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GB virus C (GBV-C) is a common, non-pathogenic human virus that infects lymphocytes.

Persistent GBV-C infection of humans with coexistent human immunodeficiency virus (HIV)

infection is associated with prolonged survival, and GBV-C replication inhibits HIV replication in

vitro. A GBV-C virus variant was identified in chimpanzees in 1998 and was named GBV-Ctrog or

GBV-Ccpz. The prevalence and natural history of GBV-C in chimpanzees remains

uncharacterized. We examined the sera from 235 captive chimpanzees for the presence of GBV-

C viraemia, viral persistence and clearance, E2 antibody kinetics and RNA sequence diversity.

Sequences from six isolates shared more sequence identity with GBV-Ccpz than with human

GBV-C. The prevalence of GBV-Ccpz viraemia and E2 antibody in chimpanzees (2.5 and 11 %,

respectively) was similar to human GBV-C prevalence in healthy human blood donors (1.8 and

9 %, respectively). Persistent GBV-Ccpz infection occurred in two of the six viraemic animals and

was documented for 19 years in one animal. Host subspecies troglodyte GBV-C isolates and

published verus GBV-C isolates shared a high degree of sequence identity, suggesting that

GBV-C in chimpanzees should be identified with a chimpanzee designation (GBV-Ccpz). The

prevalence and natural history of chimpanzee GBV-C variant (GBV-Ccpz) appears to be similar to

human GBV-C infection. The chimpanzee could serve as an animal model to study HIV–GBV-C

co-infection.

INTRODUCTION

Following the discovery of hepatitis C virus (HCV) in 1989,
virus discovery groups searched for novel aetiological
agents responsible for non-A, non-B and non-C hepatitis.
In the process, human and primate viruses related to HCV
were identified. Abbott Laboratories identified two viruses
in tamarins which they named GB virus A (GBV-A) and
GB virus B (GBV-B) (Schaluder et al., 1995). The tamarins
in which these viruses were identified had been inoculated
with the 12th passage of tamarin plasma. The initial
tamarin had been inoculated with serum from a surgeon
with non-A, non-B hepatitis whose initials were G. B.
(Schaluder et al., 1995). GBV-A and GBV-B were not
identified in any human sera (Schaluder et al., 1995);
however, using degenerate oligonucleotides to amplify
related viral sequences, these investigators discovered a

human virus which they named GB virus C (GBV-C)
(Simons et al., 1995). Concurrently, Genelabs Inc.
discovered a virus in a patient with HCV infection that
they called hepatitis G virus (HGV) (Linnen et al., 1996).
Sequence comparisons revealed that HGV and GBV-C
were different isolates of the same species (Linnen et al.,
1996). Based on phylogenetic relationships, the GB viruses
and HCV are classified as members of the family
Flaviviridae. GBV-A is closely related to GBV-C, and
neither virus is associated with hepatitis or any other
disease. GBV-B is more closely related to HCV and causes
hepatitis in tamarins and owl monkeys (Schaluder et al.,
1995).

GBV-C is a lymphotropic virus associated with improved
survival in HIV-infected individuals (Stapleton et al., 2004;
Zhang et al., 2006). The prevalence of GBV-C viraemia
ranges from 1 to 5 % in healthy human blood donors and is
significantly higher (up to 42 %) in individuals with other
blood-borne or sexually transmitted infections (Barnes
et al., 2007; Mohr & Stapleton, 2009; Rey et al., 2000;

The GenBank/EMBL/DDBJ accession numbers for the GBV-C
sequences determined in this study are HM626487–HM626506,
HM638234–HM638236 and HM769722.
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Stapleton, 2003; Thomas et al., 1998; Williams et al., 2004).
GBV-C may cause persistent infection, and approximately
80 % of HIV-infected individuals maintain GBV-C vir-
aemia for at least 5 years (Williams et al., 2004). However,
the majority of immune-competent individuals appear to
clear GBV-C viraemia within 2 years (Hitzler & Runkel,
2004; Theodore & Lemon, 1997; Thomas et al., 1998).
Unlike HCV, antibodies to GBV-C are not readily detected
during viraemia (Heuft et al., 1998); however, antibodies to
the GBV-C envelope glycoprotein E2 are detected in
individuals following clearance of viraemia. Concurrent
detection of GBV-C E2 antibodies and viraemia is
uncommon, with fewer than 7 % of individuals having
concurrent anti-E2 antibody and GBV-C viraemia (Lefrère
et al., 1997; Sauleda et al., 1999). Anti-E2 antibodies appear
to partially protect against reinfection (Hassoba et al.,
1998; Thomas et al., 1998; Tillmann et al., 1998). Based on
the prevalence of E2 antibody to GBV-C RNA in healthy
blood donors, it appears that approximately 75–80 % of
GBV infections are cleared (Heuft et al., 1998).

Abbott Laboratories identified a variant of GBV-C (GBV-
Ctrog) in an HCV-infected chimpanzee with resolving
hepatitis (Birkenmeyer et al., 1998), and reported a near-
complete genome sequence (GenBank accession no.
AF070476) (Birkenmeyer et al., 1998). Adams et al.
(1998) also identified GBV-C RNA in three of 39 non-
captive chimpanzees (subspecies troglodytes and verus) that
they called GBV-Ccpz. For the remainder of the paper, the
chimpanzee variant of GBV-C will be noted with the
designation GBV-Ccpz rather than GBV-Ctrog. GBV-Ccpz

infection was not found in human or macaque monkey
blood samples (Birkenmeyer et al., 1998). The GBV-Ccpz

polyprotein shares 83.6 % aa identity with GBV-C, while
human GBV-C isolates are .95 % identical (Mohr &
Stapleton, 2009; Muerhoff et al., 2005; Pavesi, 2001). Based
on limited phylogenetic analysis of sequences from the 59

NTR region, helicase and RNA-dependent RNA polymer-
ase (RdRp), all of the GBV-Ccpz sequences are mono-
phyletic within a group of GBV-C viruses from humans
and chimpanzees (Adams et al., 1998). Thus, GBV-Ccpz is
considered a chimpanzee variant of GBV-C rather than a
separate genotype. Sequence analyses of all available
chimpanzee GBV-C sequences from Abbott Laboratories
(named GBV-Ctrog) and Adams et al. (named GBV-Ccpz)
demonstrated that these viruses were different isolates of
the GBV-Ccpz variant (Adams et al., 1998; Birkenmeyer
et al., 1998).

Although Adams et al. detected GBV-Ccpz viraemia in three
of 39 non-captive chimpanzees and generated partial
sequences for one chimpanzee with samples 24 months
apart, the prevalence and natural history of GBV-Ccpz has
not been otherwise examined (Adams et al., 1998). At the
time GBV-Ccpz was identified, serological reagents to detect
GBV-C E2 antibodies were not available, so there are no data
published on the presence of E2 antibodies in chimpanzees.
In this study, we examine the prevalence and natural history
of GBV-Ccpz in a large cohort of captive chimpanzees.

RESULTS

GBV-Ccpz prevalence and natural history in
captive chimpanzees

Serum samples from 235 captive chimpanzees were tested
by nested RT-PCR using primers designed from a human
GBV-C 59 NTR sequence (GenBank accession no.
AF121950) or by real-time RT-PCR using primers and
probe designed to amplify GBV-Ccpz. Seven of the 235
(3.0 %) samples contained GBV-C RNA. One of these
samples came from the South west Foundation for
Biomedical Research (SFBR) and the remaining six samples
came from the University of Texas MD Anderson Cancer
Center. Sequence analysis was successful for five of the
samples (Candie, 1855, P187, 3915 and 3912) and
alignments of four of the sequences demonstrated that
the sequences aligned more closely with GBV-Ccpz than
with human GBV-C and one sequence aligned most closely
with human GBV-C (Fig. 1a). Sequence analysis was not
successful for two of the seven animals, although GBV-Ccpz

viraemia is presumed because the amplification was

Fig. 1. Evolution of GBV-C viraemia and E2 antibody in
chimpanzees with GBV-C infection. (a) Results of the serum of
seven animals tested for GBV-C E2 antibody ($, positive result;
#, negative result) and GBV-Ccpz RNA (filled bars, positive result
for GBV-Ccpz RNA; dashed bars, positive result for human GBV-C
RNA; open bars, negative result for either RNA). (b) GBV-Ccpz

viraemia titres [genome equivalents (GE) ml”1] were measured by
real-time PCR at multiple time points during persistent infection for
chimpanzees Candie (¤) and 1855 (h). The first available samples
are marked at t50.
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successful only when GBV-Ccpz-specific primers were
utilized. Two of the GBV-Ccpz-positive samples tested
positive for all available samples, demonstrating persistent
infection of at least 4 or 19 years, respectively (chimpanzees
Candie and 1855) (Fig. 1a). The remaining four animals
had transient viraemia with only one sample containing
GBV-Ccpz RNA (Fig. 1a).

E2 antibody was detected in 26 of the 235 chimpanzee
serum samples (11.1 %). The two persistently infected
chimpanzees did not have E2 antibody detected in any of
their samples, and one chimpanzee with transient viraemia
did not develop E2 antibodies (Fig. 1a). In contrast, E2
antibodies were detected in the other three GBV-Ccpz

transiently infected chimpanzees. One of these animals had
detectable E2 antibody levels after GBV-Ccpz viraemia,
consistent with seroconversion, while the other two
transiently viraemic animals had E2 antibody detected
before and after GBV-Ccpz viraemia. The chimpanzee with
transient human GBV-C viraemia was also positive for E2
antibody on multiple sample dates surrounding the period
of viraemia. None of the chimpanzees received human
blood products (Table 1).

Among the chimpanzees with persistent viraemia (Candie
and 1855), the serum viral load remained constant with a
mean of 5.36108 genome equivalents (GE) ml21 for
chimpanzee Candie and 7.36108 GE ml21 for chimpanzee
1855 over 4 and 19 years, respectively (Fig. 1b).

Sequences from the 59 NTR and non-structural protein
(NS)5A/B coding region were determined at early and late
infection time points in the animals with persistent
infection, chimpanzees 1855 and Candie (Fig. 2). No
nucleotide changes were observed in a 329 nt sequence
from the 59 NTR of chimpanzees 1855 and Candie (data
not shown; GenBank accession nos HM626487,
HM626488, HM626489 and HM626490). The rate of

substitution in a 394 nt segment in the NS5A/B coding
region was similarly low, with Candie showing only 1 nt
substitution over a 4-year period and 1855 showing 6 nt
substitutions over a 16-year period (Fig. 2). The amino
acid sequences of this NS5A/B region from these
longitudinal samples were identical in both animals.

Sequence diversity among GBV-Ccpz isolates

To study GBV-Ccpz NS5A/B sequence heterogeneity, six
clones each from chimpanzees Candie and 1855 were
compared with the consensus sequence (the sequence
which occurs with the highest frequency for each
nucleotide position; Ruiz et al., 2010). Chimpanzee
Candie had only one of six clones identical to the
consensus sequence after 4 years of infection, resulting in
a heterogeneity index of 0.83 (the proportion of GBV-Ccpz

clones not bearing the predominant sequence) (Fig. 3a).
Chimpanzee Candie demonstrated a mean of 2.8 substitu-
tions per clone in the 394 nt sequence examined, with
transitions (A«G or C«T) accounting for 64.7 % of the
total number of substitutions. At 16 years post-infection
(p.i.), chimpanzee 1855 did not have a predominant
nucleotide sequence (Fig. 3b), which accounted for a
heterogeneity index of 1.0, consistent with the prediction of
an error-prone RdRp and the generation of quasispecies in
serum. Chimpanzee 1855 demonstrated a mean of 4.2
substitutions per clone, and transitions accounted for 84 %
of these substitutions (Fig. 3b). Comparison of non-
synonymous to synonymous substitutions (dN/dS ratio) in
the six RdRp sequences demonstrated a ratio of ,0.25 for
chimpanzees Candie and 1855, indicating that there was
not positive selection. Sequence diversity was not detected
in another chimpanzee (3915) with transient GBV-Ccpz

infection, with all five clones having an identical sequence
(heterogeneity index of 0; data not shown; GenBank
accession no. HM626492).

Table 1. Chimpanzee demographic information, blood-product exposure history and virus exposure history

M, Male; F, female; DOB, date of birth; RBC, red blood cells.

Chimpanzee

ID

GBV-C RNA+

sample date

(day/month/year)

Sex DOB (day/

month/year)

HIV HCV Blood-product/virus

exposure history
Exposure Status Exposure Status

P187 24/3/1999 M 24/11/1984 No Negative Yes Negative Sheep RBC in 7/10/1998;

chimpanzee plasma in 1/

12/2000

Candie 1/2/1988–17/12/1991 F 27/4/1982 No Negative No Negative None

1855 19/9/1991–31/3/2009 F 1/1/1965 No Negative No Negative Slow virus; Aleutian disease

3915 9/5/2006 F 25/4/1978 No Negative No Negative Hepatitis A virus; hepatitis B

virus; vaccinia virus

5855 22/5/2006 M 24/7/1992 No Negative Yes Negative Respiratory syncytial virus;

hepatitis B virus

9713 27/1/2005 F 24/8/1999 No Negative No Negative None

3912 11/9/2006 M 18/4/1978 No Negative No Negative Hepatitis E virus;

Respiratory syncytial virus

GBV-C chimpanzee natural history
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Phylogenetic relationships of GBV-Ccpz isolates

Human GBV-C isolates can be grouped into five, or possibly
six, genotypes (Muerhoff et al., 2006). GBV-C, HCV, GBV-A
and GBV-B 59 NTR sequences were compared with the
published GBV-Ccpz 59 NTR sequence (GenBank accession
no. AF070476), and the GBV-Ccpz and human GBV-C 59

NTR sequences identified in this captive chimpanzee
population. As predicted, the newly generated GBV-Ccpz

sequences and AF070476 form a monophyletic group
separate from the human GBV-C sequences (Fig. 4a).

A GBV-C isolate with a 59 NTR sequence that aligned more
closely with human GBV-C sequences from genotype 1 was
identified in one chimpanzee (number 3912) (Fig. 4). This
GBV-C isolate was genotype 1, which correlates with
African human isolates (Muerhoff et al., 2006). This animal
did not receive human blood products, and the mode of
transmission is not known. Since chimpanzees can support
experimental human GBV-C infection (Bukh et al., 1998),
and other animals in the colony received human blood
products including blood from humans with HIV and
HCV infection, it is possible that the animal acquired
human GBV-C via intra-colony transmission.

Adams et al. (1998) published partial 59 NTR sequences
from three non-captive chimpanzees (subspecies troglo-
dytes and verus), including one animal with two samples
obtained 24 months apart. The 59 NTR sequences of these
isolates share less sequence identity with the published
GBV-Ccpz sequence (AF070476) and the GBV-Ccpz

sequences that we characterized (Fig. 4b), suggesting that
GBV-Ccpz sequences from non-captive chimpanzees differ
from captive chimpanzees. 59 NTR sequences obtained
from the chimpanzee of the subspecies verus (chimpanzee

30), are more similar to the GBV-Ccpz sequence AF070476
obtained from the subspecies troglodytes than are the
sequences from the remaining non-captive chimpanzees
(23 and 33), which were also obtained from troglodytes
subspecies hosts. Thus, GBV-Ccpz infects both subspecies of
chimpanzee, troglodytes and verus, and does not strictly co-
speciate with either animal host. However, because the
newly studied chimpanzees are captive animals, it is
possible that the virus was transmitted in captivity, and
our results may not accurately reflect the species diversity
of GBV-Ccpz infection found in the wild.

Phylogenetic relationships are best determined by compar-
ing highly conserved functional domains including regions
of the RdRp. The deduced amino acid sequences of GBV-
Ccpz isolates were determined and compared to the
published GBV-Ccpz sequence (AF070476), human GBV-
C, HCV, GBV-A and GBV-B sequences. The GBV-Ccpz

NS5B sequences we characterized shared considerable
sequence identity with AF070476 and, like the 59 NTR
sequences, formed a monophyletic group separate from the
human GBV-C genotypes (Fig. 5a). NS5B sequences
generated from non-captive chimpanzees by Adams et al.
(1998) diverged from the GBV-Ccpz sequences obtained
from captive chimpanzees (Fig. 5b).

The chimpanzee GBV-Ccpz RdRp functional motifs, as
defined by Koonin (1991), were highly conserved with
human GBV-C sequences. The NS5B sequences from
chimpanzees 1855, 3915, Candie and the published GBV-
Ccpz sequence (AF070476) were identical within the eight
RdRp conserved motifs (data not shown). The partial
GBV-Ccpz NS5B sequences from non-captive chimpanzees
only contain sequence for RdRp motifs III and IV and
differed from the GBV-Ccpz AF070476, chimpanzee 1855,

Fig. 2. Nucleotide alignment of GBV-Ccpz

partial NS5A/B sequences obtained at early
and late time points during persistent infec-
tions of chimpanzees Candie (early time point;
HM638235) and 1855 (early time point;
HM638234). Consensus sequences of six
quasispecies (as described in Fig. 3) from
the late infection time points were compared.
Arrowhead denotes the putative start side of
NS5B and dots represent identical bases.

E. L. Mohr and others
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3915 and Candie sequences (Fig. 5c) (Adams et al., 1998;
Koonin, 1991). The four non-captive chimpanzee sequences
were identical to the AF070476 sequence in RdRp motif III,
and two of the four non-captive chimpanzee sequences (23
and 33) had 1 aa substitution in the RdRp motif IV
compared to AF070476 (asparagine to threonine; Fig. 5c).
The substitutions were identical to the human GBV-C RdRp
motif IV amino acid sequences instead of the GBV-Ccpz

AF070476 sequence. In contrast, human GBV-C sequences
differ from the AF070476 sequence by up to 3 aa
substitutions in RdRp motif III and 2 aa substitutions in
RdRp motif IV. The observation that two of the chimpan-
zees have 1 aa substitution in the RdRp motif IV when
compared with the other chimpanzee GBV-Ccpz sequences
suggests that there is sequence diversity among GBV-Ccpz

sequences. More GBV-Ccpz sequences from captive and non-
captive chimpanzees are necessary to determine whether
there are multiple genotypes as with human GBV-C.

DISCUSSION

Human GBV-C infection may persist in human hosts for
decades, although the majority of humans studied cleared
infection within 2 years following infection (Alter, 1997;
Hitzler & Runkel, 2004; Theodore & Lemon, 1997).
Although most GBV-Ccpz infections were transient in
captive chimpanzees, persistent infection was documented
for up to 19 years in one animal. Serum GBV-Ccpz viral
loads were high and constant in persistently infected

Fig. 3. Nucleotide alignment of GBV-Ccpz

partial NS5A/B sequences recovered from
individual clones (1–6) isolated from serum from
two chimpanzees: (a) Candie (HM626501–
HM626506), 4 years p.i. and (b) 1855
(HM626495–HM626500), 16 years p.i. Arrow-
head denotes the putative start site of NS5B
and dots represent identical bases.

GBV-C chimpanzee natural history
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animals (~16108 GE ml21). Thus, GBV-Ccpz viral loads
are similar to that observed for human GBV-C (Sauleda
et al., 1999; Tillmann et al., 2001). The fact that the animals
did not have a documented exposure to human blood
products or tissues, and that their viral genome sequences
align most closely with chimpanzee GBV-C sequences,
suggests that chimpanzee infection was acquired via intra-
colony transmission (Brook, 1998).

As with human GBV-C infection, seroconversion may
occur with GBV-Ccpz clearance, although E2 antibody may
be intermittent and was detected before and after GBV-
Ccpz viraemia. The detection of E2 antibodies prior to the
detection of GBV-Ccpz viraemia may reflect a GBV-Ccpz

viral load below the limit of detection of the assay. Of the
four chimpanzees that had both viraemia and E2 anti-
bodies detected, three animals had concurrent detection of
GBV-C E2 antibodies and viraemia. This prevalence is

higher than the prevalence of concurrent viraemia and E2
antibody in humans (7 %) (Lefrère et al., 1997; Sauleda
et al., 1999). E2 antibodies have not been examined
in chimpanzee serum prior to this study, and more
information is needed to provide a clear understanding
of the relationships between E2 antibody and GBV-Ccpz

viraemia. Nevertheless, the increased frequency of coexist-
ing E2 antibody and viraemia may reflect the limited
sample size or suggest that the immune mechanism for
clearing human and chimpanzee GBV-C infections differs.

Like human GBV-C, GBV-Ccpz quasispecies are detected in
serum (Sauleda et al., 1999; Thomas et al., 1998; Tillmann
et al., 1998). GBV-Ccpz NS5A/B sequence diversity was
detected in chimpanzees with persistent infection and not
in a chimpanzee with transient GBV-Ccpz infection,
suggesting that the generation of sequence diversity may
require persistent infection. Human GBV-C quasispecies

Fig. 4. Phylogenetic relationships of 59 NTR of
GB viruses and hepaciviruses. (a) 59 NTR
nucleotide sequences from GBV-Ccpz, GBV-C,
HCV, GBV-A and GBV-B, and the sequences
from chimpanzees P187 (HM638236), 1855
(HM626488), Candie (HM626490), 3912
(HM769722) and 3915 (HM626491) were
aligned with CLUSTAL W. There are 308 nt in the
final dataset, although only 137 nt were available
for sequence alignment with 3912 (marked with
an asterisk). (b) GBV-Ccpz 59 NTR sequences
from non-captive chimpanzees (noted in italics;
see text) were included in the comparison. There
are 98 nt in the final dataset except for 3912, for
which there were 45 nt available. The evolution-
ary distances were computed using the max-
imum composite likelihood method. Boot-
strap values are shown for each branch point.
Scales indicate the number of base substitutions
per site.
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have nucleotide substitution rates of up to 8.7 % in the 59

NTR region, 2.0 % in the E2 region and 3.3 % in the NS3
region (Ruiz et al., 2010; Zampino et al., 1999). We found
lower rates of GBV-Ccpz NS5A/B nucleotide substitution in
chimpanzees, with rates of 0.7 % (Candie) and 1.0 %
(1855) in the NS5A/B region. None of the substitutions in
NS5A/B quasispecies correlated with the mutations
observed by Bukh et al. (1998) during the experimental
human GBV-C infection of chimpanzees, and most GBV-
Ccpz nucleotide substitutions in the NS5A/B region were
silent mutations. Positive selection was not detected (dN/dS

ratio ,1) in the two chimpanzees with persistent infection,
suggesting a lack of immunological selective pressure. Even
though sequence diversity was detected, a minority of
sequences predominated in human GBV-C and GBV-Ccpz

during persistent infection (Radkowski et al., 1999; Ruiz
et al., 2010). The mutation rate observed between early and
late samples during persistent infection was only 0.2–1.5 %,

and none of the mutations resulted in a change in the
amino acid sequence. RNA secondary structure constraints
in the NS5A and NS5B regions of the GBV-C genome may
contribute to the low mutation rate over time (Davis et al.,
2008; Thurner et al., 2004).

Given the worldwide distribution and presence of quasi-
species of human GBV-C, there is a surprising lack of
genetic diversity among human GBV-C isolates. Although
few GBV-Ccpz sequences are available, the extent of
sequence diversity observed between GBV-Ccpz isolates
may be similar to that of human GBV-C genotypes. More
GBV-Ccpz sequences need examining to determine if the
GBV-Ccpz sequence diversity is significant enough to form
separate genotypes as with human GBV-C.

Adams et al. (1998) found that GBV-Ccpz isolates from
non-captive chimpanzees of the Pan troglodytes subspecies
verus aligned as a separate group from those found in P.

Fig. 5. Phylogenetic relationships of RdRp of GB viruses and hepaciviruses. (a) RdRp amino acid sequences from GBV-Ccpz,
GBV-C, HCV, GBV-A and GBV-B, and chimpanzees 1855 (HM626494), 3915 (HM626492) and Candie (HM626493) were
aligned with CLUSTAL W. There are 231 aa in the final dataset. (b) GBV-Ccpz RdRp sequences from non-captive chimpanzees
(noted in italics; see text) were included in the comparison. There are 61 aa in the final dataset. The evolutionary distances were
computed using the Poisson correction method. Bootstrap values are shown for each branch point. Scales in (a) and (b)
indicate the number of amino acid substitutions per site. (c) NS5B functional motifs III and IV are marked as described by
Koonin (1991) from the NS5B alignment in (b).

GBV-C chimpanzee natural history
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troglodytes subspecies troglodytes. The P. troglodytes verus
chimpanzees originated from West Africa and P. troglodytes
troglodytes animals originated from Cameroon and Nigeria
(Adams et al., 1998). Alignment of the previously
published GBV-Ccpz sequences and the sequences we
characterized does not confirm that GBV-Ccpz segregates
into separate verus and troglodytes subspecies groups. The
GBV-Ccpz sequences we studied aligned more closely with
GBV-Ccpz sequences from non-captive chimpanzees of the
subspecies verus, and to a lesser extent with non-captive
chimpanzees of the subspecies troglodytes, raising the
possibility of interspecies transmission. Chimpanzee
inter-subspecies transmission of GBV-Ccpz is feasible
because human GBV-C can infect both chimpanzees
(Bukh et al., 1998) and humans. Our data suggest that it
may be more appropriate to call the chimpanzee variant
GBV-Ccpz to signify that this virus infects both verus and
troglodytes subspecies as suggested by Adams et al. (1998).

Another GB virus, GBV-A, has a species-specific pattern of
sequence divergence, and the levels of sequence variation
between GBV-A found in different species are similar to
the relative sequence distance between human GBV-C and
GBV-Ccpz. This is consistent with the hypothesis that GBV-
C may have evolved with a common ancestor of humans
and chimpanzees into the distinct GBV-C and GBV-Ccpz

variants (Adams et al., 1998). The similarities of human
GBV-C and GBV-Ccpz (serum viral load, seroconversion
and persistence) and the length of time that each virus has
existed in its host since humans and primates evolved
separately suggests that chimpanzee GBV-Ccpz infection
could serve as an animal model of GBV-C–HIV-1
interaction in vivo. Chimpanzees also support experimental
infection with human GBV-C with viral loads of 106–107

GE ml21 (Bukh et al., 1998). Thus, HIV-1 co-infection
with either GBV-C or GBV-Ccpz could be used to examine
HIV–GBV-C interactions in vivo. Finally, it is unclear why

human GBV-C or GBV-Ccpz viraemia persists in some
hosts but not others. The chimpanzee may provide a model
to study host factors related to clearance and persistence of
infection.

METHODS

Sample identification. Chimpanzee (P. troglodytes troglodytes)

serum samples (frozen serum samples) were obtained from

repositories located at the SFBR [National Heart, Lung and Blood

Institute (NHLBI) colony and South-west National Primate Research

Center colony (n581)] San Antonio, TX and from the University of

Texas MD Anderson Cancer Center (n5154) Bastrop, TX. A single

serum sample was tested for GBV-C RNA, and longitudinal samples

were studied in animals that tested positive when available. Samples

were also tested for the presence of anti-GBV-C E2 antibodies.

Demographic information, infection history and blood product

history for GBV-C RNA+ animals are shown in Table 1.

GBV-Ccpz RNA detection. RNA was extracted from chimpanzee

serum samples using the QIAamp Viral RNA Mini kit (Qiagen). RNA

was stored at 280 uC until use. Reverse transcription was performed

using a Moloney murine leukaemia virus reverse transcriptase mutant

with reduced RNase H activity (SuperScript II; Invitrogen), and PCR

was performed using high-fidelity Taq polymerase (Platinum Taq

DNA Polymerase High Fidelity; Invitrogen). Oligonucleotide primers

employed are shown in Table 2.

PCR products were purified using the QIAquick PCR purification kit

(Qiagen), ligated with pCR2.1 (TA Cloning kit, Invitrogen), and

INVFa or DH5a competent cells (Invitrogen) were transformed. Six

colonies were randomly selected to study sequence diversity. Plasmid

DNA was purified (WizardPlus SV Miniprep DNA Purification

System; Promega) and sequenced (ABI sequencer; University of Iowa

DNA Facility). Nucleotide sequences were entered into GenBank with

accession numbers HM626487–HM626506, HM638234–HM638236

and HM769722.

Sequence analysis was performed using DNAman (Linnen, Biosoft),

and phylogenetic and molecular evolutionary analyses were conducted

using MEGA version 4 (Tamura et al., 2007). Sequences were aligned

Table 2. Oligonucleotide primer sequences utilized to detect GBV-C RNA

NS5A, Non-structural protein 5A; NS5B, non-structural protein 5B; +, sense primer; 2, antisense primer; Pr, probe sequence.

Region RT-PCR

product size

(bp)

GBV-C primer sequence (5§”3§)

Outer Inner

GBV-C 59 NTR 92 +GGCGACCGGCCAAAA Pr-AGGGTTGGTAGGTCGTAAATCCCGGTCA

2CTTAAGACCCACCTATAGTGGCTACC

GBV-Ctrog/cpz 59 NTR 77 +AATGCATGGGGCCACCC Pr-CTGCAGCCGGGGTAGACCAA

2ATGCCACCCGACCTCAC

GBV-C 59 NTR 203 +AAGCCCCATAAACCGACGCC +CGGCCAAAAGGTGGTGGATG

2TGAAGGGCGACGTGGACCGT 2GTAACGGGCTCGGTTTAACG

GBV-Ctrog/cpz 59 NTR 364 +TTGGCAGGTCGTAAATCC +GCCATTCTGGTAGCACCT

2GCGCAACAGTTTGTGAGG 2GACCTCACCCGAAGGATT

GBV-Ctrog/cpz NS5A/B 388 +GCAGCCATGGGCTGGGGATCTAAG +GAAACACCTGAAGGGAAAATGGC

2TCTGATGCCAAAGCATAGAGCTCAGTCTC 2TCTGATGCCAAAGCATAGAGCTCAGTCTC

GBV-Ctrog/cpz NS5B 781 +GAAACACCTGAAGGGAAAATGGC +GGAGGTCTTCTACCGAGATCGGAA

2GGTGCCAAGGGTAGAGCAAACAA 2GGTGCCAAGGGTAGAGCAAACAA
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with the CLUSTAL W method, evolutionary histories were inferred using

the unweighted pair-group method with arithmetic mean (UPGMA)

method (Sneath & Sokal, 1973) and bootstrap consensus trees were

inferred from 2000 replicates (Felsenstein, 1985). The evolutionary

distances were computed using the Maximum Composite Likelihood

method (Tamura et al., 2004) or the Poisson correction method

(Zuckerkandl & Pauling, 1965). dN and dS values were estimated using

the Nei-Gojobori method in MEGA4 (Nei & Gojobori, 1986; Tamura

et al., 2007). GBV-C isolates representing the different genotypes were:

AB003291, genotype 1; AF121950, genotype 2; U94695, genotype 3;

AB003292, genotype 4; and AY949771, genotype 5. Representative

isolates of three HCV genotypes were: AF0011753, genotype 1a;

AF333324, genotype 1b; D14853, genotype 1c; D00944, genotype 2a;

D10988, genotype 2b; and AF046866, genotype 3a. GBV-A (U94421)

and GBV-B (AJ277947) sequences were also analysed.

For real-time PCR, RNA was amplified using 59-NTR primers and a

6-carboxyfluorescein/6-carboxytetramethylrhodamine-labelled probe

as described previously (Souza et al., 2006) (Table 2) using the

SuperScript II Platinum One-step Quantitative RT-PCR (Invitrogen)

as recommended by the manufacturer. A standard curve was

generated using an 842 nt GBV-C 59 NTR (GenBank accession no.

AF121950) synthetic RNA and was confirmed for GBV-C amplifica-

tion by terminal dilution. This standard curve was also used for GBV-

Ccpz. Results were analysed with 7500 System SDS Software.

E2 antibody detection. Serum samples were tested for E2 antibodies

with either the mPlate anti-HGenv test (kindly provided by Dr Georg

Hess, Roche Diagnostics, Mannheim, Germany), or by using an in-

house assay when the commercial assay was no longer available. The

sensitivity and specificity of the mPlate anti-HGenv test and in-house

assay correlated (overall regression50.76). For the in-house assay,

Nunc Immobilizer plates were coated with recombinant GBV-C E2

expressed in CHO cells as described previously (McLinden et al.,

2006), blocked with PBS containing 0.02 % Triton X, 0.02 % azide,

1 % BSA and 2.5 % FCS. Serum diluted 1 : 50 was added to the wells

for 1 h at 37 uC. Wells were washed and bound antibody was detected

using alkaline-phosphatase-labelled anti-human Fc antibodies

(Sigma) followed by incubation with p-nitrophenylphosphate

(Sigma) diluted in diethanolamine buffer for 1 h at 37 uC. The

absorbance was measured at 405 nm after 30 min.
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