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Abstract: Vehicle automation is driving the integration of advanced sensors and new applications
that demand high-quality information, such as collaborative sensing for enhanced situational aware-
ness. In this work, we considered a vehicular sensing scenario supported by 5G communications,
in which vehicle sensor data need to be sent to edge computing resources with stringent latency
constraints. To ensure low latency with the resources available, we propose an optimization frame-
work that deploys User Plane Functions (UPFs) dynamically at the edge to minimize the number
of network hops between the vehicles and them. The proposed framework relies on a practical
Software-Defined-Networking (SDN)-based mechanism that allows seamless re-assignment of vehi-
cles to UPFs while maintaining session and service continuity. We propose and evaluate different
UPF allocation algorithms that reduce communications latency compared to static, random, and
centralized deployment baselines. Our results demonstrated that the dynamic allocation of UPFs can
support latency-critical applications that would be unfeasible otherwise.

Keywords: vehicular sensing; latency reduction; edge computing; 5G networks; User Plane Function (UPF)

1. Introduction

Vehicles have been equipped during recent years with a wide range of sensors such
as odometers, Global Positioning System (GPS) receivers, distance sensors, cameras, etc.
Furthermore, the new autonomous vehicles require more and better sensors for identifying
and localizing objects in the surroundings of the vehicle. By combining sensors and
communication capabilities, vehicles become excellent platforms that enable a wide range
of applications including environmental surveillance and traffic monitoring [1]. Thus,
vehicular sensing has been tackled from many different perspectives. Environmental
sensors have been installed in many different types of vehicles, both sensing-oriented and
in opportunistic sensing scenarios. In some cases, engine or navigational sensors and data
transceivers have been used for secondary purposes, instead of installing on-board ad hoc
sensors. In fact, cell phones enable use cases of great interest, because they may serve as
on-board gateways between engine Controller Area Network (CAN) buses and the Internet;
they can contribute data from their own sensors (magnetometers, camera, accelerometers,
etc.) [2], and they can provide measurements of cellular network coverage, to cite some
possibilities. Indeed, vehicular sensing is a relevant subfield of vehicular networks. For
example, in [2], the authors reviewed the way sensor information is collected, stored, and
harvested using intervehicular communications, as well as their supporting infrastructure
(e.g., centralized and distributed storage in the wired Internet). More recently, in [3],
collaborative sensing amongst vehicles for automated driving, where full coverage must
be guaranteed in risky spots, was studied, by analyzing the role of Roadside Units (RSUs)
in assisting vehicular sensing.
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5G networks [4,5] are a key enabler contributing to the enrichment of the subfield.
They provide existing powerful smartphones connections with unprecedented performance
in terms of access bandwidth, latency and scalability and are supported by intelligent
packet cores and fully softwarized/virtualized networks, which span across radio access,
backhaul, and core resources [6–8]. They also include distributed network-side computing
resources at the fog, edge, and cloud layers [9,10].

However, all this flexibility comes at the cost of powerful dynamic management
paradigms, which, in some cases, must be assisted by artificial intelligence. From the point
of view of vehicular sensing, a crucial requirement is to take vehicular data as soon as
possible to the network-side computing resources that process these data to make decisions
or to provide additional information to drivers, vehicles, or the infrastructure.

Consequently, in this paper, we are interested in a solution to take vehicular data to the
User Plane Function (UPF) modules of a 5G network core as efficiently as possible since, and
from that moment on, those data will be readily accessible to the computing resources at the
network edge. For this purpose, we relied on our previous Software-Defined-Networking
(SDN)-based solution in [11]. A differential benefit of this solution is that, no matter how
many UPF allocations are necessary, the data sessions are not interrupted.

By combining 5G gNBs with the associated computing resources and our solution to
place anchor points at optimal locations, we can adapt the network to the requirements
of the UEs in terms of latency. This enables applications such as collaborative sensing for
enhanced situational awareness, where vehicles send large amounts of Light Detection and
Ranging (LiDAR) data and other high-resolution sensor information to applications that
fuse them together to build a high-precision view of the environment in real time. This
information is then distributed to all the vehicles in the area so that they can avoid obstacles
or make decisions [12–14]. All these procedures (collection of information, processing, and
distribution of the resulting information) have to be completed under strict time constraints
(as low as 10 ms [15]). Besides, many other applications, such as Augmented Reality (AR)
for providing rich information to drivers, should also be supported by powerful onboard
computers or remote servers deployed at the edge [16]. In the second case, even a small
latency of 50 ms can cause an error of 50 cm in the information displayed [17]. In order
to reach such latency values, it is necessary to reduce the number of hops between the
vehicles and the edge computing infrastructure, as each hop may increase the latency in
the range from hundreds of microseconds to a few milliseconds for fiber optic and radio
links (depending on the technology [18]). Moreover, the network processing delay in each
hop is not negligible [19].

The main contributions of this paper are:

• The proposal of latency-reduction algorithms for the dynamic allocation of UPFs in
5G vehicular sensing scenarios;

• The evaluation of the proposed algorithms in terms of end-user latency and execution
time using a publicly available dataset with vehicular mobility traces and Base Station
(BS) deployments;

• The comparison of the proposed algorithms with baseline allocation strategies.

The rest of this paper is organized as follows: Section 2 discusses the background of
this work. Section 3 describes the problem we address. Section 4 explains our proposed
solution. Section 5 describes the methodology, and Section 6 presents our results. Finally,
Section 7 summarizes our findings and concludes the paper.

2. Background and Related Work

Vehicular sensor data have been exploited in many applications and research studies.
Classic examples of sensing-oriented vehicles are space balloons, environmental satellites,
and oceanographic vessels, to name just a few. Even though these platforms have been
operated for decades, all of them are still useful for research [20–22]. New specialized
sensing vehicles, such as drones, keep appearing [23,24], raising their own novel inter-
networking problems [25]. Opportunistic vehicular sensing, on the other hand, relies on
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the currently highly dense transport routes, such as city streets, air lanes, and motorways.
Therefore, by installing low-cost sensors in public transportation vehicles, for instance,
the operation costs can be minimized. This idea is not new: the National Aeronautics
and Space Administration (NASA) deployed sensors in 65 commercial aircraft in 2006
to create the Tropospheric Airborne Meteorological Data Reporting (TAMDAR) moisture
data repository for weather forecasting [26,27]. In [28–31], we and other authors indepen-
dently proposed public-transportation-based systems for pollution and road condition
evaluation. Later, the research in [32] formalized this paradigm by defining and measuring
the coverage depending on the traffic routes, by determining the relationship between
the coverage quality and the number of vehicles and selecting the minimum number of
vehicles to achieve a target coverage quality.

The advent of cell phones, as high-performance computing devices linked to the Inter-
net through broadband data networks, has revolutionized vehicular sensing. Cell phones
can contribute their GPS positions to monitor urban dynamics [33]. Road conditions can be
estimated from cell phone accelerometer data [34]. Much of the required preprocessing can
be executed at user terminals themselves at the cost of some user incentives [35].

Before the advent of 3G mobile communications in the late 1990s, extracting large
volumes of data from mobile sensors was unfeasible. Indeed, mobile sensors were data
mules. As a result, solutions such as Delay-Tolerant Networking (DTN) were applied to
take their data to the Internet when connection opportunities arose [31,36] (these solutions
are currently still used in extreme environments [37]). This was a logical and straight-
forward extension of the paradigm of Intermittently Connected Delay-Tolerant Wireless
Sensor Networks (ICDT-WSNs), a branch of WSNs that was surveyed in [38].

As previously said, the field has been revolutionized by 5G networks [4,5]. In vehicular
5G communications, a thriving research field by itself [39], transferring large sensing data
volumes will no longer be an issue, at least in urban environments in the short term,
provided that the density of base stations is high enough [40,41]. Of course, new challenges
will appear when the massive IoT becomes a reality [42,43] due to scaling issues, but
5G communications have been conceived of to deal with these from the onset [44]. A
more immediate challenge currently is taking sensor data to edge computing resources,
where decisions are made (for example, for crossroad safety applications [45]), at minimum
latency. We are interested in studying 5G solutions for this purpose in vehicular sensing. In
this regard, we assumed that the computing resources for sensing applications are scalable
and, at least for the preprocessing tasks, stateless, and thus that they are available at all
base stations. That is, we are not interested in redeploying computing resources following
the movement of the vehicles, another interesting problem that was tackled in [46] for
instance, but in taking sensor data to those resources as efficiently as possible.

The deployment of UPFs at the edge has been recently explored as a promising
strategy to support novel applications [47–49]. In [47], the authors elaborated on a neural
network-based model for predicting traffic load to perform a proactive autoscaling of
UPFs, as well as on Service Function Chaining (SFC) placement. Then, they formulated the
problem of allocating the required number of UPFs to the desired locations as an Integer
Linear Program (ILP). However, the focus of their work was the prediction of the traffic
load, and they did not consider the possibility of increasing the number of UPFs in order to
further reduce the latency. Other works, such as [48], have studied a joint user association,
Virtual Network Function (VNF) placement, and resource allocation with a Mixed-Integer
Linear Programming (MILP) formulation. A similar model was used in [49] for placing
end-to-end slices modeled as SFCs. In the latter, the authors approximated the solution
to optimize the number of VNF migrations and the network utilization with a heuristic
algorithm that satisfies the requirements of the slices.

None of these works considered the challenge of seamlessly redirecting the traffic of
the UEs from the base station to the desired UPF. Besides, in this work, we studied the
trade-off between the number of UPFs deployed in the network and the latency perceived
by the users in vehicular sensing scenarios.
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For the purposes of the seamless dynamic reconfiguration of user communications
between different locations, in our previous work in [11], we proposed an SDN-based
mechanism that changes the serving anchor point for end-users (i.e., UPF in 5G networks)
between different edge locations while ensuring session and service continuity. The
mechanism consists of a dynamic deployment of anchor points in the desired edge locations
through Network Function Virtualization (NFV) and the synchronization of the context
information of the anchor points between the different locations through the SDN. Finally,
SDN technology was also used to reconfigure the network to redirect the traffic flows of
each User Equipment (UE) to the desired anchor point. To the best of our knowledge, UPF
allocation subject to session continuity (as supported by a practical solution) has not been
previously considered.

3. Problem Statement

In this paper, we considered a 5G network scenario composed of multiple base stations
(gNBs) distributed across a 2D surface. The base stations provide wireless coverage to
UE-enabled vehicles that move across the surface. As the vehicles move, their association
with the base stations may change following their movement. The vehicles capture infor-
mation from the environment through different onboard sensors and send this information
to instances of a stateless distributed server-side application. The communications between
the vehicles and the instances take place according to 3GPP standards: a General Packet
Radio Service (GPRS) Tunneling Protocol (GTP) tunnel is established between the gNB and
a UPF anchor point for each UE. The UPF is the termination endpoint for the communica-
tions of each UE, whose data are then forwarded to the server application. For the sake
of simplicity, we considered a 1-1 mapping between base stations and Multi-access Edge
Computing (MEC) hosts, which correspond to the nodes of a simple graph. The edges of
the graph represent direct communication channels between the base stations (e.g., fiber
links). Nevertheless, we remark that the collocation of the MEC hosts with the BSs is just
an example of a deployment strategy for simplifying the problem statement. The proposed
algorithms in this work can be applied to other deployment scenarios [10] (e.g., collocation
of the MEC host with transmission nodes, collocation of the MEC host with a network
aggregation point).

The role of the MEC hosts in our scenario is two-fold: they are not only used to host
the lightweight distributed stateless server-side applications that receive the sensor data
from the vehicles, but also to deploy UPF instances.

We considered a time-slotted model whose network intelligence periodically deter-
mines in which nodes UPFs are deployed to minimize the latency perceived by the UEs for
the next slot based on the distribution of UEs in the current slot. We measured the latency
perceived by each UE as the minimum number of hops between the base station the UE is
attached to and a base station containing a UPF. In this context, we refer to a base station
that contains users attached to it during the current time slot as an active base station.

Changing the serving UPF for a given UE is challenging because it may cause session
and service disruption. This is related to the change of the endpoint of the GTP tunnel to
a different UPF. To ensure session and service continuity, it is necessary to replicate the
state of the previous UPF to the new one and properly reconfigure the network before
the reassignment takes place. To this end, we propose to use the SDN-based mechanism
defined in [11], which allows seamlessly changing the serving UPF for a UE. The proposed
solution combines the benefits of SSC Modes 1 and 3 defined in 3GPP TS 23.501 [50]
(i.e., changing the IP anchor point and also maintaining the IP address allocated to the UE).
As described in Section IV.C of [11], the mechanism follows a make-before-break approach
to ensure that the new UPF is completely ready and operational before actually diverting
to it the traffic of the UEs.

In a practical implementation, our solution in [11] can be used both to dynamically
deploy the UPFs at the desired edge locations and also to divert the traffic of each UE to
the closest UPF.
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4. Proposed Solution

We wish to show that the dynamic intelligent allocation of UPFs in the network edge
combined with a lightweight network reconfiguration can be used to reduce the overall
latency since the data are captured by the vehicle sensors until they are processed by the
network-side application. The elapsed time for applying the desired UPF allocation in
each time slot must be short compared to the length of the intervals where their decisions
are applied (i.e., the duration of the time slots). This includes both the elapsed time for
executing the UPF allocation algorithms and also the times required for deploying the
UPFs at the target locations and reconfiguring the underlying SDN network for steering
the traffic of each user to the closest UPF. Using our proposed mechanism in [11], the times
required for deploying a lightweight UPF and reconfiguring the SDN network are about
900 ms and 40 ms, respectively [51]. This previous result establishes a lower bound of 1 s on
the duration of the time slot. That is, the time elapsed between two consecutive executions
of the dynamic UPF allocation algorithm must exceed 1 s to guarantee system stability.
In practice, values above 5 s are recommended in order to minimize the overhead by too
frequent network reconfigurations.

Figure 1 shows a simplified view of the proposed architecture. In detail, with respect
to the standard 5G architecture, our proposal introduces SDN switches at the edge sites
(i.e., close to the gNBs), which are configured to forward the traffic of each user to the
desired UPF. The SDN switches are controlled by an SDN controller. The decisions on UPFs
locations are made by the UPF allocation algorithm. The decision is communicated to the
NFV Management and Orchestration (MANO) platform of the operator, which triggers
the instantiation of the UPF VNFs at the desired MEC hosts. Then, the SDN controller is
notified to reconfigure the network and divert the traffic of each UE to the closest UPF, by
leveraging our mechanism in [11].

Figure 1. Architecture of the proposed solution.

The inputs required by the UPF allocation algorithm are as follows:

• The network graph is composed of the set of base stations as nodes and the corre-
sponding links between them;

• The set of active users for each base station.
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Then, the output generated by the algorithm is the set of nodes where the UPFs must
be deployed. With this in mind, we considered the following UPF allocation algorithms:

• Static K-means:A K-means clustering of all the base stations in the network is calcu-
lated. A UPF is deployed at the closest base station to the location of each cluster
center based on Euclidean distances. This strategy is static, given the locations of the
base stations, and it does not depend on the user distribution. Therefore, it does not
involve any dynamic redeployment of the UPFs;

• Random: A trivial approach that picks the base stations where the UPFs are deployed
at random, according to a discrete uniform distribution. Note that the scenario in
which just one UPF is used is equivalent to a centralized UPF deployment;

• Greedy percentile: This iteratively picks the node that reduces the 90th-percentile
worst-case latency perceived by the UEs. In the case of multiple nodes introducing
the same 90th-percentile latency, the tie is broken in favor of the node with the largest
reduction of the average latency perceived by the UEs;

• Greedy average: This iteratively picks the base station with the largest reduction of
the average latency perceived by the UEs;

• K-means: A K-means clustering of the active base stations looking for as many clusters
as UPFs we are interested in deploying. A UPF is deployed at the closest base station
to the location of each cluster center based on Euclidean distances. This is analogous
to the proposal in [52];

• K-means greedy average: A K-means clustering of the active base stations is calculated.
A UPF is deployed in each cluster by determining the node with the largest reduction
of the average latency perceived by the UEs attached to base stations in the cluster;

• Louvain modularity greedy average: Nodes are clustered according to the Louvain
modularity maximization [53]. A UPF is deployed in each cluster by selecting the
node with the largest reduction of the average latency perceived by the UEs attached
to base stations in the cluster.

The static K-means and random algorithms were used as baselines. The greedy
percentile algorithm seeks to reduce the 90th-percentile worst-case latency perceived by
the UEs. The greedy average is a simplified version of the latter to reduce its computational
complexity. The K-means algorithm follows a state-of-the-art approach described in [52]
to determine the location of the UPFs as cluster centers, to reduce the computational
complexity as well. We also propose a variant of this approach called K-means greedy
average, which greedily determines where a UPF is deployed inside each cluster. The
objective of this variant is to further reduce the latency perceived. Finally, the Louvain
modularity greedy average algorithm relies on graph theory techniques for identifying
communities [53] inside the network topology. Similar to the K-means greedy average, this
last strategy selects in a greedy manner the placement of each UPF inside each community.
Other techniques from graph theory (e.g., Girvan–Newman community detection [54])
were also considered in this work, but we did not include them in the final results because
they did not provide improvements with respect to the Louvain modularity greedy average.

Since the goal of our experiments was to analyze the trade-off between the number
of deployed UPFs and the latency achieved, we set the number of clusters of the K-
means and Louvain modularity algorithms to the same fixed value as the number of UPFs
being evaluated.

As a final remark, in the case of using a different MEC deployment strategy (i.e.,
UPFs restricted to specific base stations), the algorithms can be directly generalized by
considering its constraints.

5. Methodology

In this section, we describe the methodology we followed in this work to evaluate the
proposed UPF allocation algorithms in a vehicular sensing scenario.
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We first describe the datasets we used, the processing we applied, and some insights
based on an exploratory analysis of their information. Then, we elaborate on the metrics
we used to assess the performance of the proposed algorithms through simulations.

5.1. Dataset

To evaluate our proposal in a realistic scenario, we used two publicly available datasets
with the locations of real cellular base stations and realistic vehicular traffic traces in an
urban environment [55].

The dataset with mobility traces is available at http://kolntrace.project.citi-lab.fr/
koln.tr.bz2 (accessed on 17 November 2021). It corresponds to a 400 m2 area in the city
of Cologne, Germany. The dataset containing the base stations was obtained from public
German databases in 2012, and it is available at http://kolntrace.project.citi-lab.fr/koln_
bs-deployment-D1_fixed.log (accessed on 17 November 2021). It contains the Cartesian
coordinates of 247 base stations. We assumed that each base station is connected to other
base stations in their vicinity, conforming a single connected graph, and that some base
stations are equipped with a local computing infrastructure on which the operator can
deploy low-latency services for its users based on the MEC paradigm.

To build the single connected graph, we determined the links between the base stations
as follows:

• First, each base station is connected to all the base stations in its surroundings less than
DISTANCE_LINK_THRESHOLD away. This results in a set of connected components;

• Then, we built the single connected graph by iteratively finding the pair of nodes from
the largest and second-largest components at the shortest distance from each other
and set an edge connecting these two nodes. This way, at each iteration, the connected
components are joined to the largest component.

In our simulations, we set DISTANCE_LINK_THRESHOLD to 500 m. The first part
of the procedure resulted in 177 connected components. At the end of the procedure, the
resulting graph had 293 undirected edges. Figure 2 shows the topology of the resulting
interconnection network. Figure 3 shows the histogram of the minimum distances between
pairs of nodes. As we can observe, they are normally distributed with an average of around
18 hops between every pair of base stations.

The dataset of vehicular mobility traces consists of almost 20 GB of data of a period of
24 h. In total, there are over 354 million entries, corresponding to more than 700 thousand
individual trips. Each entry contains the Cartesian coordinates of the vehicle location at
each time instant plus the speed of the vehicle.

The UEs in this dataset do not produce measurements at all timestamps. We con-
sidered that UEs are off during the periods in which they have no data. To assign a base
station to each UE, we used the following procedure, also used in related works (e.g., [46]):

• If the UE has just been enabled (that is, there was no information for the UE in the
immediately preceding time slot), we assign the UE to the base station with the
minimum path loss. To compute the path loss, we used the expression and parameters
for a non-line-of-sight urban scenario of [56]. For the sake of clarity, the formula is
reproduced next:

PL(d)[dB] = α + 10 · β · log(d) + Xσ, (1)

where α and β are the least-squares fits of the floating intercept and the slope, respec-
tively, d is the distance between the base station and the UE, and Xσ is a Gaussian
random variable with zero mean and standard deviation σ that represents the shad-
owing effect;

• Otherwise, we evaluated the path loss of the nearest base station and the one to
which the UE was attached in the previous round. If the path loss to the nearest base
station is lower than that to the base station to which the UE was associated plus
an additional hysteresis threshold ε, the UE roams to this base station. Else, the UE

http://kolntrace.project.citi-lab.fr/koln.tr.bz2
http://kolntrace.project.citi-lab.fr/koln.tr.bz2
http://kolntrace.project.citi-lab.fr/koln_bs-deployment-D1_fixed.log
http://kolntrace.project.citi-lab.fr/koln_bs-deployment-D1_fixed.log
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remains associated with the previous base station. In our simulations, we set ε to 2 dB,
as recommended in [57].

Figure 2. Resulting interconnection network topology.
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Figure 3. Histogram of the minimum distances (number of hops) between every pair of base stations in the resulting graph.
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5.2. Evaluation Metrics

We evaluated the proposed algorithms with two metrics, UE latency and execution time:

• UE latency is a measure of the latency perceived by each UE since it transmits the
sensed information until it is received at the server-side application. In this work, we
characterized it as the minimum number of hops from the base station to which the
UE is connected to a node where a UPF is deployed. As an aggregate measure of all
individual UE latencies, we considered the 90th-percentile of the latency;

• Execution time is the time the UPF allocation algorithm takes to determine in which
nodes the UPFs will be deployed. We calculated this as the elapsed time since the
UPF allocation module receives the input data until the output is generated by the
corresponding algorithm. That is, this time reflects only the decision time at each
time slot.

6. Results and Discussion

For the reproducibility of our results, the Python code used for the simulations is
available in a public repository [58] under an open-source license. The simulations were
executed using the PyPy Python implementation [59] on top of commodity hardware
(Intel Core i9-9900K CPU @ 3.60GHz Intel, Santa Clara, CA, USA).

In our simulations, we set the duration of the time slot to 5 s. Figure 4 shows the
90th-percentile of the latency perceived by the UEs when the percentage of BSs containing
a UPF increases. The results are provided with 95% confidence intervals. First, we can
observe that, by increasing the percentage of BSs that contain a UPF, the latency decreased
in general, as expected (there was an exception in the K-means clustering algorithms that
will be explained in detail later). The higher latencies correspond to the random algorithm,
rendering it useless. The other algorithms succeeded in reducing the number of hops
to the UPF by more than 30% compared to that random baseline. In detail, the lowest
latency values were attained by the greedy percentile and greedy average algorithms,
which provided very similar results. The K-means greedy average algorithm was the next
best one followed by the Louvain modularity greedy average, which performed slightly
worse for percentages of BSs with UPFs lower than 5%. Among the dynamic allocation
algorithms, the basic K-means algorithm introduced the highest latency. Finally, the latency
values achieved by the static K-means algorithm were very similar to those achieved by
the dynamic version of the K-means algorithm, except for slight fluctuations depicted at
certain percentages of BSs with UPFs. Both K-means and static K-means exhibited a strange
behavior for very low percentages, where the latency grew when increasing the number of
UPFs. This was due to the behavior of the algorithm, which selects the nodes for allocating
UPFs based on the centers of the clusters identified by the K-means clustering algorithm
without considering the actual distribution of UEs.



Sensors 2021, 21, 7744 10 of 18

 0

 5

 10

 15

 20

 25

 2  4  6  8  10  12

centralized

La
te

n
cy

 (
n
u
m

b
e
r 

o
f 

h
o
p

s 
to

 U
P
F)

BSs with UPF (%)

Static K-means
Random

Greedy Percentile
Greedy Average

K-means
K-means Greedy Average

Louvain Modularity Greedy Average

Figure 4. The 90th-percentile of the latency (number of hops) perceived by the UEs for a growing percentage of base stations
containing a UPF.

To understand the unexpected behavior in the results of the K-means algorithm, we
decided to take a closer look at its UPF allocations. Specifically, we studied the allocation
at a time slot of the simulation with a representative number of UEs.

Figures 5–7 show the distribution of the 4112 UEs in the 3000th time slot of the
simulation for allocating 1, 2, and 3 UPFs using the K-means algorithm, respectively.
The obtained results for the 90th-percentile latency were 17 hops, 20 hops, and 13 hops,
respectively. As we can observe, most of the UEs were located near the (15, 15) point, which
turned out to be the center of the cluster when considering just one UPF (see Figure 5),
and therefore, the latency perceived by the UEs was in line with the other greedy-based
algorithms. However, when two clusters were considered, none of the centers were placed
in the area with the highest density of UEs (see Figure 6), which resulted in a performance
degradation with respect to allocating just one UPF. Indeed, the resulting latency value
was similar to that obtained by the random algorithm for two UPFs. In the case of three
UPFs, we can observe that one of the clusters was located in the area with the highest
density, while the other two covered the areas with a lower density of UEs (see Figure 7),
further reducing the latency perceived to similar values obtained by the other greedy-
based algorithms.

Finally, note that a simplistic traditional deployment consisting of a single centralized
UPF in the core network serving all the base stations would introduce a higher latency
than any of the proposed algorithms using multiple edge UPFs.
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Figure 5. Distribution of 4112 UEs in the 3000th time slot of the simulation. The red cross marks the location where 1 UPF
is allocated using the K-means algorithm.

Figure 8 shows the average execution time for the different algorithms as the number
of base stations containing a UPF increases. As we can observe, the greedy percentile
algorithm is computationally expensive because it must evaluate the 90th-percentile latency
that would be perceived by the UEs for every possible UPF deployment at each iteration,
which results in a computational complexity of O(B4 ·U), where B is the number of base
stations and U the percentage of BSs with UPF. This complexity noticeably reduces in the
case of the greedy average algorithm, which only evaluates the average latency that would
be perceived with each of the potential UPF placements, for a computational complexity of
O(B3 ·U). Interestingly, the latency values achieved are strongly similar to those achieved
by the greedy percentile algorithm. Finally, the K-means algorithm is able to further reduce
this time by executing a lightweight clustering algorithm and then calculating the closest
base stations to the cluster centers. However, determining the UPF based on the location
of the centers is not the most efficient approach, because a naive implementation requires
checking all the base stations against each cluster center. In addition, the results obtained by
this algorithm were very sensitive to outliers, and besides, they can be improved by greedily
picking the node for deploying a UPF inside each cluster, as shown by the K-means greedy
average algorithm. Finally, the Louvain modularity greedy average algorithm improves
the efficiency by considering a lightweight hierarchical clustering algorithm, which, in
addition, exploits the graph structure of the nodes in the network with a clustering of the
nodes based on a graph modularity maximization. The performance gains in terms of
execution time were substantial compared with the K-means algorithms, for only a minor
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degradation in the latency value achieved in the case of low percentages of base stations
with UPFs.
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Figure 6. Distribution of 4112 UEs in the 3000th time slot of the simulation. The red crosses mark the location where 2 UPFs
are allocated using the K-means algorithm.

In a practical situation, the actual number of required UPFs can be determined from
the curves in Figure 4 according to the latency requirements of the application. For example,
considering the stringent latency requirements of 5 ms for vehicular communications [60]
and assuming an optimistic latency estimate of 1 ms per hop, our results showed that a
centralized deployment will not be able to satisfy the requirements (as this deployment
yielded a latency of about 20 ms). Baseline strategies such as random deployments and
static K-means would require deploying UPFs in 10% and 7% of the base stations, respec-
tively. Dynamic optimization strategies such as the Louvain modularity greedy average
that we propose achieve a 5% reduction of these values in a very short execution time.
Finally, pure greedy strategies can further reduce them by a 3%, yet at the cost of increased
computational complexity.
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Figure 7. Distribution of 4112 UEs in the 3000th time slot of the simulation. The red crosses mark the location where 3 UPFs
are allocated using the K-means algorithm.
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Figure 8. Average execution time for the different algorithms for a growing percentage of base stations containing a UPF.

7. Conclusions

The increasing amount and quality of the information provided by the sensors inte-
grated into vehicles can be used to provide advanced services for drivers, autonomous
vehicles, smart cities, etc. The complexity of the generated information requires a large
amount of computing power that may not be possible to install inside the vehicle, but
thanks to the quality of the communication channels, it is viable to perform the processing
of the information in remote servers, following the cloud or edge paradigms. Nevertheless,
highly demanding services such as collaborative enhanced situational awareness require
fusing and analyzing the collected information and redistributing the results to the par-
ticipating nodes. The latency between the vehicles and the UPFs should be minimized
to take vehicular data to edge computing resources and provide results on time for the
vehicle to understand the surrounding environment. In this work, we proposed a dynamic
lightweight optimization framework that achieves this goal by continuously optimizing
the deployment of UPF anchor points for each UE. The proposed framework is compatible
with our SDN-based mechanism described in [11], which guarantees session continuity
even during UPF reallocation.

We compared the performance of different UPF allocation algorithms in terms of end-
user latency achieved and execution time required. Our results revealed that centralized
and static deployments cannot satisfy the requirements of latency-sensitive applications.
However, our proposal based on the Louvain modularity greedy algorithm provides a
good trade-off between the two previous metrics, allowing the deployment of applications
such as enhanced situational awareness for low percentages of BSs with UPFs.
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