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Abstract

Motivation: Read-based phasing deduces the haplotypes of an individual from sequencing reads

that cover multiple variants, while genetic phasing takes only genotypes as input and applies the

rules of Mendelian inheritance to infer haplotypes within a pedigree of individuals. Combining

both into an approach that uses these two independent sources of information—reads and pedi-

gree—has the potential to deliver results better than each individually.

Results: We provide a theoretical framework combining read-based phasing with genetic haplotyp-

ing, and describe a fixed-parameter algorithm and its implementation for finding an optimal solu-

tion. We show that leveraging reads of related individuals jointly in this way yields more phased

variants and at a higher accuracy than when phased separately, both in simulated and real data.

Coverages as low as 2� for each member of a trio yield haplotypes that are as accurate as when

analyzed separately at 15� coverage per individual.

Availability and Implementation: https://bitbucket.org/whatshap/whatshap

Contact: t.marschall@mpi-inf.mpg.de

1 Introduction

Humans are diploid and determining the sequences of both homolo-

gous copies of each chromosome is desirable for many reasons. These

two sequences per chromosome are known as haplotypes. The process

of obtaining them is known as haplotyping or phasing, two terms that

we will use interchangeably. Haplotype-resolved genetic data can be

used, for instance, for population genetic analyses of admixture, mi-

gration and selection, but also to study allele-specific gene regulation,

compound heterozygosity and their roles in human disease. We refer

the reader to Tewhey et al. (2011) and Glusman et al. (2014) for de-

tailed reviews on the relevance of haplotyping.

General Approaches for Haplotyping. There are three major

approaches to phasing. First, haplotypes can be inferred from geno-

type information of large cohorts based on the idea that common

ancestry gives rise to shared haplotype tracts, as reviewed by

Browning and Browning (2011). This approach is known as statis-

tical or population-based phasing. It can be applied to unrelated in-

dividuals and only requires genotype data, which can be measured

at low cost. While very powerful for common variants, this tech-

nique is less accurate for phasing rare variants and cannot be applied

at all to private or de novo variants. Second, haplotypes can be

determined based on genotype data of related individuals, known as

genetic haplotyping (Glusman et al., 2014). To solve the phasing

problem, one seeks to explain the observed genotypes under the

constraints imposed by the Mendelian laws of inheritance, while

being parsimonious in terms of recombination events. For larger

pedigrees, such as parents with many children, this approach yields

highly accurate phasings (Roach et al., 2011). On the other hand, it

is less accurate for single mother-father-child trios and has the in-

trinsic limitation of not being able to phase variants that are hetero-

zygous in all individuals. Third, the sequences of the two haplotypes

can be determined experimentally, called molecular haplotyping.

Many techniques do not resolve the full-length haplotypes but yield

blocks of varying sizes. Approaches furthermore largely differ in the

amount of work, DNA and money they require. On one end of the

scale, next-generation sequencing (NGS) instruments generate local

phase information of the length of a sequenced fragment at ever-

decreasing costs. Another approach consists in breaking both hom-

ologous chromosomes into (larger) fragments and separating them

into a number of pools such that each pool is unlikely to contain

fragments from the same locus of both haplotypes. This can, for in-

stance, be achieved by dilution followed by bar-coded short-read

sequencing. To achieve molecular haplotyping over the range of a

full chromosome, protocols have been invented to physically separ-

ate the two homologous chromosomes, for example by microscopy-

based chromosome isolation, fluorescence-activated sorting, or

microfluidics-based sorting. These and other experimental tech-

niques for molecular haplotyping have been surveyed by Snyder
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et al. (2015). They are of great interest because they facilitate phas-

ing of rare variants for single individuals. Rare variants have been

postulated to contribute considerably to clinical traits and are hence

of major interest.

Haplotype Assembly. When many haplotype fragments are avail-

able for one individual, for instance from sequencing, one can at-

tempt to reconstruct the full haplotypes or at least to obtain larger

blocks. This process is known as haplotype assembly, single-individ-

ual haplotyping, or read-based phasing (in case the fragments indeed

stem from sequencing reads). It requires reads that span two or

more heterozygous variants. In order to be successful, reads covering

as many pairs of consecutive heterozygous variants as possible are

desirable. At present, third generation sequencing platforms, as mar-

keted by Pacific Biosciences (PacBio) and Oxford Nanopore, be-

come more widespread and offer reads spanning thousands to tens

of thousands of nucleotides. Although error-rates are much higher

than for common second generation technologies, the longer reads

provide substantially more phase information and hence render

them promising platforms for read-based phasing.

We adapt the common assumption that all variants to be phased

are bi-allelic and non-overlapping. Then, the input to the haplotype

assembly problem can be specified by a matrix with entries from

f0;1;�g, having one row per read and one column per variant.

Entries of 0 or 1 indicate that the read in that row gives evidence for

the reference or alternative allele for the variant in that column, re-

spectively. An entry of ‘–’ signifies that a variant is not covered by

that read. In case all reads are error-free and mapped to correct pos-

itions, the set of rows in that matrix admits a bipartition such that

each of the two partitions is conflict free. Here, two rows are defined

to be conflicting if they exhibit different non-dash values in the same

column; that is, one entry is 0 and the other one is 1. If such a bipar-

tition exists, the matrix is called feasible.

To formalize the haplotype assembly problem in the face of

errors, we define operations on the input matrix and ask for the min-

imum number of operations one needs to apply to render it feasible.

Different such operations have been studied, in particular removal

of rows, resulting in the Minimum Fragment Removal (MFR) prob-

lem, removal of columns, resulting in the Minimum SNP Removal

(MSR) problem, and flipping of bits, resulting in the Minimum

Error Correction (MEC) problem. All three problems are NP-hard

(Cilibrasi et al., 2007; Lancia et al., 2001). Flipping of bits corres-

ponds to correcting sequencing errors and hence the MEC problem

has received most attention in the literature and is most relevant in

practice. A wealth of exact and heuristic approaches to solve the

MEC problem exists. Exact approaches, which solve the problem

optimally, include integer linear programming (Chen et al., 2013b;

Fouilhoux and Mahjoub, 2012), and fixed-parameter tractable

(FPT) algorithms (He et al., 2010; Patterson et al., 2015; Pirola

et al., 2015). Refer to the reviews by Schwartz (2010) and Rhee

et al. (2015) for further related approaches.

Here, we build upon our previous approach WhatsHap

(Patterson et al., 2014, 2015) and generalize it to jointly handle

sequencing reads of related individuals. WhatsHap is an FPT ap-

proach that solves the (weighted) MEC problem optimally in time

exponential in the maximum coverage, but linear in the number of

variants. In particular the runtime does not explicitly depend on the

read length. These properties make it particularly apt for current

long-read data. This has also been observed by Kuleshov (2014),

who approached the weighted MEC problem in a message-passing

framework and, by doing so, independently arrived at the same DP

algorithm used in WhatsHap. The exponential runtime in the max-

imum coverage does not constitute a problem in practice because

reads can be removed in regions of excess coverage without loosing

much information. The evaluation by Patterson et al. (2015) sug-

gests that pruning data to a maximum coverage of 15� yields excel-

lent results while an even higher coverage does not deliver a big

additional improvement.

Hybrid Approaches. The ideas underlying population-based

phasing, genetic haplotyping, and read-based phasing have been

combined in many ways to create hybrid methods. Delaneau et al.

(2013), for instance, use local phase information provided by

sequencing reads to enhance their population-based phasing ap-

proach SHAPEIT. Exploiting pedigree information for statistical

phasing has also been demonstrated to significantly improve the

inferred haplotypes (Chen et al., 2013a; Marchini et al., 2006).

Using their heuristic read-based phasing approach HapCompass,

Aguiar and Istrail (2013) note that combining reads from parent-

offspring duos increases performance in regions that are identical by

descent (IBD). Beyond this approach, we are not aware of prior

work to leverage family information towards read-based phasing.

Contributions. Here, we introduce a unifying formal framework

to fully integrate read-based and genetic haplotyping. To this end,

we define the Weighted Minimum Error Correction on Pedigrees

Problem, termed PedMEC, which generalizes the (weighted) MEC

problem and accounts for Mendelian inheritance and recombination.

This problem is NP-hard. We generalize the WhatsHap algorithm

for solving this problem optimally and thereby show that PedMEC is

fixed-parameter tractable. When the maximum coverage is bounded,

the runtime of our algorithm is linear in the number of variants and

does not explicitly depend on the read length, hence inheriting the

favorable properties of WhatsHap.

We target an application scenario where related individuals are

sequenced using error-prone long-read technologies such as PacBio

sequencing. As a driving question motivating this research, we ask

how much coverage is needed for resolving haplotypes in related in-

dividuals as opposed to single or unrelated individuals. Our focus is

on phasing and we do not consider the genotyping step, which can

either be done from the same data or from orthogonal and poten-

tially cheaper data sources such as microarrays or short-read

sequencing. On simulated and real PacBio data, we show that

sequencing each individual in a mother-father-child trio to 5�
coverage is sufficient to establish a high-quality phasing. This is in

stark contrast to state-of-the-art single-individual read-based phas-

ing, which yields worse results even for 15� coverage with respect

to both error rates and numbers of phased variants. We furthermore

demonstrate that our technique also exhibits favorable properties of

genetic haplotyping approaches: Because of genotype relationships

between related individuals, we are able to infer correct phases even

between haplotype blocks that are not connected by any sequencing

reads in any of the individuals.

Example. Figure 1 shows seven SNP positions covered by reads in

three related individuals. It illustrates how the ideas of genetic and

read-based haplotyping complement each other. All genotypes at SNP

3 are heterozygous. Thus, its phasing cannot be inferred by genetic

phasing, that is, using only the given genotypes and not the reads.

SNP 4, in contrast, is not covered by any read in the child. When only

using reads in the child (corresponding to single-individual read-based

phasing), no inference can be made about the phase of SNP 4 and nei-

ther about the phase between SNP 3 and SNP 5. By observing that all

seven child genotypes are compatible with the combination of brown

and green haplotypes from the parents, however, these phases can be

easily inferred. This example demonstrates that jointly using pedigree

information, genotypes and sequencing reads is very powerful for es-

tablishing phase information.
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2 The weighted minimum error correction
problem on pedigrees

Thus far, read-based phasing has predominantly been formulated as

the Minimum Error Correction (MEC) problem (Cilibrasi et al.,

2007) and its weighted sibling wMEC (Greenberg et al., 2004). We

first re-state these problems formally to introduce our notation and

then proceed to generalizing them to pedigrees.

The input to the MEC problem consists of a SNP matrix

F 2 f0;1;�gR�M, where R is the number of reads and M is the

number of variants along a chromosome. Each matrix entry Fðj;kÞ
is 0 (indicating that the read matches the reference allele) or 1 (indi-

cating that the read matches the alternative allele) if the read covers

that position and ‘–’ otherwise. Note that the ‘–’ character can also

be used to encode the unsequenced ‘internal segment’ of a paired-

end read.

DEFINITION 1: (Distance) Given two vectors r1; r2 2 f0; 1;�gM, the

distance dðr1; r2Þ between r1 and r2 is given by the number of mis-

matching non-dash characters. Formally,

dðr1; r2Þ :¼ jfk j r1ðkÞ 6¼ � ^ r2ðkÞ 6¼ � ^ r1ðkÞ 6¼ r2ðkÞgj:

DEFINITION 2: (Feasibility) A SNP matrix F 2 f0; 1;�gR�M is

called feasible if there exists a bi-partition of rows (i.e. reads) into

two sets such that all pairwise distances of two rows within the

same set are zero.

Feasibility of a matrix F is equivalent with the existence of two

haplotypes h0;h1 2 f0;1gM such that every read r in the matrix has

a distance of zero to h0 or to h1 (or both). The MEC problem can

now simply be stated in terms of flipping bits in F , where entries

that are 0 or 1 can be flipped and ‘–’ entries are fixed.

PROBLEM 1: (MEC) Given a matrix F 2 f0; 1;�gR�M, flip a min-

imum number of entries in F to obtain a feasible matrix.

The MEC problem is NP-hard (Cilibrasi et al., 2007). The

weighted version of the problem associates a cost to every matrix

entry. This is useful since each nucleotide in a sequencing read usu-

ally comes with a ‘phred-scaled’ base quality Q that corresponds to

an estimated probability of 10�Q=10 that this base has been wrongly

sequenced. These phred scores can hence serve as costs of flipping a

letter, allowing less confident base calls to be corrected at lower cost

compared to high confidence ones.

PROBLEM 2: (wMEC) Given a matrix F 2 f0; 1;�gR�M and a

weight matrix W 2 NR�M, flip entries in F to obtain a feasible ma-

trix, while minimizing the sum of incurred costs, where flipping

entry Fðj; kÞ incurs a cost ofWðj; kÞ

We now generalize wMEC to account for multiple individuals in

a pedigree simultaneously while modeling inheritance and recom-

bination. An overview of notation we use is provided in Table 1. We

assume our pedigree to contain a set of N individuals

I ¼ f1; . . . ;Ng. Relationships between individuals are given as a set

of (ordered) mother-father-child triples T . For example, if

I ¼ f1; 2;3; 4g, then T ¼ fð1; 2;3Þ; ð1;2; 4Þg corresponds to a pedi-

gree where individuals 1 and 2 are the parents of individuals 3 and

4. We only consider non-degenerate cases without circular relation-

ships and where each individual appears as a child in at most one tri-

ple. Furthermore, we assume all considered variants to be non-

overlapping and bi-allelic. Each individual i comes with a genotype

vector gi 2 f0; 1; 2gM, giving the genotypes of all M variants.

Genotypes 0, 1 and 2 correspond to being homozygous in the refer-

ence allele, heterozygous and homozygous in the alternative allele,

respectively. In the context of phasing, we can restrict ourselves to

the set of variants that are heterozygous in at least one of the indi-

viduals, that is, to variants k such that giðkÞ ¼ 1 for at least one indi-

vidual i 2 I . For each individual i 2 I , a number of Ri aligned

sequencing reads is provided as input, giving rise to one SNP matrix

F i 2 f0; 1;�gRi�M and one weight matrix W i 2 NRi�M per individ-

ual. We seek to compute two haplotypes h0
i ; h

1
i 2 f0; 1g

M for all in-

dividuals i 2 I . As before in the MEC problem, we want these

haplotypes to be consistent with the sequencing reads.

Child

SNP 1 SNP 2 SNP 3 SNP 4 SNP 5 SNP 6SNP 7

1/1 1/1 1/10/1 0/1 0/10/0

Mother

0/0 0/0 1/00/0 0/01/0 1/0

0/1 0/1 0/1 0/1 1/1 1/01/0

Father

Fig. 1. Seven SNP loci covered by reads (horizontal bars) in three individuals.

Unphased genotypes are indicated by labels 0/0, 0/1 and 1/1. The alleles that

a read supports are printed in white

Table 1. Overview of common notation

Notation Meaning Example

I Set of individuals f1; 2; 3; 4g
T Set of trio relationships fð1; 2; 3Þ; ð1; 2; 4Þg
F i 2 f0; 1;�gRi�M Input SNP matrix for individual i 2 I � � 1 0 1

0 1 1 1 �

" #

Wi 2 NRi�M Matrix of weights for individual i 2 I 0 0 10 21 7

13 9 31 25 0

" #

X 2 NM Recombination cost vector ð0; 20; 12; 23; 11Þ
gi 2 f0;1;2gM Input genotypes for individual i ð0; 2; 2; 1; 1Þ
A(k) Set of reads active in column k f½�� 1 0 1�; ½0 1 1 1� �g
DCðk;B; tÞ Local cost incurred for column k, bipartition B and transmission tuple t 10

Cðk;B; tÞ DP table entry for column k, bipartition B and transmission tuple t 37

h0
i ; h

1
i 2 f0; 1g

M Sought haplotypes for individual i ð0; 1; 1; 1; 0Þ; ð0; 1; 1; 0; 1Þ

tm!c; tf!c 2 f0; 1gM Sought transmission vectors for trio ðm; f ; cÞ 2 T ð0; 0; 0; 1; 1Þ
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In addition, we want the haplotypes to respect the constraints

given by the pedigree. Recall that in each parent, the two homolo-

gous chromosomes recombine during meiosis to give rise to a hap-

loid gamete that is passed on to the offspring. Therefore, each

haplotype of a child should be representable as a mosaic of the two

haplotypes of the respective parent with few recombination events.

To control the number of recombination events, we assume a per-

site recombination cost of XðkÞ to be provided as input. Controlling

the recombination cost per site is important because recombination

is not equally likely to happen at all points along a chromosome.

Instead, recombination hotspots exist, where recombination is much

more likely to occur (and should hence be penalized less strongly in

our model). The cost XðkÞ should be interpreted as the (phred-

scaled) probability that a recombination event occurs between vari-

ant k – 1 and variant k. To formalize the inheritance process, we de-

fine transmission vectors tm!c; tf!c 2 f0; 1gM for each triple

ðm; f ; cÞ 2 T. The values tm!cðkÞ and tf!cðkÞ tell which allele at site

k is transmitted by mother and father, respectively. The haplotypes

we seek to compute have to be compatible with transmission vec-

tors, defined formally as follows.

DEFINITION 3: (Transmission vector compatibility) For a given trio

ðm; f ; cÞ 2 T , the haplotypes h0
m; h

1
m; h

0
f ;h

1
f ; h

0
c ; h

1
c 2 f0; 1g

M are

compatible with the transmission vectors tm!c; tf!c 2 f0; 1gM if

h0
c ðkÞ ¼

h0
mðkÞ if tm!cðkÞ ¼ 0

h1
mðkÞ if tm!cðkÞ ¼ 1

(

and

h1
c ðkÞ ¼

h0
f ðkÞ if tf!cðkÞ ¼ 0

h1
f ðkÞ if tf!cðkÞ ¼ 1

8<
:

for all k 2 f1; . . . ;Mg:

With this notion of transmission vectors, recombination events

are characterized by changes in the transmission vector, that is, by

positions k with tm!cðk� 1Þ 6¼ tm!cðkÞ or tf!cðk� 1Þ 6¼ tf!cðkÞ.
Given our recombination cost vector X , the cost associated to a

transmission vector can be written as follows (in slight abuse of

notation).

DEFINITION 4: (Transmission cost) For a transmission vector

tp!c 2 f0; 1gM with p 2 fm; fg and a recombination cost vector

X 2 NM, the cost of tp!c is defined as

Xðtp!cÞ :¼
XM
k¼2

·tp!cðk� 1Þ 6¼ tp!cðkÞ‚ � XðkÞ;

where ·S‚ ¼ 1 if statement S is true and 0 otherwise.

To state the problem of jointly phasing all individuals in I for-

mally, it is instrumental to consider the set of matrix entries to be

flipped explicitly. We will therefore introduce a set of index pairs

Ei � f1; . . . ;Rig � f1; . . . ;Mg where ðj; kÞ 2 Ei if and only if the bit

in row j and column k of matrix F i is to be flipped.

PROBLEM 3: (Weighted Minimum Error Correction on Pedigrees,

PedMEC) Let a set of individuals I ¼ f1; . . . ;Ng, a set of relation-

ships T on I , recombination costs X 2 NM, and, for each individual

i 2 I , a sequencing read matrix F i 2 f0; 1;�gRi�M and correspond-

ing weightsWi 2 NRi�M be given. Determine a set of matrix entries

to be flipped Ei � f1; . . . ;Rig � f1; . . . ;Mg to make F i feasible and

two corresponding haplotypes h0
i ; h

1
i 2 f0; 1g

M for each individual

i 2 I as well as two transmission vectors tm!c; tf!c 2 f0; 1gM for

each trio ðm; f ; cÞ 2 T such thatX
i2I

X
ðj;kÞ2Ei

W iðj; kÞ þ
X

ðm;f ;cÞ2T
Xðtm!cÞ þ Xðtf!cÞ

takes a minimum, subject to the constraints that all haplotypes are

compatible with the corresponding transmission vectors, if existing.

Note that for the special case of I ¼ f1g and T ¼1, PedMEC

is identical to wMEC. Therefore, the PedMEC problem is also NP-

hard. As discussed in Section 1, we are specifically interested in an

application scenario where the genotypes are already known. By

using genotype data, we aim to most beneficially combine the merits

of genetic haplotyping and read-based haplotyping. We therefore

extend the PedMEC problem to incorporate genotypes and term the

resulting problem PedMEC-G.

PROBLEM 4: (PedMEC with genotypes, PedMEC-G) Let the same

input be given as for Problem 3 (PedMEC) and, additionally, a geno-

type vector gi 2 f0;1; 2gM for each individual i 2 I . Solve the

PedMEC problem under the additional constraints that h0
i þ h1

i ¼ gi

for all i 2 I , where ‘þ’ refers to a component-wise addition of

vectors.

For the classical MEC problem, additionally assuming that all

sites to be phased are heterozygous is common (Chen et al., 2013b).

This variant of the MEC problem is a special case of PedMEC-G

with I ¼ f1g and T ¼1 and g1ðkÞ ¼ 1 for all k.

3 Algorithm

Solving MEC and wMEC. WhatsHap (Patterson et al., 2015) is a

dynamic programming (DP) algorithm to optimally solve the

wMEC problem. It runs in Oð2c �MÞ time, where M is the number

of variants to be phased and c is the maximum physical coverage

(which includes internal segments of paired-end reads). The general

idea is to proceed column-wise from left to right while maintaining

a set of active reads. Each read remains active from its first non-dash

position to its last non-dash position in F . Let the set of active

reads in column k be denoted by A(k). Note that c ¼ maxkfjAðkÞjg.
For each column k of F , we fill a DP table column Cðk; �Þ with

2jAðkÞj entries, one entry for each bipartition B of the set of active

reads A(k). Each entry C(k, B) is equal to the cost of solving wMEC

on the partial matrix consisting of columns 1 to k of F under the as-

sumption that the sought bipartition of the full read set

Að1Þ [ . . . [ AðkÞ extends B according to the below definition.

DEFINITION 5: (Bipartition extension) For a given set A and a subset

A0 � A, a bipartition B ¼ ðP;QÞ of A is said to extend a bipartition

B0 ¼ ðP0;Q0Þ of A0 if P0 � P and Q0 � Q.

By this semantics of DP table entries C(k, B), the minimum of

the last column minBfCðM;BÞg is the optimal wMEC cost.

Algorithm Overview: Solving PedMEC and PedMEC-G. In the

following, we will see how this idea can be extended for solving

PedMEC and PedMEC-G. The basic idea is to use the same tech-

nique on the union of the sets of active reads across all individuals

i 2 I , while adding some extra book-keeping to satisfy the add-

itional constraints imposed by pedigree and genotypes. Let AiðkÞ be

the set of active reads in column k of F i. We now define

AðkÞ ¼ [
i2I

AiðkÞ. A bipartition B ¼ ðP;QÞ of A(k) now induces

bipartitions for each individual: Bi ¼ ðP \ AiðkÞ;Q \ AiðkÞÞ.

Read-based phasing of related individuals i237
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As before, we consider all bipartitions of A(k) for each column

k, but now additionally distinguish between all possible transmis-

sion values. We assume the set of trio relationships T to be (arbitrar-

ily) ordered and use a tuple t 2 f0; 1g2jT j to specify an assignment of

transmission values. Such an assignment t can later (during back-

tracing) be translated into the sought transmission vectors:

Assuming t to be an optimal such tuple at column k, its relation to

the transmission vectors is given by

t ¼ ðtm1!c1
ðkÞ; tf1!c1

ðkÞ; tm2!c2
ðkÞ; tf2!c2

ðkÞ; . . .Þ:

The transmission tuples give rise to one additional dimension of

our DP table for PedMEC(-G), as compared to the DP table for

wMEC. For each column k, we compute table entries Cðk;B; tÞ for

all 2jAðkÞj bipartitions of reads and all 22jT j possible transmission

tuples, for a total of 2jAðkÞjþ2jT j entries in this column.

Computing Local Costs. Along the lines of Patterson et al.

(2015), we first describe how to compute the cost incurred by flip-

ping matrix entries in each column, denoted by DCðk;B; tÞ, and then

explain how to combine them with entries in Cðk� 1; �; �Þ to com-

pute the cost Cðk;B; tÞ. The crucial point for dealing with reads

from multiple individuals in a pedigree is to realize that matrix

entries from haplotypes that are identical by descent (IBD) need to

be identical (or need to be flipped to achieve this). For unrelated in-

dividuals (i.e. T ¼1), none of the haplotypes are IBD, giving rise to

2jI j sets of reads for the 2jI j unrelated haplotypes. These 2jI j sets

of reads are given by B and the cost DCðk;B; tÞ can be computed by

flipping all matrix entries of reads within the same set to the same

value.

For a non-empty T , the transmission tuple t tells which parent

haplotypes are passed on to which child. In other words, t identifies

each child haplotype to be IBD to a specific parent haplotype. We

can therefore merge the corresponding sets of reads since all reads

coming from haplotypes that are IBD need to show the same allele

and need to be flipped accordingly. In total, we obtain 2jI j � 2jT j
sets of reads, since each trio relationship implies merging two pairs

of sets. We write Sðk;B; tÞ to denote this set of sets of reads induced

by bipartition B and transmission tuple t in column k. The cost Wa
k;S

of flipping all entries in a read set S 2 Sðk;B; tÞ to the same allele

a 2 f0;1g is given by

Wa
k;S ¼

X
ði;jÞ2S

·F iðj; kÞ 6¼ a‚ � W iðj; kÞ;

where we identify reads in S by a tuple (i, j), telling that it came

from individual i and corresponds to row j in F i. For PedMEC, i.e.

if no constraints on genotypes are present, every set S can

potentially be flipped to any allele a 2 f0;1g. Hence, the cost is

given by

DCðk;B; tÞ ¼ min
a2f0;1gSðk;B;tÞ

X
S2Sðk;B;tÞ

W
aðSÞ
k;S

8<
:

9=
;; (1)

that is, we minimize the sum of costs incurred by each set of reads

S 2 Sðk;B; tÞ over all possible assignments of alleles to read sets. For

PedMEC-G, this minimization is constrained to only consider allele

assignments consistent with the given genotypes. To ensure that

valid assignments exist, we assume the input genotypes to be free of

Mendelian conflicts.

Computing a Column of Local Costs. To compute the whole col-

umn DCðk; �; �Þ, we proceed as follows. In an outer loop, we enumer-

ate all 22jT j values of the transmission tuple t. For each value of t, we

perform the following steps: We start with bi-partition B ¼ ðAðkÞ;

1Þ and compute all Wa
k;S for all sets S 2 Sðk;B; tÞ and all a 2 f0; 1g,

which can be done in OðjAðkÞj þ jIjÞ time. Next we enumerate all

bipartitions in Gray code order, as done previously (Patterson et al.,

2015). This ensures that only one read is moved from one set to an-

other in each step, facilitating constant time updates of the values

Wa
k;S. The value of DCðk;B; tÞ is then computed from the Wa

k;S’s ac-

cording to Equation (1), which takes Oð22jI j � jI jÞ time. Computing

the whole column DCðk; �; �Þ hence takes Oð22jT j � ð2jAðkÞj þ22jIj � jI jÞÞ
time.

DP Initialization. The first column of the DP table, Cð1; �; �Þ, is

initialized by setting Cð1;B; tÞ :¼ DCð1;B; tÞ for all bipartitions B

and all transmission tuples t.

DP Recurrence. Recall that Cðk;B; tÞ is the cost of an optimal so-

lution for input matrices restricted to the first k columns under the

constraints that the sought bipartition extends B and that transmis-

sion happened according to t at site k. Entries in column Cðkþ1; �; �Þ
should hence add up local costs incurred in column kþ1 and costs

from the previous column. To adhere to the semantics of

Cðkþ1;B;tÞ, only entries in column k whose bipartitions are com-

patible with B are to be considered as possible ‘predecessors’ of

Cðkþ1;B;tÞ.

DEFINITION 6: (Bipartition compatibility) Let B ¼ ðP;QÞ be a

bipartition of A and B0 ¼ ðP0;Q0Þ be a bipartition of A0. We say

that B and B0 are compatible, written B ’ B0, if P \ ðA \ A0Þ ¼
P0 \ ðA \ A0Þ and Q \ ðA \ A0Þ ¼ Q0 \ ðA \ A0Þ.

Two bipartitions are therefore compatible when they agree on

the intersection of the underlying sets. Besides ensuring that biparti-

tions are compatible, we need to incur recombination costs in case

the transmission tuple t changes from k to kþ1. Formally, entries in

column kþ1 are given by

Cðkþ 1;B; tÞ ¼ DCðkþ 1;B; tÞ
þ min

B0 2 BðAðkÞÞ : B0 ’ B

t0 2 f0;1g2jT j

fCðk;B0; t0Þ þ dHðt; t0Þ � Xðkþ 1Þg;

(2)

where BðAðkÞÞ denotes the set of all bipartitions of A(k) and dH is

the Hamming distance. The distance dHðt; t0Þ hence gives the

number of changes in transmission vectors and thus the term

dHðt; t0Þ � Xðkþ 1Þ gives the recombination cost to be added.

Projection Columns. To ease computing Cðkþ 1;B; tÞ via

Equation (2), we use the same technique described by Patterson

et al. (2015) and define intermediate projection columns C\ðk; �; �Þ.
They can be thought of as being between columns k and kþ1.

Consequently, they are concerned with bipartitions of the intersec-

tion of read sets AðkÞ \ Aðkþ 1Þ and hence contain

2jAðkÞ\Aðkþ1Þjþ2jT j entries, which are given by

C\ðk;B0; tÞ ¼ min
BðAðkÞÞ:B’B0

fCðk;B; tÞg: (3)

These projection columns can be created while computing Cðk;�;�Þ
at no extra (asymptotic) runtime. Using these projection columns,

Equation (2) becomes

Cðkþ 1;B; tÞ ¼ DCðkþ 1;B; tÞ
þ min

t02f0;1g2jT j
fC\ðk;B\AðkÞ; t0Þ þ dHðt; t0Þ � Xðkþ 1Þg;

(4)

where B\AðkÞ :¼ ðP\AðkÞ;Q\AðkÞÞ for B¼ ðP;QÞ. We have

therefore reduced the runtime of computing this minimum to

Oð22jT jÞ.
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Runtime. Computing one column of local costs, DCðk; �; �Þ, takes

Oð22jT j � ð2jAðkÞj þ 22jI j � jI jÞÞ time, as discussed above. For each

entry, we use Equation (4) to compute the aggregate value of cost

incurred in present and past columns. Over all columns, we achieve a

runtime of OðM � ð22jT jþcþjIjjI j þ 24jT jþcÞÞ, where c ¼ maxkfjAðkÞjg
is the maximum coverage.

Backtracing. An optimal bipartition and transmission vectors

can be obtained by recording the indexes of the table entries that

gave rise to the minima in Equations (4) and (3) when filling the DP

table and then backtracing starting from the optimal value in the

last column. Optimal haplotypes are subsequently obtained using

the bipartition and transmission vectors.

4 Experimental setup

To evaluate the performance of our approach, we considered both

real and simulated datasets.

4.1 Real data
The Genome in a Bottle Consortium (GIAB) has characterized seven

individuals extensively using eleven different technologies (Zook

et al., 2014). The data is publicly available. Here we consider the

Ashkenazim trio, consisting of three related individuals: NA24143

(mother), NA24149 (father) and NA24385 (son). We obtained a

consensus genotype call set (NIST_CallsIn2Technologies_

05182015) provided by GIAB, containing variants called by two

independent technologies. For our benchmark, we consider all bi-

allelic SNPs on Chromosome 1 called in all three individuals,

amounting to 141 256 in total, and use the provided (unphased)

genotypes.

Ground Truth via Statistical Phasing. To generate a ground truth

phasing for comparison, we used the population-based phasing tool

SHAPEITv2-r837 (Delaneau et al., 2014) with default parameters.

The program was given the 1000 Genomes reference panel (https://

mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.tgz), the corres-

ponding genetic map (http://www.shapeit.fr/files/genetic_map_b37.

tar.gz), and the unphased genotypes as input. SNPs present in the

GIAB call set but absent in the reference panel were discarded, re-

sulting in 140 744 phased SNPs, of which 58 551 were heterozygous

in mother, 57 152 in father and 48 023 in child. We refer to this set

of phased SNPs as ground truth phased variants. We emphasize that

this phasing is solely based on genotypes and does not use phase in-

formation present in the reads in any way and hence is completely

independent. In the following, we refer to the original genotypes

from the GIAB call set (without phase information) restricted to this

set of SNPs as ground truth unphased genotypes, which we use as in-

put for read-based phasing experiments described below.

PacBio Data. For each individual, we downloaded aligned

Pacific Biosciences (PacBio) reads (ftp://ftp-trace.ncbi.nlm.nih.gov/

giab/ftp/data/AshkenazimTrio/(HG002_NA24385_sonjHG003_NA

24149_fatherjHG004_NA24143_mother)/PacBio_MtSinai_NIST/

MtSinai_blasr_bam_GRCh37/), which had an average coverage of

42.3� in mother, 46.8� in father and 60.2� in child, respectively.

The average mapped read length across mother was 8328 bp, father

was 8471 bp and child was 8687 bp. For each individual, we separ-

ately downsampled the aligned reads to obtain datasets of 2�, 3�,

4�, 5�, 10� and 15� average coverage.

10XGenomics Data. The GemCode platform marketed by

10XGenomics uses a barcoding technique followed by pooled short-

read sequencing and data analysis through a proprietary software so-

lution to resolve haplotypes. Data from this platform is available

from the GIAB project and represents phase information obtained

completely independently from either statistical phasing or

PacBio reads. We downloaded the corresponding files (ftp://ftp-trace.

ncbi.nlm.nih.gov/giab/ftp/data/AshkenazimTrio/(HG002_NA24385_

sonjHG003_NA24149_fatherjHG004_NA24143_mother)/10XGe

nomics) for comparison purposes.

4.2 Simulated data
Despite the high-quality dataset provided by GIAB, we sought to

complement our experiments by a simulated dataset. While the

population-based phasing we use as ground truth is arguably accur-

ate due to a large reference panel and the high-quality genotype data

used as input, it is not perfect. Especially variants with low allele fre-

quency present challenges for population-based phasers.

Virtual Child. As basis for our simulation, we use the haplotypes

of the two parents from our ground truth phased dataset. We gener-

ated two haplotypes of a virtual child by applying recombination

and Mendelian inheritance to the four parent haplotypes. In reality,

recombination events are rare: All of Chromosome 1 spans a genetic

distance of approximately 292 cM, corresponding to 2.9 expected

recombination events along the whole chromosome. To include

more recombinations in our simulated dataset, we used the same

genetic map as above, but multiplied recombination rates by 10.

The recombination sites are sampled according to the probabilities

resulting from applying Haldane’s mapping function to the genetic

distances between two variants. In line with our expectation, we ob-

tained 26 and 29 recombination sites for mother and father, respect-

ively. The resulting child had 41 676 heterozygous variants.

Simulating PacBio Reads. We aimed to simulate reads that

mimic the characteristics of the real PacBio dataset as closely as pos-

sible. For this simulation, we incorporate the variants of each indi-

vidual into the reference genome (hg19) to generate two true

haplotypes for each individual in our triple. We used the PacBio-

specific read simulator pbsim by Ono et al. (2013) to generate a

30� dataset for Chromosome 1. The original GIAB reads were pro-

vided to pgsim as a template (via option --sample-fastq) to generate

artificial reads with the same length profile. Next, we aligned the

reads to the reference genome using BWA-MEM 0.7.12-r1039 by Li

(2013) with option -x pacbio. As before for the real data, the aligned

reads for each individual were downsampled separately to obtain

datasets of 2�, 3�, 4�, 5�, 10� and 15� average coverage.

4.3 Compared methods
Our main goal is to analyze the merits of the PedMEC-G model in

comparison to wMEC; in particular with respect to the coverage

needed to generate a high-quality phasing. The algorithms to solve

wMEC and PedMEC-G described in Section 3 have been imple-

mented in the WhatsHap software package (https://bitbucket.org/

whatshap/whatshap), distributed as Open Source software under the

terms of the MIT license. We emphasize that WhatsHap solves

wMEC and PedMEC-G optimally. Since the focus of this paper is

on comparing these two models, we do not include other methods

for single-individual haplotyping. We are not aware of other trio-

aware read-based phasing approaches that PedMEC-G could be

compared to additionally.

The runtime depends exponentially on the maximum coverage.

Therefore we prune the input datasets to a target maximum cover-

age using the read-selection method introduced by Fischer and

Marschall (2016), which is implemented as part of WhatsHap. This

target coverage constitutes the only parameter of our method. For

PedMEC-G, we prune the maximum coverage to 5� for each

Read-based phasing of related individuals i239
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individual separately. For wMEC, we report results for 5� and 15�
target coverage. The respective experiments are referred to as

PedMEC-G-5, wMEC-5 and wMEC-15. For wMEC, we use the

additional ‘all heterozygous’ assumption (see Section 3), to also give

it the advantage of being able to ‘trust’ the genotypes, as is the case

for PedMEC-G. Both wMEC and PedMEC-G were provided with

the ground truth unphased genotypes for the respective dataset.

PedMEC-G was additionally provided with the respective genetic

map (original 1000G genetic map for real data and scaled by factor

10 for simulated data).

As described above, the ground truth phasing was generated by

SHAPEIT with default parameters, implying that SHAPEIT treated

the three samples as unrelated individuals. For comparison pur-

poses, we re-ran SHAPEIT and provided it with pedigree informa-

tion. We refer to the resulting phased dataset as SHAPEIT-trio.

Moreover, we ran duoHMM (v0.1.7) by O’Connell et al. (2014) on

the resulting files to further improve the phasing.

4.4 Performance metrics
We compare each phased individual to the respective ground truth

haplotypes separately and only consider sites heterozygous in this

individual.

Phased SNPs. For read-based phasing of a single individual

(wMEC), we say that two heterozygous SNPs are directly connected

if there exists a read covering both. We compute the connected com-

ponents in the graph where SNPs are nodes and edges are drawn be-

tween directly connected SNPs. Each connected component is called

a block. For read-based phasing of a trio (PedMEC), we draw an

edge when two SNPs are connected by a read in any of the three in-

dividuals. In both cases, we count a SNP as being phased when it is

not the left-most SNP in its block (for the left-most SNP, no phase

information with respect to its predecessors exists). All other SNPs

are counted as unphased. Below, we report the average fraction of

unphased SNPs over all three family members.

Phasing Error Rate. For each block, the first predicted haplotype

is expressed as a mosaic of the two true haplotypes, minimizing the

number of switches. This minimum is known as the number of

switch errors. Note that the second predicted haplotype is exactly

the complement of the first one, due to only considering heterozy-

gous sites. When two switch errors are adjacent, they are subtracted

from the number of switch errors and counted as one flip error. The

phasing error rate is defined as the sum of switch and flip errors div-

ided by the number of phased SNPs.

Three-Way Phasing Comparison. To simultaneously compare

phasings from three different methods (e.g. SHAPEIT,

10XGenomics and PedMEC-G-5), we proceeded as follows. For an

individual, we considered all pairs of consecutive heterozygous

SNPs that have been phased by all three methods. For each of these

pairs, either all three methods agree or two methods agree (since

only two possible phases exist). Below, we discuss the fraction of

these different cases in relation to the total number of considered

SNP pairs.

5 Results

We report the results of wMEC-5, wMEC-15 and PedMEC-G-5 for

both datasets, real and simulated. All combinations of the three

methods, two datasets and six different average coverages (2�, 3�,

4�, 5�, 10� and 15�) were run. The predicted phasings are com-

pared to the ground truth phasing for the respective dataset. That is,

for the real dataset, we compare to the population-based phasing

produced by SHAPEIT; for the simulated dataset, we compare to

the true haplotypes that gave rise to the simulated reads. Figure 2

shows the fraction of unphased SNPs in comparison to the phasing

error rate (see Section 4.4) for all conducted experiments. A perfect

phasing would be located in the bottom left corner.

The Influence of Coverage. Increasing the average coverage is

beneficial for phasing. For all three methods (wMEC-5, wMEC-15

and PedMEC-G-5) and both datasets, the phasing error rate and the

fraction of unphased SNPs decrease monotonically when the aver-

age coverage is increased, as is clearly visible in Figure 2. The effect

is much more drastic for wMEC than for PedMEC, however.

Apparently, wMEC needs more coverage to compensate for

PacBio’s high error rate while PedMEC can resort to exploiting fam-

ily information to resolve uncertainty.

The Value of Family Information. When operating on the same

input coverage, PedMEC-G-5 clearly outperformed wMEC-5 and

even wMEC-15 in all cases tested. This was true for phasing

error rates as well as for the fraction of phased positions. On the

real dataset with average coverage 10� for instance, wMEC-5 and

(a)

(b)

Fig. 2. Simulated dataset (top) and real dataset (bottom): phasing error rate

(x-axis) versus completeness in terms of the fraction of unphased SNPs (y-

axis) for PedMEC-G-5 (solid line), wMEC-5 (dashed line) and wMEC-15 (dotted

line). Average coverage (per individual) of input data is encoded by circles of

different sizes
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wMEC-15 reached an error rate of 2.9 and 1.9%, while it was 0.5%

for PedMEC-G-5.

Most remarkingly, PedMEC-G-5 delivers excellent results al-

ready for very low coverages. When working with an average cover-

age as low as 2� for each family member, it achieves an error rate of

1.4% and a fraction of unphased SNPs of 1.8% (on real data). In

contrast, wMEC-15 needs 15� average coverage on each individual

to reach similar values (1.4% error rate and 1.3% unphased SNPs).

When running on 5� data, PedMEC-G-5’s error rate and fraction of

unphased positions decrease to 0.75 and 0.85%, respectively.

Therefore, it reaches better results while requiring only a third of the

sequencing data, which translates into significantly reduced sequenc-

ing costs.

Comparison of Real and Simulated Data. When comparing

results for simulated and real data, i.e. top and bottom plots in

Figure 2, the curves appear similar, with some important difference.

In terms of the fraction of phased SNPs (y-axis), results are virtually

identical. This indicates that our simulation pipeline establishes real-

istic conditions regarding this aspect. Differences in terms of error

rates (x-axis) are larger. In general, error rates in the real data are

larger than in the simulated data, which might be partly caused by a

too optimistic error model during read simulation. On the other

hand, the population-based phasing used as ground truth for the

real dataset will most likely also contain errors. Especially low-

frequency variants present difficulties for population-based phasers.

Next, we therefore compare our ground truth statistical phasing to

the independent phasing provided by 10XGenomics.

Three-Way Comparison with 10XGenomics. Figure 3(left) shows

the results of a three-way comparison of ground truth statistical phas-

ing, 10XGenomics, and PedMEC-G-5 on 15� coverage data. We ob-

serve that the total fraction of cases where there is disagreement

between the three methods is below 1%. Out of these, 10XGenomics

and the statistical phasing agree in a sizeable fraction of cases, shown

in blue. In these cases, the PacBio-based PedMEC-G-5 is likely wrong.

Given PacBio’s high read error rate, the existence of such cases is not

surprising. On the other hand, there also is a significant fraction of

cases where PedMEC-G-5 and 10XGenomics agree, shown in red,

indicating likely errors in the statistical phasing. Cases where

PedMEC-G-5 and the statistical phasing agree but disagree with

10XGenomics are very rare, which is likely due to the low error rates

of short-read sequencing underlying the 10XGenomics phasing and

the resulting highly accurate phasing.

SHAPEIT-trio and duoHMM. Figure 3(right) shows the same

three-way comparison, but uses the results obtained from SHAPEIT

when run in trio mode. We see that this improved the phasing for

the child but dramatically worsened the agreement for the parents,

with more than 4% of all phased SNP pairs for which

10XGenomics and PedMEC-G-5 agreed but disagreed with

SHAPEIT-trio. Running duoHMM (O’Connell et al., 2014) to im-

prove the SHAPEIT-trio phasing did not lead to any changes, which

might be related to that duoHMM is designed to be run for large co-

horts of related individuals.

Phase Information beyond Block Boundaries. Genetic phasing

operates on genotypes of a pedigree, without using any sequencing

reads. Figure 4 illustrates a case where we have two blocks that are

not connected by reads in any individual. Nonetheless phase infor-

mation can be inferred from the genotypes: Each block contains a

SNP that is homozygous in both parents and heterozygous in the

child, which immediately establishes which haplotype is maternal

and which is paternal in both blocks. Note that this, in turn, also

implies the phasing of the parents. By design, PedMEC-G implicitly

exploits such information. To demonstrate this, we used the real

dataset and merged all blocks reported by PedMEC-G into one

chromosome-wide block and determined the fraction of cases where

phases were correctly inferred between blocks and hence between

two SNPs that are not connected by reads in any individual. This re-

sulted in a fraction of 89.7% correctly inferred phased (averaged

over all individuals and coverages; standard deviation 1.4%).

Repeating the same for wMEC yielded 50.4% correctly inferred

phased, as expected equalling a coin flip.

Runtimes. All experiments have been run on a server with two

Intel Xeon E5-2670 CPUs (10 cores each) running at 2.5 GHz. The

implementation in WhatsHap is sequential, i.e. only using one CPU

core. In all cases, the time spent reading the input files dominated the

time spent in the phasing routine itself. Processing all three individuals

of the 5� coverage real dataset took 31.1min, 31.2 min and 26.2 min

for wMEC-5, wMEC-15 and PedMEC-G-5, respectively. This time

included all I/O and further processing. Of these times, 2.0, 4.1 and

101.0 s were spent in the phasing routine, respectively. For input

coverage 15� total processing took 89.3, 93.9 and 65.4 min for

wMEC-5, wMEC-15 and PedMEC-G-5, respectively. Of this, 2.5,

149.9, 321.5 s were spent in the phasing routines, respectively. We

conclude that the phasing algorithm presented here is well suited for
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PedMEC-G-5 disagreeing

Fig. 3. Three-way comparison of phasings provided by SHAPEIT,

10XGenomics and PedMEC-G-5 (on 15� coverage data). Of all pairs of con-

secutive SNPs phased by all three methods, the percentages of cases where

the phasing reported by one method disagrees with the other two are re-

ported. Missing to 100%: cases where all three methods agree. Left: SHAPEIT

run with default parameters, corresponding to our ‘ground truth phasing’;

right: SHAPEIT run with pedigree information

Child

0/1 0/1 1/11/1 0/1 0/1

Mother

0/1 0/0 0/01/0 1/00/0

0/0 0/0 0/1 0/1 0/00/0

Father

Fig. 4. Two disjoint unconnected haplotype blocks for which phase informa-

tion can be inferred from the genotypes
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handling current datasets swiftly. In the future, we plan to further op-

timize the implementation of I/O subroutines and provide automatic

chromosome-wise parallelization of data processing.

6 Discussion

We have presented a unifying framework for integrated read-based

and genetic haplotyping. By generalizing the WhatsHap algorithm

(Patterson et al., 2015), we provide a fixed-parameter tractable

method for solving the resulting NP-hard optimization problem,

which we call PedMEC. When maximum coverage and number of

individuals are bounded, the algorithm’s runtime is linear in the

number of phased variants and independent of the read length, mak-

ing it well suited for current and future long-read sequencing data.

This is mirrored by the fact that the runtime is dwarfed by the time

required for reading the input files in practice. PedMEC can use any

provided costs for correcting errors in reads as well as for recombin-

ation events. By using phred-scaled probabilities as costs, minimiz-

ing the cost can be interpreted as finding a maximum likelihood

phasing in a statistical model incorporating Mendelian inheritance,

read error correction and recombination.

Testing the implementation on simulated and real trio data, we

could show that the method is notably more accurate than phasing

individuals separately, especially at low coverages. Beyond enhanced

accuracy, our method is also able to phase a greater fraction of het-

erozygous variants compared to single-individual phasing.

Being able to phase more variants is a key benefit of the integrative

approach. Whereas read-based phasing can in principle only phase

variants connected by a path through the covering reads, adding pedi-

gree information enables even phasing of variants that are not covered

in all individuals since the algorithm can ‘fall back’ to using genotype

information. Figure 1 illustrates the increased connectivity while phas-

ing a trio, resulting in more phased variants in practice.

Genetic haplotyping alone cannot phase variants that are hetero-

zygous in all individuals, emphasizing the need for an integrative ap-

proach as introduced here. We demonstrate that such an approach

indeed yields better result and recommend its use whenever both

reads and pedigree information are available. Most remarkingly, the

presented approach is able to deliver outstanding performance even

for coverages as low as 2� per individual, on par with performance

delivered by single-individual haplotyping at 15� coverage per

individual.

Future work. We plan to implement phasing of de novo variants

observed in the child, which would be impossible with pure genetic

haplotyping but is straightforward with our approach.

Since runtime is exponential in the maximum physical coverage,

pruning of datasets is required in practice. The read selection ap-

proach currently implemented in WhatsHap (Fischer and Marschall,

2016) aims to retain reads that both cover and connect many vari-

ants at the same time, in particular for heterogeneous combinations

of datasets such as paired-end or mate-pair reads together with long

reads. For pedigrees, each dataset is currently pruned individually,

but results would likely improve if pedigree structure was taken into

account in this step. Finally, since we show that it is possible and

beneficial to integrate both read-based and genetic phasing, the next

obvious question is whether it is possible to modify our unified the-

oretical framework to one that also includes statistical phasing.
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