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Breakdown of the inert and constitutive membrane building block sphingomyelin to the

highly active lipid mediator ceramide by extracellularly active acid sphingomyelinase is

tightly regulated during stress response and opens the gate for invading pathogens,

triggering the immune response, development of remote organ failure, and tissue

repair following severe infection. How do one enzyme and one mediator manage

all of these affairs? Under physiological conditions, the enzyme is located in the

lysosomes and takes part in the noiseless metabolism of sphingolipids, but following

stress the protein is secreted into circulation. When secreted, acid sphingomyelinase

(ASM) is able to hydrolyze sphingomyelin present at the outer leaflet of membranes to

ceramide. Its generation troubles the biophysical context of cellular membranes resulting

in functional assembly and reorganization of proteins and receptors, also embedded

in highly conserved response mechanisms. As a consequence of cellular signaling,

not only induction of cell death but also proliferation, differentiation, and fibrogenesis

are affected. Here, we discuss the current state of the art on both the impact and

function of the enzyme during host response and damage control. Also, the potential

role of lysosomotropic agents as functional inhibitors of this upstream alarming cascade

is highlighted.

Keywords: sphingomyelinase (SMase), ceramide (CER), sepsis, organ failure (OF), inhibitor, FIASMA

INTRODUCTION—WHY IS CONSIDERATION OF ASM
IMPORTANT IN THE CONTEXT OF INFECTION AND HOST
RESPONSE?

During severe infection and sepsis, a stress-responsive enzyme becomes present in circulation,
which is known to be essentially involved in membrane repair, internalization of pathogens,
maturation of phagolysosomes, and mitochondrial dysfunction. The function of the circulating
enzyme is held responsible for rapid and transient formation of the highly bioactive lipid mediator
ceramide from the inert membrane constituent sphingomyelin (SM), which is localized at the
outer leaflet of cellular membranes. Under physiological conditions, there is a very consequent
segregation of the enzyme from its substrate. But why it is important for a better understanding
of the pathophysiology of organ dysfunction development, that there is a resolution of the spatial
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separation? Is there an action of the enzyme for a remote
signaling to regulate tissue damage apart from the infectious
focus? In this review, we summarize the functions of acid
sphingomyelinase in order to contribute to the question whether
acid sphingomyelinase (ASM) is our friend or foe in the
course of sepsis and severe infection, and further discuss the
significance of both, an intended and an unattended inhibition
for interpretation of results from preclinical and clinical studies
with septic patients.

The first clear description of an enzymatic activity cleaving SM
into ceramide with an acidic pH optimum was given by Gatt (1).
Twenty-five years later, the protein was isolated and purified from
human urine and biochemically characterized (2). Surprisingly,
the urine obtained from patients with peritonitis was identified
as a rich source for purifying human acid sphingomyelinase
(3), which was at that time used as a reagent for in vitro
experimentation of cellular membranes. Tissue, i.e., brain tissue,
was also identified as an appropriate starting material useful for
purification procedures (4).

ASM IS OUR BUDDY

ASM Profile
The plasma membrane with an asymmetric distribution of
phospho- and sphingolipids as well as lateral segregation of SM
and cholesterol has—beyond separating cellular compartments—
an important function with respect to signal transduction
and a plethora of other essential cellular processes (5, 6).
The outer leaflet of plasma membranes is enriched in
SM, phosphatidylcholines, and glycosphingolipids, whereas in
the inner leaflet phosphatidylinositoles, phosphatidylserine,
phosphatidylethanolamines, and phosphatidic acid are abundant
(5, 7). Metabolism of SM is the entry point in a unique
and highly interconnected universe of sphingolipids with a
plethora of compounds differing in physicochemical properties
and diverse functions regarding cellular signaling and membrane
organization (8). The first step—hydrolysis of SM to ceramides
and phosphatidylcholine—is catalyzed by the pacemaking
enzyme sphingomyelinase, of which so far five different isoforms
are known (8, 9). These sphingomyelinases can be distinguished
according to primary structure, triggering of activity, cation
dependence, and subcellular localization (10, 11). In this review,
we focus on acid sphingomyelinase, which is primarily localized
in lysosomes (12). Other sources of ceramide formation (de novo
synthesis, synthesis from sphingosine and fatty acid, as well
as hydrolysis of glucosylated or phosphorylated specimen) are
playing a minor role during stress response and severe infection
(13). A short overview on in vitro determination of ASM activity
is given in Box 1.

Almost 30 years ago (1991), the full sequence of ASM was
firstly described (14, 15). The genetic locus was identified on
the short arm of chromosome 11 (15), interestingly in close
proximity to the locus of other lysosomal proteins such as
cathepsin D and acid phosphatase (13). The sequence of ASM
is highly conserved among mammals (16) and the ASM locus
[systematically sphingomyelin phosphodiesterase 1 (SMPD1)]
is undergoing epigenetic regulation by paternal imprinting

(17). During protein synthesis, ASM undergoes extensive
posttranslational modification. In this process, glycosylation at all
of the six potential sites is of major importance to ensure correct
folding, sorting, and/or proper stability within the proteolytic
milieu of the lysosome (18, 19). By mannose-6-phosphate-
receptor shuttling, the protein is transported via the endosomal
system to its final destination, the lysosome (20).

Along the primary subcellular localization, the purified
protein favors an optimum pH around 5.0, but sphingolytic
activity is retained also at neutral pH (21): regarding parameter of
enzymatic activity, despite the pH shift up to 7.45, the maximum
turnover velocity (vmax) remains constant (22, 23). The decrease
in affinity to the substrate (Km) is of no relevance due to the
enormous excess of SM at the outer leaflet of cell membranes
(24, 25). The persistence of enzymatic activity at neutral pH
values is of great importance as discussed later.

In vitro experiments showed us that enzyme activity is also
dependent on lipid environment (26) and addition of a detergent
in order to overcome dependence from activation by specific
proteins (26). Sensitivity to reducing agents such as dithiothreitol
is underlining the relevance of disulfide bridges within the
mature protein structure for hydrolyzing activity (27, 28).

Resolving the crystal structure of mammalian ASM (with 88%
identity to the human protein) confirmed that ASM-mediated
hydrolysis of SM is functioning in a canonical mechanism, where
phosphoesterases are utilizing a nucleophilic attack of a zinc
(Zn++)-activated water molecule and protonation of the leaving
group for release of phosphocholine and ceramide (29). Two
saposin domains are relevant for determination and stabilization
of either a closed or open conformation of the enzyme. In the
latter one, the enzyme is able to bind and dock to membranes,
and extract SM therefrom for subsequent hydrolysis (29). Direct
inhibitors of the enzyme (i.e., bisphosphonic acid derivatives) are
competing with Zn++ binding within the active center (29). A
short overview on milestones in translational research regarding
ASM activity is given in Table 1.

Under physiological conditions, ASM is fulfilling essential
house-keeping functions in the lysosomes, whereas genetic
deficiency leads to extensive accumulation and deposition of
SM resulting in organ abnormalities as described in Niemann-
Pick disease (NBD), types A and B (30). The moment of glory
has come to ASM as soon as response to external or internal
signals of stress is much needed. Since ceramide generation is
the common final pathway of most stressors, the panel of ASM
stimulators in a large variety of cell types goes far beyond those
previously described for any other molecular switch of the SM
pathway and are summarized in Table 2. Activation of the ASM-
sensitive pathway leads to a rapid and transient translocation of
the enzyme toward the cell membrane ranging from seconds to
hours (60, 61).

In order to highlight the importance of ceramide generation in
the course of a severe systemic disease, it is noteworthy that ASM-
deficient fibroblasts or mice are resistant to radiation-induced
cell death (57). In addition, specific ceramide-binding antibodies
rescued mice from lethal radiation gastrointestinal syndrome
by preventing signaling platform formation (see below) and
inhibition of endothelial cell death (62).
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BOX 1 | Determination of ASM activity.

For activity determination, there is a broad range of assays, using either naturally occurring or labeled substrates for in vitromeasurements up to quenched SM probes:

highest structural similarity is given by radiolabelled sphingomyelin (either in the backbone or in acylated fatty acid), when the decrease of SM of formation of ceramide

is determined in vivo or in vitro. This procedure is also suitable for in-situ assays without any need for detergent or any other artificial condition [5]. Next, substrates

with fluorescently labeled fatty acids in SM were hydrolyzed by ASM, the generated corresponding ceramide derivative is separated using thin-layer chromatography

TLC and determined using a CCD camera in a high-throughput format [6]. In addition, SM substrates with radioactively labeled phosphocholine are used following

extraction of the water-soluble reaction product [7]. An artificial SM substrate with short chain fatty acids are used with highly specific mass spectrometric analysis of

corresponding ceramides resulting in improved sensitivity [8]. From naturally occurring sphingomyelin, another opportunity for determination of the second reaction

product (phosphocholine) is oxidation of a pro-fluorescence dye following hydrolysis and oxidation to betaine, where formation of a resorufin analog by released

hydrogen peroxide is used as a reporter system. The strength of this assay format is the transfer to a multi-well-format without need of any separation step [9]. A

most recent review on strengths and pitfalls of ASM assays is given by Nikolova-Karakashian [10].

Quenched fluorescent SM probes based on FAM/BODIPY dyes are allowing real-time analysis to monitor relative sphingomyelinase activities and ceramide

formation of intact, living cells by techniques of flow cytometry. At the end, these probes are acting as a biosensor in a non-invasive manner and in native cellular

environment with high spatial and temporal resolution [11, 12]. The specific profile of generated ceramides in affected cells is quantified by methods of mass

spectrometry following lipid extraction and chromatographical separation [13].

TABLE 1 | Milestones for ASM in translational sepsis research.

Finding Year References

First observation of sphingomyelin hydrolysis at acid conditions 1963 (1)

ASM deficiency as molecular basis of Niemann-Pick disease, types A and B (NPD-A and NPD-B, respectively) 1966 (30)

Purification of ASM from urine (obtained from septic patients) 1987, 1989 (2, 3)

Description of a Zn++-dependent secreted isoform of ASM 1989, 1996 (31, 32)

Sequencing, cloning, and locus mapping of full-length ASM 1991 (14, 15)

Generation of ASM-deficient mice as NPD model 1995 (33)

Association with severity in septic patients 2005 (34)

Phosphorylation of S508 for activation and translocation 2007 (35)

Cationic amphiphilic drugs as functional inhibitors of ASM (FIASMA) 2010 (36)

Crystal structure of mammalian ASM 2016 (29)

Triple combination of FIASMA blocking Ebola virus infection 2017 (37)

Re-evaluation of the puzzle 2019 (38)

Description of milestones, which are mostly relevant for a better understanding of the role of ASM during host response, development of organ failure, and proposed treatment thereof.

TABLE 2 | Stressors triggering ASM activity and translocation (selection).

Stressors and agonists References

Pathogens Viral (rhinovirus, Ebola, SinbisV) (39–42)

Bacterial (Neisseria gonorrhea, Staphylococcus aureus, Pseudomonas aeruginosa) (43–49)

Parasitic (Cryptosporidum parvum) (50)

Endogenous danger signals Cytokines (IL1-β, TNF-α) (51, 52)

Ligation of death receptors (TNF-α, CD95, TRAIL) (13)

Cytotoxic agents/drugs PMA, cis-platin, paclitaxel, retinoic acid, doxorubicin (35, 37, 53–55)

(Chemotherapeutics) Rituximab (56)

Radiation UV-C, ionizing radiation (57)

Oxidative stress Ischemia/reperfusion injury (58)

Generation of reactive oxygen species (44, 45, 59)

Outline of stressors and harmful events resulting in triggering extracellular ASM activity by translocation and exocytosis of the lysosome with decompartimentalization and amplification

of biological effects of ASM at the outer leaflet of cellular membranes (selection).

Maturation of Phagolysosome,
Translocation, and Role in Raft Modeling
ASM is essential for proper fusion of late phagosomes with
lysosomes, which is crucial for efficient transfer of lysosomal

antibacterial hydrolases into phagosomes (63, 64). A significant
role of ASM in the phagolysosomal compartment for the defense

against infection with intracellular pathogens was shown by a

dramatically increased susceptibility to Listeria monocytogenes
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in ASM-deficient mice (ASMKO). Although ASM-deficient
immune cells showed intact production of reactive nitrogen
intermediates and oxidative burst, they are completely incapable
of restricting and controlling the intracellular growth of L.
monocytogenes in vitro (65). Similar findings were obtained
from mouse peritoneal macrophages infected with the obligate
intracellular protozoan, Leishmania donovani. Increase of
intracellular ceramide was not only a consequence of ASM-
triggered activity but also from de novo synthesis, which resulted
in upregulation of Ca++-independent atypical protein kinase
C (PKC)-ζ. Surprisingly, suppression of formation of reactive
nitrogen species (i.e., nitric oxide) facilitated the survival of
leishmanial parasites in the intramacrophageal milieu (66).

Accumulation of reactive oxygen species (ROS), as a
consequence of altered redox status followed by ASM activation,
ceramide generation, and subsequent clustering of CD95 in
ceramide-enriched lipid rafts is a common and early event
in neutrophil apoptosis, which are abundant, and short-lived
leukocytes. Their death by apoptosis is central to hemostasis and
the resolution of inflammation (67).

Extralysosomal Activity—Circulation in
Plasma?
In 1996, Tabas et al. described an additional, plasma-secreted,
circulating product of the sphingomyelin phosphodiesterase 1
(SMPD1) gene with a similar glycosylation pattern, but increased
dependency and susceptibility to Zn++ ions (31, 68). Differential
protein trafficking was held responsible for the regularly observed
activity increase in men, mice, and cell culture experiments upon
stimulation, but the underlying mechanisms remain unknown.
There is an ongoing debate on the origin of the ASM isoform
circulating in plasma, since the mechanisms for a differentiated
intracellular trafficking upon stimulation are hard to explain.
Phosphorylation of serine residue 508 (S508) by PKC-δ upon
stimulation with phorbol ester or UV light was considered to be
essential for activation and translocation (35). But to the best of
our knowledge, there is no evidence of phosphorylated ASM in
disease models or clinical samples.

However, recent studies with the protozoan parasite
Trypanosoma cruzi revealed that conventional lysosomes are
regularly fusing with the plasma membrane in response to
increased intracellular Ca++ concentration with subsequent
triggering of exocytosis (69) and release of the intralysosomal
content to the extracellular space, eventually also into circulation.
As a result, exocytosed ASM is capable to act at the outer leaflet
of the membrane. This mechanism is thought to define the role
of extracellular ASM as well as to represent the major source
of extracellular form of the protein (38). The findings, that a
plethora of harmful, stress/injury-triggering events induced
lysosomal exocytosis including interaction with pathogens
(59, 70, 71) offers a plausible perspective of the possible origin
of extracellular and circulating ASM activity without any need
for postulating differential trafficking (38). An overview on ASM
release as a feature of stress response is given in Figure 1.

Exposition of immune cells to ROS resulted also in a rapid
and transient, Ca++-dependent translocation of ASM to the

outer leaflet of cellular membranes—mediated by exocytosis
of lysosomes—and formation of ceramide-enriched platforms
(59). On the other hand, these microdomains are required
for Pseudomonas aeruginosa-induced activation of NADPH
oxidase and production of ROS, demonstrating a positive
feedback mechanism for amplification of ASM-mediated redox
signaling (43).

On a molecular level, the generation of ceramide is an integral
part of intrinsic repair mechanisms following perforation of
the plasmalemma by pathogenic pore-forming toxins, whereby
lysosomes fuse with the plasma membrane. Hereby, lysosomes
externalize their contents including acid sphingomyelinase and
facilitate exposure to the abundant SM at the outer membrane
bilayer (70, 72). Subsequent formation of ceramide-enriched,
topically restricted domains in the outer leaflet of the lipid
bilayer is an essential step contributing to tighter packing of
the membrane, forwarding a negative curvature and inward
vesiculation of the damaged area. At the end, the resulting
internal degradation contributes to cellular integrity and survival
(72, 73), e.g., after exposition of cells toward listeriolysin O or
pneumolysin (74).

Microdomain Formation, Protein
Organization, and Ceramide Signaling
In cultured immune cells, exposure to endotoxin led to activation
of ASM, generation of ceramide, phosphorylation of PKC-
ζ, assembly of Toll-like receptor 4 (TLR4) within lipid rafts,
activation of the stress-responsive kinases, and release of tumor
necrosis factor-α (TNF-α). These pathogenetic mechanisms
could be abrogated by CD14 blockade or inhibition of ASM but
reversed by treatment with the central effectormolecule ceramide
(51). In addition to other proteins associated with the lipid raft,
ASM is contributing to TLR4 signaling triggered by endotoxin
and non-microbial endogenous ligands (75) (Figure 1).

Moreover, ASM is involved in most effective host membrane
remodeling during enteropathogenic infection with Shigella spp.
resulting in decreased binding of pathogens to epithelial cells and
therefore, impeding abovementioned or other pathogens from
reinfection, which was proposed as a novel stress-responsive
cell-autonomous defense mechanism (76).

In concert with the endogenous danger signal adenosine
triphosphate (ATP), ASM is involved in secretion of membrane
TNF-α within microvesicles bypassing conventional pathways.
These cytokine-carrying microvesicles are biologically more
potent than soluble TNF-α in vivo, evolving significant lung
inflammation in mice, which might have crucial implications
for the biological activity of this prototypically proinflammatory
cytokine (77).

Ceramide as Second Messenger
Beyond the membrane reorganizing capacities (78), ceramides
also act as second messengers transducing cellular signals (79).
These functions widely differ among the diverse cell types,
ranging from induction of senescence to apoptosis. As an
example, the role of ceramide generation and the function
of generated ceramides in mitochondria were extensively
studied (80): organelle-specific accumulation of ceramide is
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FIGURE 1 | Release of acid sphingomyelinase (ASM) in the course of stress response and mode of action of its inhibition. Exposition of a cell membrane to external

harmful stress events such as endogenous or exogenous stimuli (bacterial endotoxin, pro-inflammatory cytokines, pore-forming toxins, Table 2) is followed by

intracellular Ca++ influx, triggering the exocytosis of lysosomes, where ASM was bound to the inner lysosomal membrane by SAP domain. In the extracellular space,

ASM mediates hydrolysis of SM (abundantly embedded into the outer leaflet of the membrane), generates ceramide, facilitating remodeling, and repair of the

membrane (restoring integrity), as well as pathogen entry. As a hallmark of ceramide-induced signal transduction, due to the trend for self-aggregation and formation

of ceramide-enriched microdomains, subunits of receptor proteins are reorganized to functionally active receptor complexes such as TLR4, TNFR, etc. As a result, an

increase in signaling quality and intensity is observed, controlling an adequate cellular response to external harmful stimuli. On the right panel, the mode of action of

cationic amphiphilic substances is illustrated: in an uncharged form at physiological pH value, the compounds diffuse across the cellular membrane through the

cytoplasma into the lysosome, where the weak basic nitrogen atom of the compound is protonated because of the acid pH value of the lysosome. The protonated

compound interacts with the sapsonin domain of ASM, detaching them from the membrane, then undergoing proteolytic inactivation. Following stimulation and

release, the inactivated ASM is unable to contribute to ceramide generation at the outer leaflet of the membrane. Due to similar physicochemical properties, a long list

of cationic amphiphilic substances with a broad range of clinical indications, but most of them used in daily care as antidepressive drugs, are found to function as

functional inhibitors of acid sphingomyelinase (FIASMA) and to effectively control stress-induced ceramide generation. Most of the available FIASMAs are licensed for

medical use in humans, are minimally toxic, and may therefore be applied for disease states associated with increased activity of ASM.

critically involved in progression of mitochondrial apoptosis
and mitophagy, defining ceramides as a bona fide transducer of
mitochondrial (dys-)function [excellently reviewed in (80) and
references cited therein].

In the next paragraphs, consequences of ASM depletion in the
course of local or systemic infections with the presentation of
interesting phenotypes will be discussed. In 1995, the generation
of ASM-deficient mice was of great value for studying the
pathogenesis and treatment not only of type A/B-Niemann-
Pick disease (see below) but also for investigations into the
role of ASM in ceramide signaling, induction of apoptosis, and
ceramide-induced tissue damage (33).

Hyperresponsiveness
Mice, genetically lacking ASM (33), showed an exaggerated
response to polymicrobial sepsis with an increased bacterial
burden, an enhanced phagocytotic activity, a more pronounced

cytokine storm and decreased survival rate (81). Moreover, on
a functional level, leukocyte-endothelial interaction was found
diminished in ASMKO animals corresponding to a distinct
leukocytes’ phenotype with respect to rolling and sticking as
well as expression of cellular surface proteins (81). A similar
phenotype was found in cultivated lung epithelial cells with
controlled ASM activity, where increased neutrophil recruitment,
elevated levels of cytokine mRNA, and a pro-oxidative shift could
be observed (82).

Moreover, the availability of ASMKO mice provides the
opportunity of a better understanding of ceramide generation
for immune response on a molecular level. In a fundamental
experimental setting, injection of endotoxin and its putative
effector TNF-α, into mice induced disseminated apoptosis
in endothelium of intestine, lung, fat tissue, and thymus
accompanied with cytokine release and ceramide increase. This
endothelial cell death was ASM dependent, since ASMKO
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mice were protected against endothelial apoptosis and animal
death (83).

In mice and men, complete loss of function of ASM
resulted in a diminished CD1d-restricted antigen presentation of
invariant natural killer cells (iNKT), decreased levels of this cell
population and resistance to iNKT cell-mediated inflammatory
conditions, supporting the concept of a tight link between cellular
sphingolipid metabolism and immunity (84).

Pneumonia in ASM-Deficient Patients
Niemann-Pick disease (types A and B) is an autosomal
recessive lysosomal storage disorder caused by biallelic mutations
in the SMPD1 gene resulting in a severe human disease
state characterized by deficient ASM activity (85). A recent
study reported around 185 mutations with ASM-deficient
NPD worldwide (86), while the detection of new mutations
is not yet completed (87). The majority of mutations are
predicted to affect proper folding, stability, as well as membrane
binding of the enzyme (29). Type B patients are characterized
by hepatosplenomegaly and progressive alterations of the
respiratory system, but the central nervous system is usually
less affected, which is more profound in type A, resulting
in early death (∼2 years of age) (85). Lung involvement
is the most important prognostic factor in NPD-B, with
recurrent respiratory infections starting in infancy being the
major cause of morbidity and mortality (82, 88, 89). In lung
epithelial cells, decreasing ASM activity by 50% leads to an
increased neutrophil recruitment via elevated levels of cytokine
expression, both at baseline and in response to bacterial
stimulation. Instead of preventing the host defense responses,
decreased ASM activity results in an inflammatory response
even in the absence of infection supporting the hypothesis of a
chronic inflammatory state impairing host defense mechanisms
(82). Despite the low incidence of progressive pulmonary
disease in a cohort of more than 100 patients diagnosed
with NPD-B, pneumonia was the leading cause of death of
juvenile patients (<21 years) (90, 91). On the one hand,
pathophysiology of the pulmonary disease is presumably related
to the accumulation of SM in alveolar macrophages, on the
other hand, inflammation, abnormal surfactant catabolism, as
well as composition contributing to lung abnormalities was
shown in ASMKO mice (92, 93). In parallel, endogenous
lipid pneumonia, interstitial fibrosis, and accumulation of
foamy macrophages were found in human lung biopsies (94)
supporting the hypothesis that the lung is a primarily affected
organ of NPD-B contributing to morbidity and mortality (90,
95).

In a brief summary of this section, ASM is a highly conserved
stress-responsive enzyme, activity of which is triggered by a
variety of harmful events including infection and inflammation.
As a key consequence of activation, there is a disorganization
of the previously strict segregation of the enzyme (located
in the lysosome) and the corresponding substrate (SM in
the outer leaflet of cellular membranes). Besides switching
the current pH status by two orders of magnitudes, the
enzyme is capable of rapid and transient ceramide formation
upon activation. The resulting self-aggregation of ceramide

molecules is reorganizing cellular membranes. Now it is time
to put this critical event of signal amplification as a general
mechanism into the scene of stress response, membrane
repair, oxidative stress, proper maturation of phagolysosomes,
and regulation of host defense against invading pathogens.
As our buddy—keeping us well and fine by its integration
in imperative actions of life—the enzyme and its regulation
of translocation and activity received also value for further
elucidation with respect to pathophysiology and pathogenesis of
a series of diseases.

ASM IS A DUBIOUS FRIEND

Invasion of Pathogens
Non-human sphingomyelinases are essential factors for virulence
of extracellular, facultative, or obligate intracellular pathogens.
These enzymes contribute to phagosomal escape or phagosomal
maturation avoidance and even immune response evasion
(96). Whether the activity profile of these prokaryotic proteins
contribute to the analyzed hydrolysis rate of SM to ceramide in
conventional assays in samples obtained from patients with blood
stream infection (Box 1) is still discussed controversially. Some
prominent and representative mechanistic approaches are shown
here in an exemplary manner.

Infections by Staphylococcus aureus are a major clinical
problem ranging from mild infections (skin and soft-tissue) to
severe and even lethal infections (e.g., pneumonia, endocarditis,
sepsis, osteomyelitis, etc.). S. aureus stimulates ASM via
CD44-triggered release of ROS, resulting in ceramide release,
clustering of CD44 in ceramide-enriched membrane platforms,
co-activation of GTPases, and translocation of linker proteins
with subsequent rapid rearrangement of the cytoskeleton. In
the absence of either CD44 or ASM, reduced internalization of
macrophages is counteracted by a reduced killing capacity (44).

A major toxin of S. aureus (α-toxin) caused in bone
marrow-derived macrophages ASM-dependent ceramide
formation, release of cathepsin B and D from lysosomes,
inflammasome activation, and induction of pro-inflammatory
cytokines, which could be abrogated by pharmacological
ASM-inhibition (45). In in vitro experiments with
endothelial cells, ASM activation by α-toxin was linked to
degradation of tight junctions, which could be blocked by
pharmacological inhibition. However, most importantly,
in in vivo experiments, genetic deficiency prevented severe
degradation of tight junctions in the lung and edema
formation (46). Combination of antibiotic treatment and ASM
inhibition are proposed to exhibit synergistic and super-additive
effects (47).

Inflammasomes are important for host defense against
invading pathogens; ASM activation is critically involved in the
activation of endothelial inflammasomes including recruitment
of adapter proteins and caspases (97–99) and subsequent
oxidative signaling by lipid raft-associated redox platforms,
release of cytokines, activation of stress kinases, and altering tight
junctions in epithelial cells (45).

For exposition of proteins, non-enveloped viruses undergo
partial uncoating in order to get access to the cytoplasm by
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FIGURE 2 | Properties of ASM inhibition in preclinical sepsis research. Administration of the inhibitor either prior (pretreatment) or following septic insult (curative). For

details, see text.

membrane lysis. Cellular ASM is a critical player in this process,
since ASM is induced and hijacked by mimicking wound
removal processes facilitating the adenovirus further membrane
disruption and infection. In addition, stimulation of Ca++ influx
and lysosomal exocytosis are key steps for efficient membrane
penetration of the virus (71). Most recently, influenza A virus
infection was found to be associated with suppression of ASM
activity in cultured alveolar epithelial cells, whereby depletion
of SM content either in the epithelial membrane or in the virus
envelope impaired virus infection and reduced virus entry as
well as reduced virus infectivity and impaired its attachment and
internalization, respectively. Inhibition of ASM by desipramine
did not affect influenza virus infection (100), which is in line with
the observation that ceramide generated by de novo synthesis
might play an antiviral role (101).

For meningococcal internalization into brain endothelial
cells, transient ASM activation and ceramide release are also
determinative factors for invasiveness among a defined set of
pathogenic isolates of Neisseria meningitidis (102).

In the pathogenesis of cystic fibrosis, abrogation of ceramide
accumulation by inhaled functional inhibitor of ASM (FIASMA,
see below) restored normal ceramide concentrations in murine
bronchial epithelial cells, reduced age-dependent pulmonary
inflammation and deposits of DNA in bronchi, as well
as prevented infection with P. aeruginosa (103, 104). ASM
activation (by endotoxin) and subsequent ceramide formation
play a pivotal role in Escherichia coli-induced apoptosis of
immature dendritic cells, a phenomenon contributing to sepsis-
induced immunosuppression (105). In liver specimen, inhibition
of activity in endotoxin challenged mice correlated with a
reduced rate of hepatocellular apoptosis (34).

It is also known that ceramide-containing microparticles in
packed red blood cells contribute to adverse effects following
transfusion, which was abrogated by treatment with a FIASMA
during storage time (106).

ASM activation is a critical factor for redirection of TNF-
α trafficking, thus the cytokine is embedded in microvesicles
bypassing conventional pathways in a highly potent manner.
Rerouting has crucial implications for the activity profile of
the pacemaker cytokine of inflammation, inducing a significant
TNF-dependent inflammation status and allowing long-range
TNF signaling to target cells more effectively than soluble TNF,
which is of particular interest therapeutically targeting TNF in
acute inflammatory diseases (77).

Marker and Mediator in Sepsis and
Pneumonia
Endotoxin challenge in mice resulted in a mild, 2-fold increase
of ASM plasma activity, which was accompanied by release
of cytokines (107). These data were confirmed by a similar
observation of an increase of ceramide content in lipoproteins
paralleled by an increased activity of circulating ASM (108).

Intratracheal administration of an ASM inhibitor in a model
of acute lung injury improved lung function and decreased
pulmonary inflammation (109). In critically ill preterm infants
with acute lung injury, beyond other markers and mediators,
ASM activity was found to be increased in tracheal aspirates
(110). Inhibition of NF-κB function attenuated pulmonary
inflammation of acute respiratory distress syndrome in a
neonatal piglet model with decreased leukocyte concentrations in
bronchoalveolar lavage, reduced ASM activity, and subsequently
decreased ceramide levels (111). This emphasizes the pivotal
role of sphingolipid signaling controlling pulmonary edema
formation and lung function.

In patients with community-acquired pneumonia (CAP), a
plasma decrease of SM was found to be closely associated with
an increase in ceramides (16:0, 18:0, 24:1), but normalized
toward clinical remission (112). Furthermore, the sphingolytic
activity of plasma-secreted ASM was nearly 3-fold increased
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with same tendency for normalization. A similar course was
also observed with respect to gene expression rate of SMPD1
in circulating leukocytes, supporting the concept of a disease-
relevant regulation of ASM expression in CAP at both, protein
and mRNA level. These observations might qualify ASM as a
potential target for host-directed treatments to reduce end-organ
damage in pneumonia (112).

Endothelial Integrity
Cultivated endothelial cells are affected by serum obtained
from patients with sepsis, resulting in clustering of receptors
relevant for signal transduction and suppression of a stress-
sensitive transcript marker of these cells (i.e., ADAMTS13),
which is abrogated by direct and indirect inhibition of ASM
activity (113). Both, plasma activity and amount of ASM
were found to be increased in septic patients dependent on
clinical severity (34, 113). Thus, ASM is involved in the
dysregulation of ceramidemetabolism in endothelial cells leading
to macrodomain formation, cytotoxicity, and downregulation
of ADAMTS13 expression (113), which is held to function as
an adverse effect to endothelial dysfunction and microthrombus
formation in sepsis (114). These results obtained in in vitro
experimentation were recently confirmed in a monocentric
clinical study, where a plasma decrease of the endothelium-
stabilizing mediator sphingosine-1-phosphate (S1P) was strongly
negatively associated with an increase in ceramide levels (115).
Moreover, the association with severity of clinical course could be
outlined by a highly powerful value of an integrative analysis of
the S1P/Cer ratio for prediction of unfavorable outcome, superior
to established severity scores (SOFA) and HLA-DR expression on
circulating monocytes (115).

Role of Alternative Splicing and SNP in
Sepsis and Depression
Beside predominant localization in lysosomes especially of
monocytic, hepatic, and endothelial cells, and delocalization
of the protein to the outer leaflet of cellular membranes
in response to multiple stimuli including pathogens (116),
encoding mRNASMPD1 is undergoing alternative splicing as an
independent matter of stress response. A series of SMPD1mRNA
splice isoforms are described to date, but only ASM-1 as the full-
length transcript, Ref_mRNA NM_000543 has been shown to
be translated into a catalytically active protein (14, 117, 118). It
might be speculated, that the extensive variability is a marker of
negative regulation with highest variability in healthy controls
but decreasing in a stress condition such as severe infection by
skipping of exon 3 and/or elongation of exon 2 (119). Thus,
an association of specific pattern of alternatively spliced SMPD1
transcripts with disease severity (healthy and non-infectious
patients undergoing intensive care as controls vs. sepsis) was
observed (119). At the end, alternative splicing of SMPD1 might
act in a dominant negative manner upon overexpression making
alternative splicing a promising target in regulation of ASM
activity (118, 119). Interestingly, a similar phenomenon was
observed in patients with major depression, a disease, where
despite clear associations of ASM activity with the severity of the
disease (120) the regulatory mechanisms and cause-effect links

are not well-understood (121). Strikingly, alternative splicing of
SMPD1 was also found to be reduced in depressed patients, and
most interestingly, normalized upon subchronical treatment with
FIASMA in both, patients and healthy volunteers (118, 122).

There are a small number of reports on polymorphisms of
the SMPD1 gene locus: V36A, A487V, and G508R as well as
hexanucleotide repeat in the signaling peptide (123–127). In
contrast to the variety of missense mutations, there is only a
minor effect of these sequence variations on overall activity
and function of the enzyme, but they might increase the
susceptibility for common diseases such as allergy (125). The
G508A transition—exchange of an uncharged with a charged
amino acid—is discussed to be significant for recognition of
a potential phosphorylation site, which is relevant for the
control of protein activation and secretion (35, 52). In line
with this hypothesis, G508A is associated with plasma-secreted
activity in a gene-dosage-dependent manner (125), since subjects
homozygous for the minor A allele displayed half of the
plasma activity compared with the major G allele. Whether this
observation on a molecular level might contribute to control
the susceptibility to infections is still a matter of debate, but
as discussed below, a decreased ASM activity is associated with
lower respiratory tract infections (90, 91).

In brief, ASM is also held responsible for internalization
of pathogens (bacteria and viruses). In acute and chronic
infection, inhibition of ASM improved outcome in (pre-)clinical
studies in patients with cystic fibrosis and CAP. ASM inhibition
also diminished inflammation-responsive fibrogenesis following
sepsis in a preclinical study. A multilevel regulation with
association to favorable outcome was observed in patients
undergoing CAP. Due to the facts that (i) the impact of single
nucleotide polymorphisms and alternative splicing of ASM with
respect to susceptibility and progression of infection is not fully
understood and (ii) pharmacological inhibition of the enzyme
resulted in improved outcome from chronic infection, the role
of ASM should not be evaluated as exclusively favorable without
any restriction. Our friend is becoming dubious and needs more
critical consideration.

BUT ASM IS ALSO WORRYING

In a series of clinical and preclinical studies, ASM activity
was positively associated with the severity of the disease. In
a small, mixed population from an intensive care unit (ICU),
ASM activity was found to be increased and to remain elevated
in the presence of a low level of procalcitonin-discriminating
non-surviving patients after systemic inflammation. Also, a
posttrauma effect with a significant increase in ASM after surgery
parallel to a postoperative increase of procalcitonin and C-
reactive protein was observed (128). Strikingly, patients with
severe sepsis exhibit an enhanced, 2-fold sphingolytic activity
in comparison with controls. A further increase was associated
with greater risk by the severity of illness and with fatal
outcome (34). Supporting the hypothesis that ASM activity is
highly correlated to inflammation, we also found ASM activity
mildly increased in patients with rheumatoid arthritis, which
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was associated with oxidant activity, markers of inflammation,
and endothelial activation (129). Interestingly, treatment of these
patients by biologicals with TNF-α-binding capacity suppressed
the increase completely to levels as found in healthy controls
along with improvement of the clinical condition (130). These
data support the concept that activation of circulating ASM may
play a critical role in the development of apoptosis and organ
failure in inflammation-associated disease, especially sepsis. An
inhibition of ASM should be explored further as a potential
target in the complicated puzzle of sepsis. At sepsis diagnosis,
leukocyte-associated ceramide content as a result of ASM activity
was significantly elevated and correlated to TNF-α concentration
as both a marker of cytokine release as well as mediator of ASM
activation (131). Ceramide concentration was highly predictive
for risk of development of organ failure (131).

In hemophagocytic lymphohistiocytosis (HLH), a rare
systemic inflammatory syndrome resulting from unrestrained
immune cell activation, levels of circulating ASM were found
elevated. Also, there was a shift in ceramide and sphingosine ratio
(increase), while levels of S1P were decreased (132). Interestingly,
an elevated ratio between ceramide and sphingosine was
predictive for unfavorable outcome (132). Data were confirmed
in a small cohort with a 10–20-fold increase of ASM activity with
a trend to normalization during recovery (133).

As an indirect measure for ASM-induced unfavorable
outcome, fluoxetine and desipramine reduced in an
lipopolysaccharide (LPS)-induced model of septic shock the
levels of circulating TNF-α similar to prednisolone, accompanied
with an improved outcome to untreated controls (134). In
murine models of peritonitis and endotoxemia following
LPS challenge, amitriptyline-treated mice were protected
from overwhelming cytokine release (KC, MCP-1) and from
pulmonary edema as well as exhibiting improved survival.
Anti-inflammatory effect of amitriptyline treatment is reflected
by increased IL-10 levels and decreased accumulation of immune
cells at the site of infection (135).

Eryptosis
In patients with hyperbilirubinemia, as often observed in the
acute phase of severe infection due to sepsis-induced cholestasis
and also a long-term consequence of survivors (136, 137),
high levels of conjugated bilirubin may also lead to progressive
sclerosing cholangitis (138) and are able to stimulate suicidal
death of human erythrocytes. As an underlying mechanism,
bilirubin triggered rapid Ca++ influx resulting in the release
of ASM, formation of ceramide, and subsequent translocation
of phosphatidylserine to the erythrocyte surface (139), a
phenomenon, which is also compatible with the anemia status
of these patients exerting an increased mortality rate (140).

Platelets
Ceramide accumulation over time, generated by ASM in
stored and aged platelets, caused lung injury in endotoxin-
challenged mice, examined by neutrophil accumulation,
endothelial barrier dysfunction, and histological evidence of
tissue injury (141). Interestingly, this adverse effect of pulmonary

complications following transfusion could be overcome by ASM
inhibition (141).

Mechanisms and Effects of ASM Inhibition
A broad panel of cationic amphiphilic compounds is known to
inhibit the activity of ASM by lysosomotropism due to their
unique physicochemical properties, which was firstly observed by
Albouz et al. (142). Interaction with the membrane-embedding
N-terminal saposin domain of ASM caused detachment from
the inner lysosomal membrane and a consecutive proteolysis
of the enzyme (143, 144). As a result, there is a significant
decrease in sphingolytic activity, therefore these compounds
are termed as FIASMA (36). The compounds differ markedly
in molecular structure. A prediction of inhibitory capacity
is available by a structure-property-activity relation (SPAR)
model in order to specify the structural and physicochemical
characteristics including variables referring to pKa, logP, as well
as a factor depicting the steric hindrance of the most basic
nitrogen atom of the compoundmodulating the free presentation
of a protonated nitrogen atom at the inner lysosomal surface
(145). It is noteworthy that these compounds are licensed for
medical use in humans, are minimally toxic, and in use for a
broad range of clinical indications, including the treatment of
intensive care patients. There is a long list of FIASMA of ASM
including amitriptyline, imipramine, desipramine, doxepine,
fluoxetine, maprotiline, nortriptyline, paroxetine, sertraline,
suloctidil, terfenadine, and famotidine, to mention a few (145)
(Figure 1).

Furthermore, evaluating lysosomotropic and ASM-inhibiting
activities in appropriate cell culture models are an applicable
approach of newly designed substances to identify novel
compounds with anti-apoptotic and anti-inflammatory capacity,
which results ultimately in a decreased response of prototypic
inflammatory mediators. At the end, in new candidate drugs,
based on established SPAR models, physicochemical and
biological properties will be selected and identified to enrich the
pool of compounds, which might be beneficial for the treatment
of the adverse effects of ASM upon activation (146).

In the next paragraph, there is a short overview on the
proposed beneficial effects of ASM inhibition in a series
of conditions associated with development of organ failure
and long-term effects of sepsis sequelae, classified by the
affected tissue.

Muscles, Diaphragm—Heart, and
Cardiovascular System
Cardiac dysfunction, in particular of the left ventricle, is a
common and early event in sepsis and is strongly associated with
an increase in patients’ mortality. Surrogates of cardiomyopathy
cardiac function, ceramide formation, markers of oxidative
stress, as well as troponin I levels were found to be improved
in FIASMA-treated animals in a semi-lethal peritonitis model
(147). Interestingly, in this study, an activation of de novo
synthesis of ceramides could be identified to be responsible for
cardiac ceramide increase (147). In an in vitro and ex vivo
experimental setting, Ferreira et al. showed that mouse myotubes
and diaphragm muscle fiber bundles are sensitive to ASM
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treatment mediated by release of mitochondrial ROS, resulting
in significant depression of diaphragm force and accelerated
fatigue in a time and concentration manner (148, 149). Also,
the p47(phox) subunit of NADPH oxidase is held responsible to
play an important role on oxidant-mediated diaphragmweakness
triggered by ASM (150). Similar results could be obtained in
a chronic malfunction of skeletal muscles and dysregulation of
sphingolipid turnover in insulin-responsive tissues at old age.
In parallel with a progressive increase of ceramide content and
Cer/SM ratio during aging of rats, there is a decrease of insulin
responsiveness, which can be overcome by ASM inhibition (151).
Interestingly, in muscle tissue, the counteracting activity of
sphingosine-1-phosphate is once more evident, promoting cell
survival, Ca++ mobilization, fiber growth and repair, as well as
fatigue resistance [excellently reviewed in (152)].

ASMKO mice are protected from TNF-α-induced
hypotension and tachycardia (153), which might be regarded
as clinical symptoms of systemic inflammation (154). One
hypothesis for this surprising observation might be a ceramide-
triggered activation of NOS, resulting in vasodilation and
hypovolemic shock (153), which was in a similar manner also
observed for ceramide generation by the neutral isoform of
sphingomyelinase (155). Therefore, pharmacological inhibition
of ASM-triggered ceramide generation and presumed prevention
of shock should be considered to contribute to the overall
improved survival (153) in the acute phase as observed in a series
of peritonitis models in mice (147, 156).

Lung
Pulmonary outcome following endotoxin challenge in mice was
improved by ASM inhibition, resulting in attenuating alveolar
collapse (157). Inhibition of ASM was identified as a possible
target in acute lung injury and pulmonary edema, induced by
administration of platelet-activating factor and endotoxin (158).
Fluoxetine and desipramine reduced in ovalbumin-sensitized
rats the number of migrated immune cells into bronchalveolar
lavage fluid but did not exert anti-inflammatory activity by
attenuation of bronchial hyperreactivity (134).

Liver Tissue—Long-Term Effects on Tissue Function

and Fibrosis Following Sepsis
Long-term sepsis survivors might develop
hepatocellular/hepatobiliary injury and fibrosis (159–162).
ASM, also an important regulator of hepatocyte apoptosis and
hepatic stellate cell (HSC) activation (163), is linked to the
promotion of liver dysfunction in the acute phase as well as
to fibrogenesis in the long term. In both, the acute and the
postacute phase, pharmacological inhibition of ASM displayed a
beneficial effect on oxidative stress levels, hepatobiliary function,
macrophage infiltration, hepatic stellate activation, and overall
survival (156). ASM inhibition exhibited a protective effect on
liver function in the acute phase, and the reduction of HSC
activation diminished development of sepsis-associated liver
fibrosis in the postacute phase of sepsis (156). In this context,
dysregulation of hepatic biotransformation capacity, especially
of the cytochrome P450 (CYP) system, represents an important
distress factor during host response (164–166). Thus, these

enzymes are estimated to be responsible for metabolizing
>75% of drugs which are in daily clinical use. Pharmacological
inhibition of ASM has an important impact on expression and
activity of different hepatic CYP enzymes using an animal model
of polymicrobial sepsis in the acute as well as in the postsepsis
phase (167).

In murine models of peritonitis and endotoxemia following
LPS challenge, amitriptyline-treated mice were protected
from overwhelming cytokine release (KC, MCP-1) and from
pulmonary edema as well as exhibited improved survival.
Anti-inflammatory effect of amitriptyline treatment is reflected
by increased IL-10 levels and decreased accumulation of immune
cells at the site of infection (135).

In all studies enrolling patients with severe infection, sepsis
and multiple organ failure as well as in all reports modeling the
disease continuum ex vivo or in vivo, we found a clear association
of ASM activity with morbidity and unfavorable outcome.
These observations are independent from the underlying disease
such as peritonitis, pneumonia, and HHL. On the other hand,
inhibition of ASM activity is capable to prevent destructive events
of overwhelming immune activation in all affected tissues and
circulating cells, be they nucleated or not. Here, we come to the
point for further consideration of the presumed beneficial effects
of ASM inhibition in daily clinical care, because a broad panel of
drugs is exhibiting ASM inhibition.

CONCLUSIONS AND FURTHER
PERSPECTIVES

The expenditure for locally restricted or disseminated ceramide
generation by ASM for effective host response is remarkable. The
multifaceted roles of ceramide in this context, specific function
in individual tissues and organs, the flux and interconnections
of lipid mediators with agonistic functions requires further
investigation and redefining. Nonetheless, there is conclusive
preclinical evidence that the conserved stress enzyme ASM plays
an essential role in the pathogenesis of sepsis/host response
and that its inhibition might improve the outcome. However,
the gap between preclinical and clinical trials has not been
convincingly closed so far. Therefore, we suggest as a first step
that a retrospective analysis of sepsis patients in the intensive
care unit, who are coincidentally treated with FIASMAs, should
be initiated to overcome the missing link from bench to
bedside. Our knowledge gained from preclinical experiments
indicates that FIASMAs might be promising candidates for
future pharmacological studies targeting ASM in sepsis and host
response keeping in mind that these drugs are already FDA
approved and just need to be repurposed.

FIASMA—From Unattended ASM Inhibition
at ICU to an Intended Use
FIASMA are a class of drugs, which are widely used for (often
chronic) treatment of a number of symptoms such as major
depression, neuropathic pain, fibromyalgia, etc., to mention a
few (168). From that list, major depression was recently ranked
as the third leading burden of non-fatal diseases worldwide
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with a prevalence of >10% in all analyzed regions and with an
increasing incidence to be first during the next decade (169, 170).
In the Global Burden of Disease survey for 2017, more than 264
million cases were reported worldwide (169).

In Germany, the 12-month prevalence of major depression
is 12% in adults, of whom the majority is treated with
antidepressant drugs (171).

In cultured PBMC from healthy volunteers treated either with
imipramine or amitriptyline in a therapeutical dosage, activity of
ASM is rapidly reduced to levels around 30% of original activity
over a period of 3 weeks. Interestingly, removal of the drugs
resulted in a gradual and prolonged, but complete normalization
of activity over a period of 5–6 days (172). Considering this
scenario combined with the facts that (i) daily use medication is
often or regularly spared on ICU admission and (ii) that drugs
initially used at the newly admitted ICU patient might also exert
an inhibitory capacity on ASM, it seems quite possible that the
septic patients at least in the early days following admission
might be subdivided in separate groups: one with decreased ASM
activity due to antecedent treatment with FIASMA due to other
indication and gradual normalization of ASM activity, one with
inhibition of ASM activity only just at ICU submission, and
one without any interference with ASM activity. In addition, it
might be further speculated that the presented ASM activity in
circulation is also superimposed by the conserved mechanisms of
stress response as discussed in detail previously.

This scenario in mind, there are some principal opportunities,
risks, as well as consequences examining host response and its
unintended, but presumptive treatment by FIASMA.

1. For a more precise interpretation of results from clinical sepsis
studies, the definition of the as-yet unknown biasing factor
of ASM inhibition by consideration of both ASM activity
and inhibition by FIASMA due to other indication prior
to hospitalization is needed (anamnesis, documentation of
prehospital medication, identification of FIASMA therein). In
sepsis trials, depression at least (and treatment thereof) should
be defined as a significant comorbidity.

2. The incidence of sepsis is determined including clinical
parameters of organ dysfunction in a cohort undergoing
prehospital treatment with FIASMA compared with those
without. Answering this question will also result in the
assessment, whether FIASMA-treated patients are at higher
risk for a severe course due to putative impairment of
phagolysosomal elimination of invading pathogens or—
on the contrary—at lower risk for development of tissue
damage and organ failure due to potential beneficial effects
of FIASMA. From an epidemiological point of view, two
studies came up with interesting results: in a general
population (∼60,000 individuals) with self-reported anxiety
and depression symptoms, severe depression was found to be
associated with an increased risk for blood stream infection,
moderate were not. However, an increased mortality risk was
found for the later subcohort only; unfortunately, no data
on antidepressant treatment were given in this study (173).
Similar results were obtained from a Danish cohort study,
where the underlying depressive disorder was assessed either

by psychiatric diagnosis or by at least two antidepressant
prescription redemptions within a 6-month period prior to
hospitalization due to sepsis (174).

3. On ICU, ASM activity is also determined in septic
patients treated with FIASMA due to other indications,
comparison with an untreated group, and association with
clinical parameters.

4. Ultimately, there is also a need for placebo-controlled trial
with a carefully selected FIASMA (on the basis of data from
observational trials) for a prospective investigation of the
proposed beneficial effect of resulting ASM inhibition with
respect to severity (development, duration, resolution of organ
failure) and overall outcome.

Drug Repurposing
Repurposing of established drugs to treat both, common, or rare
diseases is becoming an increasingly attractive and fast-track
approach because it involves the use of compounds with known
pharmacokinetic and safety profiles, with potentially lower
overall development costs and shorter development timelines due
to existing approval by the regulatory authorities (175). In the
case of ASM, it is of remarkable importance since there is a long
list of potential candidates available (36), and both, the structure-
activity relationship (145) as well as the underlying mechanism
of effective inhibition are known (144). Also, there are promising
results from preclinical and clinical studies as discussed in this
review, and there are some more outcomes using an explorative
design for identification of beneficial effect of ASM inhibition.

Out of around 800 unique three-drug combinations, two sets
were identified to effectively inhibit Ebola virus entry into human
cells and were further validated for inhibition of live Ebola virus
infection—at least two drugs of the triple exhibiting effective
ASM inhibitory capacity (176).

There is also an excellent review [Beckmann et al., (177)
and references cited therein], critically outlining the effectiveness
of amitriptyline in a series of serious conditions such as
cancer, infection, and metabolic and neurological diseases, all of
them assessed as ASM-related diseases. For this drug, potential
new applications for therapeutical treatment are demonstrated
which might also be considered a general opportunity, since
amitriptyline is proposed to function PARS PRO TOTO for
this group of drugs exhibiting inhibitory capacity for ASM.
Beside other drugs, these studies revealed that amitriptyline is a
promising candidate for further consideration for the treatment
of infectious diseases and overwhelming host response. However,
adverse effects of a missing residual activity as shown by
incompetence for phagocytosis and increased bacterial burden
were also observed (65, 81). On the other hand, there is a
clear association of ASM activity with the severity of sepsis and
unfavorable outcome (34, 113, 128). It has to be mentioned that
in heterogeneous mice by FIASMA treatment, a temporary status
similar to complete loss of function was shown, underlining
the effectiveness of functional ASM inhibition (167). A residual
activity of 15% is insufficient to prevent clinical features of
Niemann-Pick diseases over time (17).
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BOX 2 | Take Home messages.

• ASM activity in circulation is a marker and mediator of harmful events, increased in patients with sepsis and associated with the clinical course regarding

development, duration, and resolution of organ failure and outcome;

• In septic patients, different phenotypes with respect to ASM activity might be expected due to antecedent treatment with drugs for other indications (i.e., major

depression etc.), which are also inhibiting ASM by lysosomotropic mechanisms;

• Further investigation in upcoming clinical studies is necessary to examine the potential consequences of an unattended ASM inhibition;

• Intended inhibition of ASM, also by repurposed drugs, is a promising approach to control the adverse effects of an overwhelming ASM activity associated with

unfavorable outcome in these patients.

It is of major interest that fluoxetine, a widely used
antidepressant drug, efficiently inhibited the entry and
propagation of SARS-CoV-2 in the cell culture model without
cytotoxic effects and also exerted potent antiviral activity against
two currently circulating influenza A virus subtypes, an effect
which was also observed upon treatment with the FIASMAs
amiodarone and imipramine (178).

The recently proposed concept of a stress/injury-induced
lysosomal exocytosis (59) as the major source of extracellularly
circulating ASM (38) is in line (i) with a restoration of
dependency for Zn++ ions, since due to rapid displacement of
these ions after reaching the extracellular space, an additional
regulating factor participates in the resolution of ASM activity
beyond the outfall of the lysosomal content, and (ii) the
effectiveness of activity decreases in circulation upon treatment
with FIASMA, resulting in intralysosomal proteolysis of the
mature ASM protein and subsequent release of inactive protein
fragments without sphingolytic activity, and (iii) missing
evidence of phosphorylated ASM in circulation of a patient
undergoing stress response. However, the validation of this
concept in septic patients still needs further examination, e.g., by
comparison of the fragmentation and phosphorylation pattern of
ASM isolated from both compartments, lysosomes and plasma,
obtained from patients undergoing treatment with FIASMA.
Another important point with respect to the dosage of FIASMA
for treatment of host response is the fact of similarity to that of the
original indication (often major depression) due to a very similar
mode of action regarding ceramide generation.

Résumé and Take Home Messages
During an episode of sepsis, a broad panel of cell, tissue,
and organ response is controlled by stress-induced ceramide
generation; there is a broad understanding of potentially harmful
effects of ceramide generation during sepsis and there is a broad

panel of well-established and approved drugs with effectiveness
for ASM inhibition (Box 2), at the end encouraging systematic
studies for detailed examination of an unattended or an intended
inhibition of ASM during sepsis to improve patients outcome.

Methods
The objective of this narrative review is to evaluate the changes
of sphingomyelinase activity during infection and host response
and the discussion of translation into the field of translational
sepsis research including development of new strategies for
diagnosis and treatment. A search in the main biomedical
databases (PubMed, Medline, Scopus, and Web of science) was
conducted for a 20-year period ending in July 2020, focused
on primary research articles in the field of interest. Keyword
search for abstracts and titles included (“sphingomyelinase” OR
“SMPD1”) AND (“sepsis” OR “inflammation” OR “infection”).
The search identified 723 references, which were selected by
particular importance for this review. The prescreened references
were completed by other publications related to the issue. We
apologize if a valuable work of any appreciated colleagues could
not be included due to space limitations and the narrow scope of
this review.
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	Résumé and Take Home Messages
	Methods

	Author Contributions
	Funding
	References


