugs that target molecules downstream of
KRAS signaling, such asMEK, as novel therapeutic targets
for the treatment of KRAS-activated carcinomas.54 Our
study provides further insight into KRAS activation at the
single-cell level in advanced LUAD.
There are some limitations to our study. First, wemainly

focused on immune cells, which had obvious differences
and included more than 400 cells in early and advanced
LUAD samples. Second, unlike other studies,30,55 the
patients included in our study were surgically resected
lung cancer patients rather than patients with recur-
rence andmetastasis. However, our research improves our
understanding of the TME and cellular heterogeneity in
patients with different conditions of LUAD, which will
serve as a basic framework and valuable resource for inves-
tigating the pathogenesis of LUAD and identifying poten-
tial therapeutic targets in the future.

4 MATERIALS ANDMETHODS

4.1 Ethics statement

This study was approved by the Ethics Committee of
Zhongshan Hospital, Fudan University, China (B2018–
137R). Informed consent was obtained when patients were
hospitalized.

4.2 Study cohorts

A total of 14 primary LUAD patients who received cura-
tive surgical resection in the Department of Thoracic
Surgery in Zhongshan Hospital (FDZSH) were included
for scRNA-seq analyses. We also integrated the other two
independent LUAD patient cohorts, which were down-
loaded from ArraryExpress (accession numbers E-MTAB-
6149 and E-MTAB-6653) and Human Cell Atlas Data Coor-
dination Platform (accession number PRJEB31843), used
in our study. For downstream analysis, LUAD patients
were divided into early LUAD (Stage I) and advanced
LUAD (Stage II–III).
In bulk RNA analysis, traditional LUAD RNA-seq

data were obtained from six GEO databases (GSE30219,
GSE31210, GES3141, GSE37745, GSE50081, and GSE68465).
We also selected LUAD patients from TCGA database for
bulk RNA analysis.
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4.3 Tissue processing and single-cell
sequencing

Wecollected the samples after surgical resection and disso-
ciated the tissues into a single-cell suspension as described
in the Supplement Methods.

4.4 10x scRNA-seq data analysis

Seurat R package56 was applied in our study to convert
the scRNA-seq data as a Seurat object. Cells that expressed
fewer than 200 genes ormore than 7000 genes, or hadmore
than 20% mitochondrial genes, were removed at the qual-
ity control step. Data were then normalized by the “Nor-
malizeData” function with the “LogNormalize” method,
and “FindVariableFeatures” was used to identify the top
2000 highly variable genes. Next, we used the “RunPCA”
function to reduce the dimension of the scRNA-seq data
after scaling and centering features with the “ScaleData”
function. The “RunHarmony” function in the “Harmony”
R package, which can simultaneously account for multi-
ple factors, was used with default parameters to integrate
the different study cohorts in our study.57 Subsequently, we
used the “RUNUMAP” function to conduct uniform man-
ifold approximation and projection (UMAP) analysis. We
also used the “FindClusters” and “FindAllMarkers” func-
tions to conduct cell clustering analysis and detect gene
expressionmarkers. Afterwards, we used the SingleR pack-
age, CellMarker dataset, and previous studies11,58 to anno-
tate the cell types in our study.
The “SubsetData” function was also applied to extract

the sub-cluster for downstream analysis. After detecting
clusters and gene expression markers with the “FindClus-
ters” and “FindAllMarkers” functions in sub-clusters, the
“RUNUMAP” function was also used to perform UMAP
analysis. The sub-clusters were annotated as described
above.

4.5 Construction of a single-cell
transcriptome network

To better investigate the dynamic changes of the overall
molecular hallmarks in different stages (normal lung tis-
sues vs early-stage LUAD vs advanced stage LUAD), a
single-cell transcriptomenetworkwas constructed. Briefly,
we first identified the centroids, which constitute the
most significant number of cells in each network and
then assessed the association between centroids and other
cell types by Pearson correlation coefficient. Subsequently,
we identified the marker genes for each stage with the
“FindMarkers” function with a threshold of log2 fold-

change > 0.5 and FDR < 0.05. PPI and functional enrich-
ment analyses were also performed to reveal themolecular
and functional changes in different stages.

4.6 Construction of a cell to cell
interaction network

The R package “CellTalker” is a widely used algorithm.
Based on a recently described list of receptors and ligand
pairs, “CellTalker” provides a way to construct a cell to cell
interaction network. Cell communication analyses were
performed as follows: (1) receptor/ligand genes detected in
more than 10 cells in each cell type from >50% of patients
within a group were selected for downstream analysis and
(2) the interactions were evaluated and visualized by the
“unique_interactions” and “circos_plot” functions, respec-
tively.
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