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Abstract

Gene expression data analysis has paramount implications for gene treatments, cancer

diagnosis and other domains. Clustering is an important and promising tool to analyze gene

expression data. Gene expression data is often characterized by a large amount of genes

but with limited samples, thus various projective clustering techniques and ensemble

techniques have been suggested to combat with these challenges. However, it is rather

challenging to synergy these two kinds of techniques together to avoid the curse of

dimensionality problem and to boost the performance of gene expression data clustering. In

this paper, we employ a projective clustering ensemble (PCE) to integrate the advantages

of projective clustering and ensemble clustering, and to avoid the dilemma of combining

multiple projective clusterings. Our experimental results on publicly available cancer gene

expression data show PCE can improve the quality of clustering gene expression data by at

least 4.5% (on average) than other related techniques, including dimensionality reduction

based single clustering and ensemble approaches. The empirical study demonstrates that,

to further boost the performance of clustering cancer gene expression data, it is necessary

and promising to synergy projective clustering with ensemble clustering. PCE can serve as

an effective alternative technique for clustering gene expression data.

Introduction

With the rapid development of high-throughput biotechnologies, biologists can easily collect a

large amount of gene expression data with low costs. Gene expression means that cells transfer

the genetic information in deoxyribonucleic acid (DNA) into a protein molecule with biologi-

cal activity through transcription and translation in life process [1]. Biologists measure

expression levels under various specific experimental conditions to analyze gene functions,

regulatory mechanisms and cancer subtypes [2, 3]. Given the wide applications of gene expres-

sion data in cancer diagnosis, gene treatments, prognosis and other domains [3–5], gene

expression data analysis has been attracting increasing attention [1, 6].

Gene expression data can be presented as a matrix, with each row corresponding to a gene

and each column representing a specified condition [7]. The specific conditions usually relate

to environments, cancer types or subtypes and tissues. Each entry of the matrix corresponds to

a numeric representation of the gene expression level under a given condition with respect to a
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particular gene. The first step of gene expression data analysis is to divide similar samples or

genes into a group and dissimilar ones into different groups, which is recognized as gene

expression data clustering. k-means was initially applied to group samples by assigning a sam-

ple to its nearest centroid, which is determined by the average of all samples in that group [8].

Eisen et al. [9] used average-link hierarchical clustering to cluster co-regulated genes of Yeast.

Hierarchical clustering (HC) iteratively merges closest clusters by initializing each sample as a

cluster or partitioning a huge cluster formed by all samples until a specified number of clusters

is generated, and the distance between two clusters is defined as the average distance between

samples of these two clusters. k-means and HC do not work well on high dimension gene

expressional data, since the distance between samples becomes isometric when the gene

dimensionality is very high [10].

With the development of modern molecular biological techniques (i.e., cDNA microarray,

oligonucleotide microarray, gene sequencing), gene expression data is going to be with high

dimensionality [11]. Gene expression data are usually characterized by thousands of genes but

with very few samples. This characteristic often results in the curse of dimensionality problem

[4] when grouping samples into different groups, and the distance between samples turns to

be isometric [10]. Although these genes might be highly correlated, it is still rather difficult to

determine the intrinsic dimensionality of these genes, so all genes are used for the clustering

analysis. When clustering genes across samples, one may have clear knowledge of biological

scenarios (i,e., a cell cycle), and thus we can control the construction of the sample space (i.e.,

taking time-course data over a cell cycle). On the other hand, when clustering samples (cancer

patients), one has little knowledge about how to construct the gene space, since the relevant

genes for a type of cancer are unclear [12]. For this reason, all the known genes are used for

clustering, although it is widely recognized that only very few genes are relevant for a type of

cancer. It is extremely challenging for unsupervised clustering to separate the samples, since

many noisy (or irrelevant) genes will disturb the separation [13]. Particularly, traditional clus-

terings (k-means, HC) measure the similarity between samples by using all genes. Given that,

these algorithms (i.e., k-means, HC) can not be effectively adopted to analyze high dimensional

gene expression data.

In order to accurately group samples to their corresponding clusters, many clustering

approaches have been proposed. For example, self-organizing feature map (SOM) [14], neural

gas (NG) [15], PROCLUS [16], CLIQUE [17], local adaptive clustering (LAC) [18]. SOM [14]

is a neural network model based on competitive learning, it uses neurons in the input layer to

represent original data and a smaller number of neurons in the output layer (or competitive

layer) to represent the compressed input data. Next, it employs neighborhood learning to

adjust the weights between neurons in the input and output layers to approximate the underly-

ing structure of input data. NG is similar to SOM, it utilizes a soft-max update rule to adjust

the weights between neurons in the input and output layers. PROCLUS is a subspace-based

clustering technique, it firstly uses a greedy algorithm to initialize centroids as apart as possi-

ble. Next, it searches an appropriate set of dimensions for each cluster to make the distance of

a cluster to its centroid smaller than other set of dimensions. These found dimensions form

the candidate subspace for the centroid and cluster. CLIQUE automatically searches subspaces

with high density clusters. It partitions data space into cells, counts the number of points in

each cell, and then takes the cell whose number of points greater than a predefined threshold

as a dense unit. After that, it merges these dense units to form dense clusters. LAC optimizes

the weight of each gene for each cluster and the weight reflects the relevance of the gene partic-

ipating the cluster (or cancer subtype). However, these approaches depend on a single cluster-

ing algorithms and unstable, since they may suffer from noisy genes, improper setting of

parameters and initial seeds.
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Clustering ensemble, which fuses multiple clusterings into a consensus one, is shown to

provide more stable clustering results and can avoid the risk of selecting a bad single clustering

[19]. Multiple clusterings can be made by repeatedly running a single clustering algorithm

with different initializations or input values of parameters [3, 16]. These base clusterings also

can be derived from different clustering techniques [19, 20]. Therefore, various ensemble clus-

tering techniques are also applied to analyze gene expression data [19, 21–24]. Genes are

multi-functional and a gene can be relevant for more than one functional module (or cluster)

[11, 25]. Given the nature of genes, researchers also use fuzzy clustering ensemble [26–28] to

assign a gene (or sample) to several clusters.

It is recognized that only several features of high dimensional data contribute to a cluster or

several clusters [18, 29]. Some projective clustering algorithms have been proposed to deal with

high dimensional gene expression data [17, 18, 29]. However, it is difficult to integrate multiple

projective clustering solutions, since most clustering ensemble techniques only address the

multi-view nature of clustering and they do not tackle the high dimensional issue as well [30].

In other words, traditional clustering methods target at separately grouping genes or samples,

and hence they only consider the relevance of a sample (or gene) belonging to a cluster. To

bridge this gap, Gullo et al. [30] suggested a projective clustering ensemble (PCE) approach to

take advantage of both projective clustering and ensemble clustering. PCE can not only take

into account the relevance of a sample belonging to a cluster, but also the relevance of a gene

contributing for the sample belonging to that cluster. These two relevances are called as sam-
ple-to-cluster assignment and gene-to-cluster assignment. Given the merits of PCE and character-

istic of gene expression data, in this paper, we investigate the performance of PCE in clustering

cancer gene expression data and quantitatively compare it with other related clustering algo-

rithms [14, 18, 21, 31]. The experimental results show that PCE outperforms these comparing

algorithms and PCE can serve as an effective technique for gene expression data analysis.

The rest of this paper is structured as follows. Section of related work briefly reviews the

related clustering techniques for cancer gene expression data, followed with the basic princi-

ples of PCE. The cancer gene expression datasets and comparing methods are introduced in

Section of experiment setup, followed with the Section of results and discussion.

Related work

Single clustering algorithms were initially employed to cluster cancer gene expression data.

Yeung et al. [32] proposed a model-based clustering method to cluster gene expression data.

This method supposes that samples are generated by a finite mixture of underlying probability

distributions, such as multivariate normal distributions, and then tries to divide samples into

the best match distributions. Alizadeh et al. [33] applied hierarchical clustering to identify sub-

types of diffuse large B-cell lymphoma. Although numerous single clustering algorithms have

been widely applied in cancer gene expression data analysis, single clustering techniques often

lack of accuracy, stability and robustness.

More recent techniques resort to ensemble clustering to group gene expression data and

demonstrate stable and better performance than single clustering techniques. Ensemble cluster-

ing aggregates diverse clustering solutions from single clustering algorithm with different ini-

tializations, or from different clustering algorithms. Dudoit et al. [34] used Bagging [35] to

generate diverse base clusterings, and then to aggregate these clusterings to assess the confi-

dence of cluster assignments for individual samples. Smolkin et al. [36] used sub-sampling to

generate multiple base clusterings and then fused these clusterings into a consensus one. Yu

et al. [23] proposed a graph-based consensus clustering algorithm to estimate the underlying

clusters of micro-array data. This algorithm obtains a set of base clustering solutions by

Clustering cancer gene expression data
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repeatedly running subspace clustering or k-means, and results in multiple adjacent matrices

between samples, each adjacent matrix corresponds to a clustering. Next, it constructs a graph

by combining these adjacent matrices and uses normalized cut algorithm [37] to group samples.

Domeniconi et al. [21] proposed a weighted similarity partitioning algorithm (WSPA) for clus-

tering high dimensional gene expression data, WSPA takes LAC as the base clustering and to

optimize the weights of genes for different clusters. After that, it adjusts the similarity between a

sample and cluster centers based on the optimized weights of genes for ensemble clustering.

Fuzzy clustering techniques have also been applied to analyze cancer gene expression data

[38]. Pedrycz et al. [28] proposed collaborative ensemble clustering based on fuzzy c-means

[38]. Avogadri et al. [26] suggested a fuzzy ensemble clustering approach based on random

projections of original high-dimensional gene expression data. Then, they applied fuzzy k-
means algorithm on the projected data to generate multiple clusterings and combined these

clusterings into a consensus one. Yu et al. [39] proposed a hybrid fuzzy ensemble clustering

algorithm to cluster tumor bio-molecular data. Particularly, they employed affinity propaga-

tion clustering [40] to select representative genes and then applied multiple fuzzy clusterings

on the samples with these selected genes for ensemble clustering. Yu et al. [31] suggested

another adaptive fuzzy consensus clustering algorithm (RDCFCE) based on different cluster-

ing techniques. RDCFCE takes advantage of SOM [14] or NG [15] to project high dimensional

genes into low grid dimension and takes these projected genes as representative genes, and

then repeats multiple fuzzy clusterings on samples with respect to these representative genes

for ensemble clustering. These ensemble clustering approaches improve the accuracy and

robustness of single clustering algorithms on analyzing gene expression data, but they only
take into account sample-to-cluster assignment and ignore the gene-to-cluster assignment.

More recently, co-clustering (or bi-clustering) [41–43] is also used to analyze gene expres-

sion data. Clustering only in the sample space may fail to discover the patterns that a set of

samples exhibit similar gene expression behaviors only over a subset of genes. Co-clustering

simultaneously performs clustering on both genes (or row) and samples (or column). One can

obtain sets of genes that are co-regulated under a subset of samples via co-clustering algo-

rithms. Liu et al. [44] proposed a network-assisted co-clustering to identify cancer subtypes.

This method combines gene interaction network with gene expression profiles to simulta-

neously group genes and samples into biologically meaningful clusters. It can divide patients

(samples) into different clinical subtypes and is robust to noise. Co-clustering ensemble is sim-

ilar to clustering ensemble, it provides a framework to generate a more stable and robust con-

sensus co-clustering by combining multiple base co-clusterings. Huang et al. [45] proposed a

spectral co-clustering ensemble, which uses bipartite graph partition to leverage multiple base

co-clusterings.

In this paper, we investigate the recently proposed PCE [30] and study its performance in

clustering cancer gene expression data. Particularly, PCE can leverage the gene-to-cluster and

sample-to-cluster assignments to disclose the underlying pattern of cancer gene expression

data. In addition, PCE can integrate the advantages of ensemble clustering and projective clus-

tering to mitigate the intrinsic issues (i.e., high dimensionality, few samples, many noisy

genes) [46] of clustering gene expression data. Our experiments on various publicly available

cancer gene expression data demonstrate that PCE can group samples more accurately than

aforementioned related techniques (i.e., RDCFCE, WSPA).

Projective clustering ensemble

Let matrix G 2 Rd�n encode gene expression data for d genes with n samples, each row repre-

sents a gene, and each column represents a sample. Each entry of G corresponds to a numeric

Clustering cancer gene expression data
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representation of the gene expression level under a given sample for a particular gene. PCE

takes the information of gene-to-cluster assignment and sample-to-cluster assignment to for-

malize a final consensus clustering solution. If we separate samples into subtypes (or clusters),

gene-to-cluster assignment means the probability that the gene is a relevant gene for a cluster,

sample-to-cluster assignment means the probability of a sample belonging to that cluster. If we

divide similar genes into a cluster, then gene-to-cluster assignment means the probability of a

gene belonging to a particular cluster, sample-to-cluster assignment means the probability that

the sample is a relevant sample for a cluster. In this paper, we aim to group similar samples

into the same cluster and divide dissimilar ones into different clusters, based on expression

profiles across d genes. Obviously, PCE is based on a set of diverse gene-to-cluster assignments

and sample-to-cluster assignments. These assignments are generated by repeating projective

clustering (i.e., LAC)m times with different initializations (or input values of parameters) to

generatem clustering solutions, which serve as base clusterings for consensus clustering. Fig 1

illustrates the framework of PCE.

Suppose that n samples are divided into k clusters, different projective clustering solutions

can have different values of k. I l ¼ fX
l;Ylg is the l-th projective clustering solution, Xl 2 Rk�n

stores sample-to-cluster assignment and Yl 2 Rk�d encodes gene-to-cluster assignment. If

the projective clustering is a hard clustering, then each entry of Xl is 1 or 0, otherwise each

entry of Xl is between 0 and 1. PCE consists of many projective clustering solutions,

E ¼ fI 1; I 2; . . . ; Img. We can write Xl ¼ ½xl
1
; . . . ; xlk�

T
and each entry of xlk0 2 R

n represents

the probability of a sample belonging to the k0-th cluster,
Pk

k0¼1
xlk0 ¼ 1. Similarly,

Yl ¼ ½yl
1
; . . . ; ylk�

T
, each entry of ylk0 2 R

d represents a gene’s relevance toward the k0-th cluster,
Pd

d0¼1
ylk0;d0 ¼ 1.

Fig 1. Framework of PCE. Base clustering solutions contain multiple sample-to-cluster assignments (X) and gene-to-cluster assignments

(Y). X means the probability of samples belonging to clusters and Y means the relevance of genes to clusters. PCE aims to get the optimal

X* and Y*.

doi:10.1371/journal.pone.0171429.g001
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Given several clusterings from the same samples and a distance measure function, tradi-

tional ensemble clustering is to find a consensus clustering that minimizes the distance from

all input clusterings [47]. For instance, given a ensemble E, consensus clustering is to optimize

the following problem:

I � ¼ argmin
I�E

cðI ; EÞ ð1Þ

ψ is a distance function between clusterings. PCE is optimized from E with two requirements

(sample-to-cluster assignment and gene-to-cluster assignment). PCE can be formulated as a

two-objective optimization problem as follow:

I � ¼ argmin
I

fCsðI ; EÞ;CgðI ; EÞg ð2Þ

Traditional ensemble clustering algorithms mainly focus on optimizing sample-to-cluster

assignment (CsðI ; EÞ). In contrast, PCE has to not only optimize sample-to-cluster assign-

ment CsðI ; EÞ, but also gene-to-cluster assignment CgðI ; EÞ. To reach this target, Gullo et al.
[30] adopted Pareto-based Multi-Objective Evolutionary Algorithms (MOEA) [48] to optimize

Eq (2), and named MOEA based PCE as MOEA-PCE. However, since a large number of itera-

tions is needed to get the final solution, MOEA-PCE is not so efficient that can not be applied

to large scale datasets. To address this problem, Gullo et al. [30] employed an expectation max-

imization (EM) [49] style technique to alternatively optimize CsðI ; EÞ and CgðI ; EÞ in an iter-

ative style, and they named EM based PCE as EM-PCE. Compared with MOEA-PCE,

EM-PCE not only is more simple and efficient, but also has fewer input parameters. In this

paper, we study EM-PCE for clustering cancer gene expression data.

Let Al 2 Rn�d store the probability of the intersection of events sample-to-cluster assign-

ment (Xl) and gene-to-cluster assignment (Yl) of the l-th projective clustering solution. This

probability is equal to Xl joint with Yl under the assumption of independence between two

events. Al
n0;d0 ¼

Pk
k0¼1

Xl
k0;n0Y

l
k0;d0 measures the relevance of the d0-th gene to the n0-th sample in

the l-th clustering. We define L 2 Rn�d, whose entry Ln0;d0 ¼
1

m

Pm
l¼1

Pk
k0¼1
ðXl

k0 ;n0Y
l
k0 ;d0 ) corre-

sponds to the probability PrðAn0 ;d0 jEÞ of the relevance An0 , d0, given the information available

from projective ensemble E. The objective function of EM-PCE is defined as an error minimi-

zation criterion that takes into account both sample-to-cluster assignment and gene-to-cluster

assignment. For any candidate consensus solution I � 2 E, the error is defined as

Rk0 ;n0 ¼
Pd

d0¼1
ðY�k0 ;d0 � Ln0 ;d0 Þ

2
, Rk0, n0 reflects how well Y�k0 in the candidate I � complies with Λn0

of sample n0 within cluster k0 based on the information from E. Taking into account the error

of all samples within clusters of the candidate I �, EM-PCE can be reformulated as follows:

I � ¼ argminYðX�;Y�; EÞ ð3Þ

s:t
Xk

k0¼1

X�k0 ;n0 ¼ 1; 8n0 2 f1; � � � ; ng;

0⩽X�k0 ;n0⩽1;8n0 2 f1; � � � ; ng; 8k0 2 f1; � � � ; kg

Xd

d0¼1

Y�k0 ;d0 ¼ 1;8k0 2 f1; � � � ; kg;

0⩽Y�k0 ;d0⩽1;8d0 2 f1; � � � ; dg; 8k0 2 f1; � � � ; kg

ð4Þ
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YðX�;Y�; EÞ ¼
Xk

k0¼1

Xn

n0¼1

ðX�k0 ;n0 Þ
a
Xd

d0¼1

ðY�k0 ;d0 � Ln0;d0 Þ
2

ð5Þ

α> 1 is an integer that ensures X� 2 [0, 1] instead of {0, 1}. Eqs (3–5) can be solved by the con-

ventional Lagrange multipliers method, considering the relaxed problem obtained by tempo-

rarily dropping the inequality constraints (X�k0;n0 � 0 and Y�k0;d0 � 0) in Eq (4). Eq (3) can be

relaxed and solved as follow:

YlðX
�;Y�; EÞ ¼ YðX�;Y�; EÞ þ

Xn

n0¼1

l
0

n0 ð
Xk

k0¼1

X�k0 ;n0 � 1Þ þ
Xk

k0¼1

l
@

k0 ð
Xd

d0¼1

Y�k0 ;d0 � 1Þ ð6Þ

To optimize X�, we assume Y� as a constant, and compute the optimal X� as follow:

@Yl

@X�k0 ;n0
¼ aðX�k0;n0 Þ

a� 1
Xd

d0¼1

ðY�k0 ;d0 � Ln0 ;d0 Þ
2
þ l

0

n0 ¼ 0 ð7Þ

@Yl

@l
0

n0
¼
Xk

k0¼1

X�k0 ;n0 � 1 ¼ 0 ð8Þ

Combining Eqs (7) and (8), we can get the optimal Xk0, n0:

X�k0 ;n0 ¼
Xk

k@¼1

Rk0 ;n0
Rk@ ;n0

 !
1

a � 1

2

6
6
4

3

7
7
5

� 1

ð9Þ

Similarly, we can fix X� and optimize Y�. The optimal Y� is computed as:

@Yl

@Y�k0 ;d0
¼ 2
Xn

n0¼1

ðX�k0 ;n0 Þ
a
ðY�k0 ;d0 � Ln0;d0 Þ þ l

@

k0 ¼ 0 ð10Þ

@Yl

@l
@

k0
¼
Xd

d0¼1

Y�k0 ;d0 � 1 ¼ 0 ð11Þ

Combining the Eqs (10) and (11), we can get the optimal Yk0, n0 as:

Y�k0;d0 ¼
Pn

n0¼1
ðX�k0 ;n0 Þ

a
Ln0 ;d0

Pn
n0¼1
ðX�k0 ;n0 Þ

a ð12Þ

EM-PCE iteratively optimizes X� with Y� fixed and then optimizes Y� with X� fixed until

convergence. In this way, we can get the final clustering solution of EM-PCE.

Experiment setup

Comparing methods and cancer gene expression datasets

To comparatively investigate the performance of EM-PCE on clustering cancer gene expres-

sion data, we take RDCFCE [31], WSPA [21], LAC [18], SOM [14], hierarchical clustering

(HC) [8], k-means [9] as comparing methods. HC and k-means are two widely used traditional

clustering methods. SOM and LAC are single clustering algorithms and their effectiveness is

validated on clustering high dimensional data. RDCFCE is a fuzzy ensemble clustering

approach. RDCFCE uses SOM [14] to project high dimensional genes into low grid dimension

Clustering cancer gene expression data
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and takes the projected genes as representative genes. After that, it generates base clustering

solutions (sample-to-cluster assignment) by repeating fuzzy k-means on samples with respect

to these representative genes. WSPA is a weighted ensemble clustering algorithm, it employs

LAC [18] with different input values of parameters to generate multiple base clusterings, but it

only considers the sample-to-cluster assignments. EM-PCE also uses LAC to produce multiple

base clusterings, it takes into account both the sample-to-cluster assignments and gene-to-

cluster assignments.

We perform experiments on eight publicly available cancer gene expression datasets.

Table 1 provides the brief description of these datasets. Breast includes four subtypes of

tumors: 13 estrogen receptor (ER) + lymph node (LN) + tumors samples, 12 ER—LN + tumors

samples, 12 ER + LN- tumors samples, and 12 ER—LN—tumors samples. DLBCLA includes

three subtypes of diffuse large B cell lymphoma: ‘oxidative phosphorylation’ (49 samples), ‘B-

cell response’ (50 samples), and ‘host response’ (42 samples). Leukemia includes six prognostic

important leukemia subtypes: T-lineage acute lymphoblastic leukemia (ALL) (43 samples),

E2A-PBX1 (E2A) (27 samples), BCR-ABL (BCR) (15 samples), TEL-AML1 (TEL) (79 sam-

ples), MLL rearrangements (20 samples) and ‘hyperdiploid>50’ chromosomes (Hyperdiploid)

(64 samples). NovartisBPLC is composed of four distinct cancer types: breast (26 samples),

prostate (26 samples), lung (28 samples), and colon (23 samples). Pomeroy2002v2 consists of

four cancer types and one normal tissue: medulloblastomas (10 samples), malignant gliomas

(10 samples), atypical teratoid/rhabdoid tumours (10 samples), primitive neuroectodermal

tumours (8 samples), and normal tissues (4 samples). Ramaswamy2001 contains 190 samples,

which are categorized into fourteen tumors subtypes: breast adenocarcinoma (11 samples),

prostate adenocarcinoma (10 samples), lung adenocarcinoma (11 samples), colorectal adeno-

carcinoma (11 samples), lymphoma (22 samples), melanoma (10 samples), bladder transitional

cell carcinoma (11 samples), uterine adenocarcinoma (10 samples), leukemia (30 samples),

renal cell carcinoma (11 samples), pancreatic adenocarcinoma (11 samples), ovarian adenocar-

cinoma (11 samples), pleural mesothelioma (11 samples), central nervous system (20 samples).

Risinger-2003 contains four subtypes: serous papillary (13 samples), clear cell (3 samples),

endometrioid cancers (19 samples), and age-matched normal endometria (7 samples). Su2001

includes ten distinct types of carcinomas: prostate (26 samples), bladder/ureter (8 samples),

breast (26 samples), colorectum (23 samples), gastroesophagus (12 samples), kidney (11 sam-

ples), liver (7 samples), ovary (27 samples), pancreas (6 samples), and lung (28 samples). From

Table 1, we can easily observe that the number of involved samples is much smaller than the

number of genes. These datasets cover different types (or subtypes) of cancers, and they can be

collected from the reference alongside the dataset in Table 1. The ground-truth subtypes of

Table 1. Eight cancer gene expression datasets.

Dataset Source #Subtypes(k) #Samples(n) #Genes(d)

Breast [50] 4 49 1213

DLBCLA [50] 3 141 661

Leukemia [22] 6 248 985

NovartisBPLC [22] 4 103 1000

Pomeroy2002v2 [51] 5 42 1379

Ramaswamy2001 [51] 14 190 1363

Risinger2003 [51] 4 42 1771

Su2001 [51] 10 174 1571

#Subtypes is the number of cancer subtypes (or clusterings), #Sample is the number of samples, and #Genes is the number of genes.

doi:10.1371/journal.pone.0171429.t001
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these cancer gene expression datasets are known. In this way, we can compare the clustering

results made by these comparing methods with the known ground-truths.

Evaluation metrics

Various evaluation metrics can be used to evaluate the quality of clustering. In this paper, we

adopt three widely used external metrics: Rand index (RI) [52], Adjusted Rand index (ARI)

[53] and Normalized Mutual Information (NMI) [54]. Suppose the ground truth clusters of n
samples in G 2 Rd�n are C ¼ fc1; . . . ; ckg, clusters produced by a clustering method are

C0 ¼ fc0
1
; . . . ; c0k0 g. In this study, we take subtypes of a cancer or different cancer types as the

ground-truth clusters. Since the ground-truth clusters are known, we can use external evalua-

tion metrics (RI, ARI, NMI) to measure the difference between the clustering results and the

ground-truths, and thus to quantitatively compare the performance of these methods.

Let μ1 represent the number of pairs of samples that are both in the same cluster of C and

also both in the same group of C0, μ2 represent the number of pairs of samples that are in the

same cluster of C but in different groups of C0, μ3 represent the number of pairs of samples that

are in the different clusters of C but in the same group of C0, μ4 represent the number of pairs

of samples that are in different clusters of C and in different groups of C0. RI measures the per-

centage of correct partitions, a lager RI value indicates a more satisfactory clustering solution.

RI is defined as follow:

RI ¼
m1 þ m4

m1 þ m2 þ m3 þ m4

ð13Þ

ARI is an enhanced metric of RI. Suppose n is the total number of samples, ni is the number

of samples in the cluster ci, nj is the number of samples in the cluster c0j, nij is the number of

samples which belongs to cluster ci and cluster c0j. ARI is defined as:

ARI ¼

Pk
i¼1

Pk0

j¼1

nij
2

� �
� q3

1

2
ðq1 þ q2Þ � q3

q1 ¼
Xk

i¼1

ni
2

� �
; q2 ¼

Xk0

j¼1

nj
2

� �
; q3 ¼

2q1q2

mðm � 1Þ

ð14Þ

NMI is defined as follows:

NMIðC; C0Þ ¼
2 � IðC; C0Þ
HðCÞ þHðC0Þ

ð15Þ

where IðC; C0Þ is the mutual information between C and C0, andHðCÞ is the entropy of C.

IðC; C0Þ and HðCÞ are defined as follow:

IðC; C0Þ ¼
Xk

i¼1

Xk0

j¼1

pðci; c
0

jÞlog2

pðci; c0jÞ
pðciÞpðc0jÞ

 !

ð16Þ

HðCÞ ¼ �
Xk

i¼1

pðciÞlog2pðciÞ ð17Þ

where pðci; c0jÞ is the joint probability distribution of ci and c0j. If cluster ci contain ni samples,

Clustering cancer gene expression data

PLOS ONE | DOI:10.1371/journal.pone.0171429 February 24, 2017 9 / 21



then p(ci) = ni/n. IðC; C0Þmeasures the statistical information shared by two clusterings. NMI

is always between 0 and 1. If NMI = 1, the predicted solution is the same as the ground truth

solution, and a larger NMI indicates better clustering solution.

Result and discussion

Result on clustering synthetic datasets

To better explain the curse of dimensionality and evaluate the effectiveness of these comparing

methods, we firstly test these methods on synthetic gene expression datasets. The synthetic

datasets are generated from normal distribution according to the mean and variance estimated

from the gene expression profiles of T-lineage acute lymphoblastic leukemia (ALL),

E2A-PBX1, BCR-ABL, TEL-AML1 and MLL rearrangements subtypes in the Leukemia cancer

dataset. Particularly, these five clusters are generated by normal distribution N (1.3851

0.2337), N (1.2287 0.1630), N (1.3252 0.2806), N (1.2649 0.2225) and N (1.2016.5 0.2856) with

3000 genes (or features), and each cluster has only 100 samples. To make the synthetic datasets

more realistic, we randomly injected noisy genes, each of which is a random numeric value

between the minimum and maximum expression levels of the expression data. The number of

noisy genes is set to 0, 500, . . ., 2500. This simulation process is also used in [22, 44]. In this

way, six synthetic datasets are generated with different number of randomly injected noisy

genes. We apply these clustering methods on these synthetic datasets. For each synthetic data-

set, we perform ten independent runs and report the average and variance values of RI, ARI

and NMI. In the experiments, the parameters of EM-PCE arem (the number of projective

clustering solutions) and α (controlling the softness of sample-to-cluster assignment).m and α
are are set as 100 and 2, respectively. EM-PCE generates base clustering solutions by repeatedly

running LAC with 1/h = 1, . . .,m. In LAC, parameter h controls how much the distribution of

weight deviating from the uniform distribution, we set h = 2 as suggested in [18]. The number

of base clustering solutions in RDCFCE and WSPA is fixed as 100, too. Fig 2 gives the results

of comparing methods on the synthetic datasets under evaluation metrics RI, ARI and NMI.

From this figure, we can observe that HC cannot correctly group samples into respective

clusters, even though no noisy genes are injected at the beginning. That is because HC is very

sensitive to redundant and noisy features and HC uses all the genes to measure the similarity

between samples. This fact shows HC is not suitable for high-dimensional data clustering.

When 500 or more noisy genes are injected, the accuracy of k-means and SOM decrease

sharply. k-means randomly selects initial cluster centroids, because of noisy genes, a sample is

not assigned to its ground truth nearest centorid. SOM maps the high gene dimension to low

Fig 2. Accuracy(RI, ARI, NMI) on synthetic data. Noisy genes is the number of noisy genes in the synthetic data. RI, ARI and NMI reflect

the performance of seven comparing methods under different numbers of randomly injected noisy genes. EM-PCE generally has higher

accuracy than other methods on RI, ARI and NMI.

doi:10.1371/journal.pone.0171429.g002
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grid dimension, but it can not distinguish noisy genes. So its accuracy also downgrades. The

accuracy of LAC decreases relatively smaller than HC, k-means and SOM. That is because

LAC assigns genes with weights to indicate their importance and reduces the interference of

noisy genes. Relevant genes are assigned with large weights and irrelevant ones (or noisy

genes) are assigned with small (or zero) weights. These synthetic datasets have a large amount

of genes, but a few of them are relevant for identifying the subtypes of samples. Since LAC is a

single clustering solution, it is not robust to noisy genes. These observations indicate the neces-

sity of ensemble clustering.

WSPA and DRCFCE are ensemble clustering methods, they are more robust to noisy genes

than single clustering methods (k-means, HC, SOM). But WSPA and DRCFCE take informa-

tion of many sample-to-cluster assignments to obtain the final clustering, they can not separate

the samples well when a large amount of noisy genes are injected. When no noisy genes are

injected, all the genes are relevant, EM-PCE does not show advantage than RDCFCE. The per-

formance of EM-PCE is stable when the noisy genes are injected, but the performance of

DRCFCE continuously decreases when more noisy genes are injected. The possible reason is

that RDCFCE maps the gene-dimension to a low grid dimension by SOM, but SOM cannot

distinguish noisy genes. In the real gene expression data, the relevant genes are usually very

few. So EM-PCE is a more effective clustering method than RDCFCE and WSPA.

Compared with WSPA and DRCFCE, EM-PCE has higher accuracy when noisy genes are

injected and is more robust to noisy genes. EM-PCE takes information from both gene-dimen-

sion and sample-dimension of many projective clustering solutions, and tries to find the opti-

mal sample-to-cluster assignment and gene-to-cluster assignment. EM-PCE successfully

groups samples under different numbers of noisy genes, and the grouped samples belonging to

the same cluster have the similar gene expression profiles over a subset of genes, instead of all

the genes. These investigations on synthetic datasets indicate that EM-PCE is a competitive

clustering method for gene expression data analysis.

Result on clustering real cancer gene expression data

We compare the performance of EM-PCE with k-means, HC, SOM, LAC, RDCFCE and

WSPA on different cancer gene expression datasets. For each dataset and each comparing

algorithm, we perform ten independent runs and report the average and variance values of RI,

ARI and NMI. The average and variance reflect the accuracy and stability of an algorithm,

respectively. For EM-PCE, we setm = 100 and α = 2. For LAC, the parameter h controls how

much the distribution of weight deviating from the uniform distribution, as suggested by

Domeniconi et al. [18], we set h = 2. The number of base clustering solutions in RDCFCE and

WSPA is set as 100.

Tables 2 (RI), 3 (ARI) and 4 (NMI) are the results of these comparing approaches on eight

gene expression datasets. In the table, the data in boldface is the statistical significantly best (or

comparable best) results, and the significance is assessed by pairwise t-test at 95% level. We

also use Wilcoxon’s signed-rank test [55, 56] (at 95% level) to compare the performance of

these comparing methods across all the datasets, the p-value are all smaller than 0.004, except

that for WSPA is 0.052. From Table 2, we can see that EM-PCE achieves better performance

than other approaches on six out of eight datasets, which are Breast, DLBCLA, Leukemia,

NovartisBPLC, Ramaswamy2001 and Su2001. Table 3 shows that EM-PCE outperforms other

approaches on five out of eight datasets, which are Breast, DLBCLA, Leukemia, NovartisBPLC

and Su2001. Table 4 shows that EM-PCE outperforms other approaches on three out of eight

datasets, which are Breast, DLBCLA, Leukemia. These experimental results demonstrate that

EM-PCE is an effective clustering technique for cancer gene expression data.
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Table 3. ARI (average and standard deviation) of HC, k-means, SOM, LAC, WSPA, RDCFCE and EM-PCE on eight gene expression datasets.

Dataset HC k-means SOM LAC WSPA RDCFCE EM-PCE

Breast 0.0565(0) 0.2492(0.0118) 0.2616(0.0008) 0.132(0.0028) 0.2110(0.0029) 0.2287(0.0023) 0.3909(0.0040)

DLBCLA 0.0034(0) 0.1391(0.0002) 0.2216(0.0000) 0.7831(0.0234) 0.6567(0.0023) 0.3440(0.0000) 0.8839(0.0002)

Leukemia 0.0015(0) 0.7909(0.0158) 0.6298(0.0271) 0.7858(0.0183) 0.5703(0.0034) 0.4779(0.0023) 0.9158(0.0041)

NovartisBPLC 0.3184(0) 0.4860(0.0085) 0.6512(0.0009) 0.7524(0.0268) 0.8954(0.0005) 0.9463(0.0000) 0.9463(0.0000)

Pomeroy2002v2 0.1012(0) 0.4720(0.0019) 0.4744(0.0040) 0.3010(0.0232) 0.6296(0.0093) 0.4657(0.0005) 0.4253(0.0023)

Ramaswamy2001 -0.0029(0) 0.1101(0.0009) 0.1973(0.0003) 0.1535(0.0057) 0.4616(0.0060) 0.2145(0.0017) 0.3936(0.0050)

Risinger2003 -0.0992(0) 0.1173(0.0151) 0.2501(0.0005) 0.0680(0.0057) 0.2752(0.0020) 0.3904(0.0007) 0.3171(0.0041)

Su2001 0.0104(0) 0.1332(0.0005) 0.1360(0.0003) 0.1386(0.0027) 0.1962(0.0006) 0.1681(0.0005) 0.2062(0.0001)

Average 0.0.0600(0) 0.3122(0.0007) 0.3528(0.0042) 0.3916(0.0136) 0.4870(0.0034) 0.4045(0.0010) 0.5599(0.0025)

The data in the boldface are the significantly best (or comparable best) results among these comparing methods, and the significance is checked by

pairwise t-test at the 95% significance level. The average means the average ARI of each method on eight gene expression datasets.

doi:10.1371/journal.pone.0171429.t003

Table 4. NMI (average and standard deviation) of HC, k-means, SOM, LAC, WSPA, RDCFCE and EM-PCE on eight gene expression datasets.

Dataset HC k-means SOM LAC WSPA RDCFCE EM-PCE

Breast 0.1636(0) 0.4082(0.0119) 0.4086(0.0013) 0.3446(0.0036) 0.2877(0.0008) 0.4001(0.0025) 0.5408(0.0054)

DLBCLA 0.0295(0) 0.2008(0.0003) 0.2513(0.0006) 0.7958(0.0144) 0.5794(0.0005) 0.3708(0.0000) 0.8525(0.0005)

Leukemia 0.0368(0) 0.8221(0.0002) 0.7160(0.0062) 0.8656(0.0020) 0.6697(0.0016) 0.6706(0.0000) 0.9140(0.0006)

NovartisBPLC 0.5631(0) 0.6541(0.0160) 0.6648(0.0005) 0.8066(0.0072) 0.8885(0.0005) 0.9495(0.0000) 0.9400(0.0000)

Pomeroy2002v2 0.3795(0) 0.6070(0.0008) 0.6055(0.0033) 0.3847(0.0177) 0.7423(0.0012) 0.5842(0.0000) 0.5916(0.0008)

Ramaswamy2001 0.1123(0) 0.4998(0.0009) 0.5309(0.0002) 0.4569(0.0012) 0.6308(0.0000) 0.4949(0.0000) 0.6036(0.0005)

Risinger2003 0.0992(0) 0.2801(0.0034) 0.3918(0.0002) 0.2956(0.0076) 0.3845(0.0010) 0.4712(0.0002) 0.4163(0.0007)

Su2001 0.1357(0) 0.3119(0.0013) 0.3192(0.0005) 0.3604(0.0001) 0.4232(0.0001) 0.3865(0.0006) 0.4157(0.0001)

Average 0.1900(0) 0.4730(0.0044) 0.4860(0.0016) 0.5388(0.0045) 0.5758(0.0007) 0.5410(0.0004) 0.6593(0.0010)

The data in the boldface are the significantly best (or comparable best) results among these comparing methods, and the significance is checked by

pairwise t-test at the 95% significance level. The average means the average NMI of each method on eight gene expression datasets.

doi:10.1371/journal.pone.0171429.t004

Table 2. RI (average and standard deviation) of HC, k-means, SOM, LAC, WSPA, RDCFCE and EM-PCE on eight gene expression datasets.

Dataset HC k-means SOM LAC WSPA RDCFCE EM-PCE

Breast 0.3605(0) 0.6707(0.0055) 0.7046(0.0002) 0.6578(0.0016) 0.6895(0.0002) 0.6678(0.0002) 0.7656(0.0007)

DLBCLA 0.3424(0) 0.6098(0.0001) 0.6474(0.0001) 0.8898(0.0058) 0.8298(0.0003) 0.7086(0.0000) 0.9528(0.0002)

Leukemia 0.2408(0) 0.9346(0.0003) 0.8993(0.0019) 0.9370(0.0009) 0.8735(0.0003) 0.8476(0.0000) 0.9777(0.0000)

NovartisBPLC 0.6244(0) 0.8055(0.0078) 0.8604(0.0001) 0.9255(0.0046) 0.9587(0.0001) 0.9802(0.0000) 0.9802(0.0000)

Pomeroy2002v2 0.4425(0) 0.8262(0.0002) 0.8466(0.0005) 0.7168(0.0168) 0.8990(0.0001) 0.8188(0.0000) 0.8247(0.0000)

Ramaswamy2001 0.1887(0) 0.7090(0.0015) 0.8434(0.0001) 0.7558(0.0032) 0.9019(0.0000) 0.8318(0.0007) 0.9124(0.0003)

Risinger2003 0.3612(0) 0.5949(0.0079) 0.6906(0.0001) 0.6159(0.0037) 0.6871(0.0001) 0.7556(0.0000) 0.7153(0.0009)

Su2001 0.2378(0) 0.7464(0.0024) 0.7737(0.0003) 0.8032(0.0014) 0.8300(0.0000) 0.8227(0.0001) 0.8406(0.0000)

Average 0.3498(0) 0.7173(0.0032) 0.7833(0.0004) 0.7877(0.0048) 0.8337(0.0001) 0.8041(0.0001) 0.8712(0.0002)

The data in the boldface are the significantly best (or comparable best) results among these comparing methods, and the significance is checked by

pairwise t-test at the 95% significance level. The average means the average RI of each method on eight gene expression datasets.

doi:10.1371/journal.pone.0171429.t002
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HC constantly merges the closest samples into a new cluster, but the similarity between

samples becomes isometric when a larger number of genes are involved and the similarity can

be further distorted by noisy genes. Therefore, it frequently loses to other comparing methods.

For the same reason, k-means also does not group samples into clusters as well as that of other

comparing methods. We can see that LAC has similar performance with SOM. WSPA and

RDCFCE have higher averages and smaller variances than SOM and LAC on most datasets. It

is obvious that ensemble clusterings achieve higher accuracy and are more stable than single

clustering algorithms. EM-PCE shows better performance on six datasets than RDCFCE

under both RI and NMI, and shows better performance on five datasets than RDCFCE under

ARI. The improvement is 8.34% (for RI on average), 38.41% (for ARI on average) and 21.87%

(for NMI on average). The possible reasons are as follows: (i) RDCFCE uses SOM to map

high-dimensional gene expression data to a low dimensional grid, without explicitly consider-

ing irrelevant genes. In contrast, EM-PCE obtains base clustering solutions by repeatedly run-

ning LAC, which gives weight to genes to reduce interference of irrelevant genes, and it can

find a set of samples that have similar expression profiles only over a subset of genes. (ii)

EM-PCE takes advantage of information from both sample-to-cluster assignments and gene-

to-cluster assignments of multiple projective clustering solutions, but RDCFCE only regards

to sample-to-cluster assignment. (iii) EM-PCE employs EM [49] to achieve the optimal sam-

ple-to-cluster assignment and gene-to-cluster assignment. RDCFCE gets the similarity of two

samples by averaging sample-to-cluster assignments, and it does not distinguish the quality of

base clustering solutions.

We also compare the performance of EM-PCE with WSPA. Both EM-PCE and WSPA use

LAC as the base clustering. WSPA calculates the similarity of two samples based on a weighted

distance of a sample to its corresponding cluster. From Tables 2–4, we can see that EM-PCE

outperforms WSPA on seven out of eight datasets under RI, six out of eight datasets under

ARI and five out of eight datasets under NMI. The improvement on average is 4.50% (RI),

14.97% (ARI) and 14.50% (NMI). The cause is that EM-PCE additionally takes gene-to-cluster

into account in fusing multiple projective clusterings. In contrast, WSPA only takes into

account sample-to-cluster assignment. In summary, these results demonstrate that projective

clustering and ensemble clustering should be combined together to accurately cluster gene

expression data, and EM-PCE can integrate the advantage of these two kinds of clustering

techniques.

In addition, we also use heatmap to visually investigate the clusters discovered by EM-PCE

and HC. Fig 3 shows the clustering result of EM-PCE and HC on Leukemia dataset, respec-

tively. From the left sub-figure of Fig 3, we can see that the clusters (or subtypes) of Leukemia

discovered by EM-PCE exhibit different gene expression profiles across genes, these clusters

(named in the color bar) are in accordance with the ground truth subtypes. Although HC can

also identify six clusters, but with one big cluster and five small clusters, which are not in

accordance with the ground truth subtypes of Leukemia. In practice, HC can be cut off at any

branch of tree to produce any number of clusters, we just choose to cut the tree to produce six

clusters. Since these five small clusters are too small, we magnify the color bars corresponding

to these five clusters to more clearly display them in Fig 3. We calculate the purity (PU) of the

discovered clusters by EM-PCE and HC, PUðC; C0Þ ¼ 1

n

Pk
i¼1

max
j2f1;:::;k0g

jci \ c
0

jj, a larger value of

PU means a better clustering result, the PU of EM-PCE is 0.960 and that of HC is 0.340. The

visual results in Fig 3 and the PU measure again verify that EM-PCE is effective for clustering

cancer subtypes, and also show HC is not a good option for clustering high-dimensional gene

expression data. This observation corroborates the advantage of integrating gene-to-cluster

assignment with sample-to-cluster assignment for gene expression data analysis. To make a
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clear heatmap, we select 586 genes with the largest variances of gene expression profiles from

985 genes across 248 samples.

Sensitivity analysis

In this section, we investigate the sensitivity of EM-PCE with respect tom (the number of base

projective clusterings) and α (controlling the softness of sample-to-cluster assignments). We

perform ten independent runs for each input value ofm (or α) on eight datasets and report the

average of RI, ARI and NMI. To study the performance of EM-PCE under different input val-

ues ofm, we increasem from 10 to 150 and fix α = 2, EM-PCE generates base clustering solu-

tions by repeatedly running LAC with h = 2. Fig 4 reports the results with respect to RI, ARI

and NMI on eight datasets. From Fig 4, we can observe that RI, ARI and NMI are relatively sta-

ble on most datasets. Although, EM-PCE has fluctuation on Breast, the fluctuation is relatively

small. The experimental results indicate EM-PCE is robust to input values ofm. We suggest

them should set relatively large.

Fig 3. Heatmap of the clusters discovered by EM-PCE and HC on Leukemia cancer gene expression dataset. Leukemia cancer gene

expression dataset contains 248 samples and are grouped into six subtypes (BCR, E2A, Hyperdiploid, MLL, T-ALL, TEL). Genes listed are

the first 586 genes with the largest variances. Different clusters (subtypes) are marked by different color bars.

doi:10.1371/journal.pone.0171429.g003
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Similarly, to investigate the sensitivity of EM-PCE to α (α> 1 is an integer parameter), we

increase α from 2 to 16 and fixm = 100. EM-PCE generates base clustering solutions by repeat-

edly running LAC with h = 2. Fig 5 reports the results with respect to RI, ARI and NMI on

eight datasets. From Fig 5, we can see that the accuracy of EM-PCE decreases when α is too

large. So we suggest that α should not set too large, we set α = 2 in our experiments.

We also investigate the sensitivity of parameter h of LAC, since EM-PCE adopts LAC as

base clustering. h(h> 0) controls the relative differences between gene weights. We vary h
from 1 to 15, repeat LAC under each particular input value of h for 10 times and report the

average results in Figs 6–8. As well as that, we repeat EM-PCE 10 times under a particular

value of h and plot the average results in Figs 6–8. α is fixed as 2 andm is set as 100 in these

experiments.

Figs 6–8 plot the results of LAC and EM-PCE with respect to RI, ARI and NMI under dif-

ferent input values of h. We can see that LAC is unstable on these eight datasets. LAC is

Fig 4. Sensitivity of m. For each m, we perform ten independently runs and report the average of RI and NMI. EM-PCE is robust to the

input value of m.

doi:10.1371/journal.pone.0171429.g004

Fig 5. Sensitivity of α. For each α, we perform ten independently runs and report the average of RI, ARI and NMI.

doi:10.1371/journal.pone.0171429.g005
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sensitive to the input values of h. In contrast, EM-PCE not only has better results than LAC,

but also is robust to h. The sensitivity analysis corroborates that single clustering algorithms

often lack of stability and suffer from inappropriate setting of parameters. In contrast, ensem-

ble clustering algorithms not only show more stable results, but also are more robust to input

values than single clustering algorithms.

Time complexity and runtime cost analysis

EM-PCE generates base clustering solutions by repetitively running LAC. LAC needs to

iteratively optimize the weight assigned to genes for each cluster. Suppose the number of

iterations for LAC to converge is t1, the time complexity of LAC is O(t1 × k × n × d), where

k is the number of clusters, n is the number of involved samples and d is the number of

genes. Therefore, the time complexity of generating m base LAC clustering solutions is

Fig 6. Sensitivity of h under RI. For each h, we perform 10 independently runs of LAC and EM-PCE under a particular value of h, and then

report the average RI of LAC and EM-PCE, respectively.

doi:10.1371/journal.pone.0171429.g006

Fig 7. Sensitivity of h under ARI. For each h, we perform 10 independently runs of LAC (EM-PCE) under a particular value of h and report

the average ARI of LAC and EM-PCE, respectively.

doi:10.1371/journal.pone.0171429.g007
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O(m × t1 × k × n × d). EM-PCE consists of another two parts. The first part computes

Ln0 ;d0 ¼
1

m

Pm
l¼1

Pk
k0¼1

Xl
k0;n0Y

l
k0;d0 , and the time complexity is O(m × k). For d genes and n sam-

ples, the time complexity of the first part comes to O(m × k × n × d). Another part of

EM-PCE is to iteratively compute X� and Y� until convergency. Suppose the number of iter-

ations for EM-PCE to converge is t2, and the total time complexity of this part is O(k × n × d
× t2). In summary, the overall time complexity of EM-PCE is O(k × n × d × (t2 + t1 ×m)).

We record the runtime costs of EM-PCE and other comparing methods, and reveal the

results in Table 5. All the comparing methods are implemented with Matlab2012b and the

experimental platform is: Windows 7, 8GB RAM, Intel(R) Core(TM) i5-4590. In order to

study the runtime cost more intuitively, we also apply these comparing methods on synthetic

datasets. We fix the number of samples as 100 and increase the number of genes from 1000,

2000, . . ., 5000. Fig 9 gives the runtime costs of these methods on synthetic datasets. From

Table 5 and Fig 9, it is easy to observe that single clustering algorithm (HC, k-means, LAC,

SOM) runs much faster than other comparing methods. The runtime of RDCFCE increases

Table 5. Runtime cost (seconds) on real cancer gene expression dataset.

Dataset HC k-means SOM LAC WSPA RDCFCE EM-PCE

BreastB 0.03 0.23 12.57 0.50 101.80 2510.98 302.70

DLBCLA 0.09 0.24 4.96 0.58 117.63 1946.50 236.34

Leukemia 0.33 0.90 13.10 3.28 412.93 4722.94 1144.20

NovartisBPLC 0.07 0.19 8.10 0.61 87.44 2172.79 354.17

Pomeroy2002v2 0.03 0.23 21.18 0.36 40.01 1381.63 217.04

Ramaswamy2001 0.28 2.21 30.93 5.51 631.94 5248.20 2747.36

Risinger2003 0.04 0.23 70.00 0.43 43.56 1727.51 228.74

Su2001 0.27 1.73 36.12 5.16 466.25 5491.07 2098.11

Overall 1.14 5.98 196.97 16.44 1910.56 10331.31 7328.66

The runtime costs of HC, k-means, SOM, LAC, WSPA, RDCFCE and EM-PCE on eight real gene expression datasets. RDCFCE costs more time than

other methods.

doi:10.1371/journal.pone.0171429.t005

Fig 8. Sensitivity of h under NMI. For each h, we perform 10 independently runs of LAC (EM-PCE) under a particular value of h and report

the average NMI of LAC and EM-PCE, respectively.

doi:10.1371/journal.pone.0171429.g008
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rapidly when the number of genes increasing and it takes more time than all the other compar-

ing methods. That is because RDCFCE repeats SOM multiple times to find representative

genes and then applies a fuzzy extension model on representative genes found by each SOM to

generate multiple base clusterings. EM-PCE takes more time than WSPA. The reason is that

EM-PCE not only has to run LAC multiple times to generate base clusterings, but also to opti-

mize the sample-to-cluster assignment and gene-to-cluster assignment. WSPA only optimizes

the sample-to-cluster assignment, so it takes fewer time than EM-PCE. The runtime of WSPA

and EM-PCE increases relatively slow, and is even smaller than single clustering algorithm

SOM when the number of genes becoming large. Given the superior results of EM-PCE with

respect to these competitive algorithms, we can conclude EM-PCE is an effective alternative

technique for clustering cancer gene expression data.

Conclusion

In this paper, we investigate EM-PCE for clustering cancer gene expression data. EM-PCE

leverages the advantage of projective clustering to handle high dimensional gene expression

data and utilizes the merits of ensemble clustering to produce stable clustering solution. Exper-

imental results show that EM-PCE outperforms other related approaches on clustering gene

expression data and is robust to the noise. The parameter sensitivity study also shows EM-PCE

is robust to input parameters. These comparative results demonstrate that EM-PCE is more

promising to discover cancer subtypes. EM-PCE can be adopted to identify functionally corre-

lated expression patterns and explore bi-clusters from high-dimensional gene expression data.

Given the nature of gene expression data, we will investigate more efficient and effective co-

clustering ensemble algorithms for gene expression data analysis.
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