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Abstract 

Rationale: Primary central nervous system diffuse large B-cell lymphoma (PCNSL) is a rare and aggressive 
entity that resides in an immune-privileged site. The tumor microenvironment (TME) and the disruption of the 
immune surveillance influence lymphoma pathogenesis and immunotherapy resistance. Despite growing 
knowledge on heterogeneous therapeutic responses, no comprehensive description of the PCNSL TME is 
available. We hence investigated the immune subtypes of PCNSL and their association with molecular signaling 
and survival. 
Methods: Analysis of PCNSL transcriptomes (sequencing, n = 20; microarrays, n = 34). Integrated correlation 
analysis and signaling pathway topology enabled us to infer intercellular interactions. Immunohistopathology 
and digital imaging were used to validate bioinformatic results. 
Results: Transcriptomics revealed three immune subtypes: immune-rich, poor, and intermediate. The 
immune-rich subtype was associated to better survival and characterized by hyper-activation of STAT3 
signaling and inflammatory signaling, e.g., IFNγ and TNF-α, resembling the hot subtype described in primary 
testicular lymphoma and solid cancer. WNT/β-catenin, HIPPO, and NOTCH signaling were hyper-activated in 
the immune-poor subtype. HLA down-modulation was clearly associated with a low or intermediate immune 
infiltration and the absence of T-cell activation. Moreover, HLA class I down-regulation was also correlated 
with worse survival with implications on immune-intermediate PCNSL that frequently feature reduced HLA 
expression. A ligand-receptor intercellular network revealed high expression of two immune checkpoints, i.e., 
CTLA-4/CD86 and TIM-3/LAGLS9. TIM-3 and galectin-9 proteins were clearly upregulated in PCNSL. 
Conclusion: Altogether, our study reveals that patient stratification according to immune subtypes, HLA 
status, and immune checkpoint molecule quantification should be considered prior to immune checkpoint 
inhibitor therapy. Moreover, TIM-3 protein should be considered an axis for future therapeutic development. 
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Introduction 
Primary central nervous system diffuse large 

B-cell lymphoma (PCNSL) is a rare and aggressive 
extra-nodal non-Hodgkin’s lymphoma (NHL) 
confined to the brain, spinal cord, leptomeninges, or 

eyes. Newly diagnosed PCNSLs account for 4% of 
brain tumors and for 4-6% of extra-nodal lymphomas 
in immunocompetent patients. Incidence is still 
increasing in elderly people [1]. The emergence of 
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high-dose methotrexate (HD-MTX) and rituximab- 
based regimens in PCNSL therapy has drastically 
improved patient survival. However, only 50% of 
patients respond and 10˗15% demonstrate a primary 
refractory disease [2], highlighting an unmet need for 
alternative therapeutic options. 

The contribution of the tumor microenvironment 
(TME) to tumor aggressiveness, progression, and 
therapy resistance has been recognized in most 
tumors. By targeting the immune component, 
immunotherapies have revolutionized the treatment 
of cancers. In particular, antibodies directed against 
immune checkpoints (ICs) or ligands thereof, e.g., 
PD-1/PD-L1 or CTLA-4, chimeric antigen receptor 
T-cells (CAR-T), and T-cell engager antibodies have 
demonstrated clinical benefit in B-cell malignancies 
[3-5]. Most notably, anti-PD-1 antibodies have been 
approved for therapy of relapsed/refractory classical 
Hodgkin’s lymphoma (HL) harboring increased 
PD-1+ tumor-infiltrating lymphocytes (TILs), high 
PD-L1 expression, and 9p21.1 (PD-L1 gene locus) 
copy number alteration [6]. In this context, the 
exclusive brain localization of PCNSL has aroused 
interest for thorough TME studies. 

Significant efforts have been devoted to the 
identification of common genetic alterations and 
activating oncogenic signaling in PCNSL [7–14]. 
These alterations mainly involve nuclear factor-kappa 
B (NF-κB), B cell receptor (BCR), Toll-like receptors 
(TLR), Mitogen-activated protein kinase (MAPK) 
signaling, the DNA damage response, apoptosis, and 
cell cycle control. Moreover, genomic studies have 
suggested TME dysfunctions, such as immune 
evasion mechanisms, e.g., HLA (6p21) or B2M 
(15q21.2) copy loss, PD-L1 (9p24.1) copy number gain, 
and immune communication impairments, e.g., 
IL17REL (22q13.33) copy gain or IFNGR1 (6p23.3-q24) 
copy loss. High, intermediate, and low tumor 
mutational burden (TMB) were respectively identified 
in 19%, 71.5%, and 9.5% of patients with PCNSL in a 
42-patient cohort [12], thus suggesting that IC 
inhibitor (ICI) therapy could be efficient against 
PCNSL [15]. However, the correlation between high 
PD-L1 protein expression and TME was negligible in 
this study. 

Multiple studies have started to unravel the 
main cues of the PCNSL TME, although a 
comprehensive description is still lacking. The 
presence of PD-1+ TILs and the expression of PD-L1 
in either microglial cells/macrophages (tumor- 
associated macrophages (TAMs)) or malignant B cells 
were found correlated with patient outcome 
[12,13,16]. Some potential biomarkers for ICI therapy 
have been identified in PCNSL, including 
intermediate to high TMB, 9p21.1 copy number 

alteration, or PD-L1 expression [12,13,16]. 
Nevertheless, PCNSL has so far been mainly studied 
as an undifferentiated entity [17] despite a manifest 
heterogeneity in therapeutic responses. The existence 
of distinct molecular subtypes has not been 
addressed. 

We thus decided that a comprehensive study, 
linking a complete TME description with oncogenic 
and immune signaling pathways, could help our 
understanding of therapy resistance and potentially 
uncover new therapeutic opportunities. Accordingly, 
we functionally characterized the immune subtypes 
of 54 PCNSL patient samples by combining 
transcriptomic data analysis with histopathology and 
digital imaging. We showed there are three immune 
subtypes of PCNSL: immune-rich, poor and 
intermediate. We also examined the immune evasion 
mechanisms and the main molecular pathways 
associated with these different immune subtypes, 
highlighting new potential therapeutic opportunities, 
including anti-TIM-3, and the overall clinical 
relevance of PCNSL immune subtype classification. 

Methods 
Patients and cohorts 

Surgically resected tumors from 
immunocompetent patients with PCNSL were 
retrospectively retrieved from the Department of 
Pathology, Montpellier University Hospital (France). 
Snap-frozen tissues were obtained during surgery 
from 20 patients. The newly diagnosed patients with 
PCNSL provided written informed consent for tissue 
collection and subsequent research purposes. Patients 
with prior or concurrent low grade B-cell lymphoma 
and central nervous system (CNS) metastasis of 
diffuse large B-cell lymphoma (DLBCL) were 
excluded. This project was approved by the research 
ethics boards of our institution (Centre des Ressources 
Biologiques, CRB, Montpellier) according to the 
Declaration of Helsinki (AC-2010-1200 and 
AC-2013-2033). Most of our patients (18/20) received 
Rituximab and Methotrexate based therapy. The other 
two patients received corticotherapy and progressed 
rapidly. 

Transcriptomic data 
RNA was extracted from the 20 fresh tissue 

samples and quality-controlled. DNA libraries were 
prepared with the NEBNext Ultra II RNA-Seq kit and 
sequenced on a NextSeq 500 (Illumina) system using 
75bp single reads. With our pipeline, Fastq files were 
aligned against the human genome (Ensembl 
GRCh38) (STAR using default parameters and 2-pass 
mode, read count extraction with HTSeq-count). Data 
are accessible from GEO (GSE155398). 



Theranostics 2021, Vol. 11, Issue 8 
 

 
http://www.thno.org 

3567 

To increase the size of our PCNSL cohort, we 
retrieved 34 additional PCNSL processed microarrays 
from Gene Expression Omnibus (GEO) (GSE34771). 
The authors of this dataset employed MAS 5.0 
(Affymetrix Inc.) for background adjustment and 
log-transformation, and they performed quantile 
normalization [18]. The subsequent analysis and 
clustering of normalized RNA-sequencing and 
microarray data was performed using the same 
algorithms although separately to avoid impossible to 
correct batch effects between different technologies. 

As PCNSL tumor cells are of the same origin 
than DLBCL tumor cells, 48 DLBCL transcriptomes 
(mRNA-sequencing) were also retrieved from The 
Cancer Genome Atlas (TCGA) and used as a point of 
comparison for PCNSL TME composition. 

Differential gene expression analyses 
Differential gene expression was analyzed with 

edgeR [19], imposing p-value < 0.01, FDR < 0.01, 
minimum fold-change of 2, and a minimum average 
of 20 (normalized) read counts for all the samples. 
Heatmaps were generated with ComplexHeatmap 
[20]. Dendrograms for the clustering of samples 
(columns) and genes (rows) were constructed with 
Ward’s method based on Euclidean distance. For 
color assignment, a cutoff was applied to the 2.5% 
highest and lowest values. 

Pathway enrichment analysis 
In order to perform whole-transcriptomic and 

HLA status-related analysis, we implemented 
hypergeometric testing on differentially expressed 
genes to search for enriched GO terms and Reactome 
pathways respectively. This was followed by 
Benjamini-Hochberg multiple hypothesis correction 
with an imposed FDR < 0.05, and a minimum of 5 
query genes in a Reactome pathway or 3 query genes 
in a GO term. 

Gene signatures of described signaling pathways 
linked to either immune response, e.g. gamma 
interferon (IFNγ) and Tumor Necrosis Factor (TNFα), 
or oncogenesis, e.g. Protein P53 (P53) and MAPK, 
were retrieved from the hallmark gene sets in the 
Molecular Signatures Database (MSigDB v7.1) [21]. 
Gene Set Enrichment Analysis (GSEA) was performed 
with the Fast GSEA Bioconductor library [21,22]. Gene 
signatures listed in this study were only considered as 
significantly enriched (adjusted p-value < 0.05) when 
scored together with all the hallmark signatures. 

Ligand-receptor interactions and pathways 
We recently defined a ligand-receptor (L-R) 

database [23] and a method to infer L-R interactions 
from bulk RNA expression [24]. This database 
contains L-R pairs, which have been validated in vitro 

and/or in vivo. The methodology originally 
developed for mRNA-sequencing data was adapted 
to microarray data by using the maximum Spearman 
correlation between the different probes of a given 
ligand and a given receptor. L-R interactions were 
predicted separately in the two different datasets 
(sequencing and microarray). In total, 673 and 393 L-R 
pairs were determined from microarray and 
RNA-sequencing data respectively. Intersection 
identified 165 unique high-confident L-R pairs. Brain 
tissue interactions were discarded, considered as 
non-specific interactions, and in all 128 L-R pairs were 
conserved for further analysis. Subsequently, for these 
a score named L-R score was computed as previously 
described [24]. 

Histological and immunohistochemical 
analysis 

All cases were reviewed by expert pathologists 
(VLS, VR, and VCM). The diagnosis of PCNSL was 
made on Hemataoxylin-Eosin (HE) tissue staining 
and was based on the WHO 2016 classification of 
hematopoietic and lymphoid tissue [17]. For 
immunohistochemical examination, 3μm-thick tissue 
sections from formalin-fixed paraffin-embedded 
(FFPE) blocks were subjected to antigen retrieval and 
immunostained on a Ventana Benchmark XT 
autostainer (Ventana Tucson, AZ, USA). The 
antibodies were used after appropriate antigen 
retrieval according to the manufacturer’s instructions 
(Table S1). Association with Epstein-Barr virus (EBV) 
was examined by in situ hybridization (ISH) using 
Epstein-Barr encoding region (EBER). MUM1, MYC, 
and P53 protein expression were considered as 
positive if nuclear staining was observed in at least 
30%, 40%, and 10% of neoplastic cells respectively. 
Besides PCNSL samples, we could access one 
postmortem normal brain sample for comparison. This 
sample was collected for autopsy purposes and 
processed identically by pathologists. 

Digital imaging 
DAB-positive stained cells (galectin-9 and TIM-3 

staining) were automatically counted using the 
open-source software QuPath [25]. Given both TIM-3 
and galectin-9 stained tumor cells, macrophages, and 
endothelial cells – cell types with identifiable cell 
morphologies – their quantification was evaluated by 
counting DAB-positive pixels to improve accuracy. 
Intensity thresholds for pixel detection and 
classification were manually set for each staining type 
and performed identically for the all samples. For 
further analyses, pixel densities were estimated as the 
percentage of positive pixels per mm² of surface area 
[25]. All steps were performed under the supervision 
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of an expert pathologist (VLS). Necrosis, tissue folds, 
and entrapped normal structures were carefully 
removed. 

Interphase fluorescence in situ hybridization 
Interphase fluorescence in situ hybridization 

(FISH) was performed on 3-µm thick tissue sections 
using split signal FISH DNA probes for BCL2/18q21 
(probe Y5407; DAKO A/S), BCL6/3q27 (probe Y5408; 
DAKO A/S), MYC/8q24 (probe Y5410; DAKO A/S), 
and PDL1/9p24.1 (PDL1, CD274 Break Apart Probe; 
Empire Genomics). Digital images were captured 
with a Metafer Slide Scanning Platform using a Leica 
Axioplan fluorescence microscope (Zeiss Axio Imager 
M1) equipped with a charge-coupled device (CCD) 
camera coupled to and driven by ISIS software 
(MetaSystem, FISH Imaging System, Germany). A 
total of 100 nuclei were evaluated independently by 
three specialists (VLS, MA, and VC). Cases were 
considered positive when more than 15% of the cells 
exhibited abnormalities in the tissue sections. 

Statistical and survival analysis 
Statistical analysis was performed using the R 

library survminer package. Estimation of overall 
survival (OS) and relapse-free survival (RFS) were 
generated using Kaplan-Meier method. Time-to-event 
distributions were compared by means of a log-rank 
test. Cox regression model and multivariate analysis 
could not be performed due to the small size of the 
cohort. The dependence between clinical variables 
and the immune subtypes was assessed by the χ² test. 

Results 
Bulk transcriptomic analysis highlights 
immune cell signatures in PCNSL 

We conducted bulk transcriptomic analysis of 
our PCNSL cohort (n = 20) by mRNA-sequencing. 
Unsupervised clustering of the complete 
transcriptomes revealed a group of genes almost 
exclusively involved in immune activation (Figure S1, 
Table S2). The expression of these genes separated 
tumors into three distinct groups with high, 
intermediate, and low immune gene expression levels 
(Figure 1A). This initial observation indicated the 
need to examine the immune infiltrate of each tumor. 
In order to investigate this, we increased the size of 
our cohort by retrieving 34 additional PCNSL 
microarrays from GEO [18]. In addition, we obtained 
48 DLBCL transcriptomes (mRNA-sequencing) from 
The Cancer Genome Atlas (TCGA). DLBCL provided 
a comparison of PCNSL with its nodal counterpart. 

We investigated 13 previously reported immune 
cell signatures [26] to characterize both the PCNSL 
and DLBCL immune infiltrates. To cover the stromal 

part of the TME we included signatures for 
cancer-associated fibroblasts (CAFs) and endothelial 
cells (ECs) [27]. Signature scores were computed as 
gene z-score averages. Samples clustering were 
performed using T cells because of their well-known 
effector role in tumor rejection. 

Based on the number of T cells, both 
mRNA-sequencing and microarray data clustered 
into three distinct groups (Figure 1B-C). Considering 
both data types, cluster 1 (10 patients with PCNSL 
and one patient with DLBCL) was devoid of activated 
CD4+ and CD8+ T cells, but contained heterogeneous 
amounts of Th17 cells and macrophages. Cluster 2 (20 
patients with PCNSL and 25 patients with DLBCL) 
was enriched in a higher number of lymphoid cells, 
e.g., activated CD4+ and CD8+ T cells, regulatory T 
cells (Tregs), and myeloid cells such as TAMs, 
myeloid-derived suppressive cells (MDSCs), or 
activated dendritic cells (DCs). The last cluster, cluster 
3 (24 patients with PCNSL and 22 patients with 
DLBCL), assumed no specific pattern with a variable 
immune cell presence and at a much lower level than 
cluster 2. 

Activated CD8+ T cell, macrophage, and Treg 
scores were higher in cluster 2 than in clusters 1 and 3 
merged (Figure 1D). Moreover, the PCNSL 
classification obtained by TME cell gene signatures 
(Figure 1B-C) was consistent with the groups defined 
in Figure 1A. Hence, cluster 1 was termed immune 
poor, cluster 2 immune rich, and cluster 3 immune 
intermediate. These terms defined three immune 
subtypes of PCNSL. Fifty-two percent (25/48) of 
DLBCL tumors harbored an immune-rich phenotype 
versus only 37% (20/54) of PCNSL tumors. In 
contrast, 19% (10/54) of PCNSL tumors were devoid 
of CD4+ and CD8+ T cells (immune poor), whereas 
only one DLBCL sample (2%, 1/48) fell in this group. 
High proportions of both PCNSL (44%, 24/54) and 
DLBCL (46%, 22/48) tumors adopted an 
intermediate-immune phenotype. Compared to 
normal brain tissues, immune-poor PCNSL immune 
infiltrate harbored comparable amounts of cells with 
slight compositional variations. Immune-rich and 
intermediate PCNSLs included much more activated 
T cells as expected (Figure S2). 

PCNSL tumors lacking an immune-rich infiltrate 
relapsed significantly earlier (Figure 1E). We found a 
similar trend with overall survival (OS); PCNSL 
patient tumors lacking an immune-rich infiltrate had 
a generally decreased OS (Figure 1E). We did not find 
any association between the immune pattern and the 
clinical, cytogenetic, or immunohistological variables, 
with exception of patient outcome (Table 1). Note that 
we compared the immune-rich subtype to the other 
two subtypes according to OS and relapse-free 
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survival (RFS) for our cohort only since the available 
clinical data for the PCNSL microarray cohort [18] 
were too limited (Table 2). 

HLA down-regulation correlates with the 
immune microenvironment in PCNSL 

Presentation of neoantigens via HLA molecules 
on the surface of malignant B-cells should induce an 
antitumor immune response. However, B lymphoma 

cells can evade this response through various 
mechanisms, including loss or aberrant expression of 
HLA molecules [28]. Loss of either HLA class I or II 
expression has been demonstrated in PCNSL [28–31]. 
Nevertheless, these results remained incomplete 
regarding the link between the immune infiltrate and 
loss of HLA expression in PCNSL [28,30,32]. We thus 
investigated the global gene expression patterns 
related to HLA class I and II expression loss and 

 

 
Figure 1. PCNSL with an immune-rich TME defines a patient subgroup with a better outcome. A. Three PCNSL clusters exist based on immune gene expression, 
denoted high, intermediate, and low. B. TME cell gene signatures across PCSNL (n = 20) and DLBCL (n = 48) tumor sample transcriptomes reveal three groups of tumors: the 
immune-rich, immune-poor and immune-intermediate subtypes (clusters 2, 1, 3 respectively). PCNSL were classified in agreement with the gene clusters of panel A. C. Applying 
identical TME cell gene signatures to PCNSL microarray data (n = 34) reveals four clusters. Merging the two small rightmost clusters yielded three groups of tumors (denoted 
1-3) with immunological subtypes comparable to those of panel B. D. Quantification of activated CD8+ T cells, regulatory T cells, macrophages, and CAFs in the immune-rich 
tumors versus the other subtype tumors (Wilcoxon two-sided tests, n = 20 = 8+12). E. The immune-rich subtype features a more favorable outcome (Kaplan-Meier curve, 
log-rank test, n = 20 = 8+12). Activ CD4: activated CD4+ T cells, Activ CD8: activated CD8+ T cells, Tregs: regulatory T cells, Tfh: T follicular helper cells, Th1: type 1 helper 
cells, Th2: type 2 helper cells, Th17: type 17 helper cells, Activ DC: activated dendritic cells, CD56 bright: CD56 bright NK cells, CD56 dim: CD56 dim NK cells, MDSC: 
Myeloid-derived dendritic cells, Mono: monocytes, TAM: tumor-associated macrophage, EC: endothelial cells, CAF: cancer-associated fibroblast. 
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potential associations with the immune subtypes 
identified in this study. Sixteen HLA genes were 
retrieved from the literature [33], out of which 15 were 
found in both PCNSL cohorts in this study, i.e., in 
mRNA-sequencing and microarrays. For each gene, 
we defined low and high expression according to its 
median, which was performed in mRNA-sequencing 
and microarray data independently. Results from 
both cohorts were pooled and hierarchical clustering 
of the total 54 samples identified four well-defined 
clusters (Figure 2A). Seventy-eight percent (42/54) of 
PCNSL tumor samples featured low HLA class I or II 
molecule gene expression (clusters 2, 3 and 4, Figure 
2A-B), and 31% (17/54) exhibited low expressions of 
both (cluster 4). Twenty-two percent (12/54) featured 
only low HLA class I molecule gene expression 
(cluster 2), and lastly, 22% (12/54) had only low HLA 
class II molecule gene expression (cluster 3, Figure 
2A-B). Out of the 22% (13/54) of tumors featuring 
HLA expression above median expression (cluster 1), 
77% (10/13) were highly infiltrated by immune cells 
(immune-rich subtype), whereas none of the PNCSL 
tumor samples with an immune-rich TME harbored 
HLA down-regulation (Fisher exact one-sided test, 
p-value = 0.001). The HLA class I and II 
down-regulated cluster (cluster 4) was composed of 
41% (7/17) immune-poor and 59% (10/17) 
immune-intermediate PCNSL tumors (Figure 2B). 
Sequencing data were submitted to differential gene 
expression analysis between clusters 4 (HLA class I 
and II below median, n = 8) and 1 (HLA class I and II 
above median, n = 6) and revealed pathways related 
to immune activation (Figure 2C-D, Table S3). 
Moreover, patients with complete reduction of HLA 
expression relapsed earlier than patients who 
maintained HLA expression (Figure 2E), confirming a 
link between HLA expression maintenance and 
immune-rich TME in PCNSL. A trend between a 
complete reduction of HLA gene expression and 
overall survival was also observed (Figure S3A). 

We next investigated the expression of the 
different classes of HLA separately. HLA class I gene 
down-regulation was more frequent in the 
immune-poor than the immune-rich PCNSL tumor 
samples (Fisher exact two-sided test, p-value = 
9×10-4). Differential gene expression analysis on 
sequencing data between tumors with a low (cluster 2 
and 4, n = 11) versus higher than median (cluster 3, n 
= 6) HLA class I gene expression revealed pathways 
exclusively related to immune activation, e.g., 
costimulatory molecules, cytokines, T cell activation, 
and cytotoxicity (Figure 2F-G, Table S4). Moreover, 
survival analysis showed that HLA class I gene 
expression diminution was associated with earlier 
relapse in patients with PCNSL (Figure 2H) and 

tended to be associated with OS despite limited 
significance due to the small cohort size (Figure S3B). 

 

Table 1. Comparison of clinical data in the three immune groups 
of PCNSL (RNA-seq data) 

 Patients Immune 
poor (n=4) 

Intermediate 
(n=8) 

Immune 
rich (n=8) 

χ² test 
(p-value) 

Patients      
Mean age, years (range) 64 

(43˗81) 
74 (62˗81) 63 (43˗80) 60 (43˗70) 0.06# 

Male, n (%) 10 (50) 2 (50) 4 (50) 4 (50) 1 
Female, n (%) 10 (50) 2 (50) 4 (50) 4 (50) 
MSKCC prognostic class     
Class 1, n (%) 4 (20) 0 3 (37) 1 (13) 0.08 
Class 2, n (%) 7 (35) 2 (50) 0 5 (63) 
Class 3, n (%) 9 (40) 2 (50) 5 (63) 2 (25) 
Outcome  
CR at last follow up, n 
(%) 

9 (45) 2 (50) 1 (12.5) 6 (75) 0.02* 

AWD at last follow up, 
n (%) 

2 (10) 0 (0) 1 (13.5) 1 (12.5) 

DOD, n (%) 9 (45) 2 (50) 6 (75) 1 (13.5) 
Relapse or progression, 
n (%) 

12 (60) 2 (50) 7 (88) 3 (38) 0.11 

Tumor cell phenotype     
Non-GC phenotype- 
positive, n (%) 

15 (75) 4 (100) 5 (63) 6 (75) 0.56 

GC phenotype- 
positive, n (%) 

4 (20) 0 (0) 2 (25) 2 (25) 

unclassified 1 (5) 0 (0) 1 (12) 0 (0) 
cMYC-positive, n (%) 9 (45) 2 (50) 3 (38) 4 (50) 0.86 
BCL2-positive, n (%) 15 (75) 2 (50) 7 (88) 6 (75) 0.38 
cMYC/BCL2- 
positive, n (%) 

8 (40) 2 (50) 3 (38) 3 (38) 0.9 

BCL6-positive, n (%) 17 (85) 4 (100) 5 (63) 8 (100) 0.07 
CD10-positive, n (%) 4 (20) 0 (0) 2 (25) 2 (25) 0.53 
EBER-positive, n (%) 0 (0) 0 (0) 0 (0) 0 (0) 1 
P53-positive, n (%) 5 (25) 2 (50) 0 (0) 3 (38) 0.09 
PDL1-positive, n (%) 2 (10) 0 (0) 0 (0) 2 (25) 0.28 
Cytogenetic  
BCL2-break positive, n 
(%) 

0 (0) 0 (0) 0 (0) 0 (0) 1 

BCL6-break positive, n 
(%) 

5 (25) 0 (0) 2 (25) 3 (38) 0.36 

cMYC-break positive, n 
(%) 

0 (0) 0 (0) 0 (0) 0 (0) 1 

PDL-break positive, n 
(%) 

1 (0.05) 0 (0) 0 (0) 1 (13) NA 

MSKCC: Memorial Sloan-Kettering Cancer Center; CR: complete remission; AWD: 
alive with disease; DOD: dead of disease; # Comparison of age of patients with 
immune-poor tumors to age of patients with immune-rich tumors (Wilcoxon 
two-sided test). 

 
 

Table 2. Comparison of the available clinical data in the three 
immune groups of PCNSL (Microarray data) 

 Patients Immune 
poor (n=6) 

Intermediate 
(n=16) 

Immune 
rich (n=12) 

 

Patients      
Mean age, years (range) 64 (44-76) 64 (47˗74) 63.4 (50˗72) 65 (44˗76) 0.56# 
Male, n (%) 19 (56) 4 (66) 8 (50) 7 (58) 0.76 
Female, n (%) 15 (44) 2 (33) 8 (50) 5 (52) 
MSKCC prognostic class     
Class 1, n (%) 3 (9) 1 (20) 1 (6) 1 (8) 0.78 
Class 2, n (%) 13 (38) 3 (60) 5 (31) 5 (41) 
Class 3, n (%) 9 (53) 2 (40) 10 (62) 6 (50) 

MSKCC: Memorial Sloan-Kettering Cancer Center; # Comparison of age of patients 
with immune-poor tumors to age of patients with immune-rich tumors (Wilcoxon 
two-sided test). 
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Figure 2. HLA expression is related to an immune-rich TME in PCNSL. A. HLA class I and II gene expression in PCNSL. High/low HLA gene expression defined the 
HLA status: HLA normal, HLA I, II, and I & II down (see heatmap legend). Expression was assessed independently in each cohort; cohort 1 is mRNA-sequencing and cohort 2 is 
microarray data. B. Samples from the distinct immune subtypes were counted in each HLA gene expression cluster of panel A. C. Differentially expressed genes according to 
distinct HLA status (HLA normal in pink versus HLA I, II, and I & II down in green): 103 significantly deregulated genes were selected that perfectly segregated the samples 
according to their HLA status (FDR < 0.01, log2-FC > 4 (absolute value), average read counts > 20). D. Main Gene Ontology Biological Process (GOBP) terms found significantly 
enriched in genes in panel C (hypergeometric test, FDR < 0.05, at least 3 deregulated genes in each GO term). E. HLA-down status (I, II, I & II) associates with earlier relapse in 
PCNSL (Kaplan-Meier curves, log-rank test, n = 14, normal = above median, down = below median). F. Differentially expressed genes between PCNSL with normal HLA class 
I gene expression (orange) and HLA I down (dark blue): 62 significantly deregulated genes were selected which perfectly segregated the two groups (FDR < 0.01, log2-FC > 4 
(absolute value), average read counts > 20). G. Main GOBP terms found significantly enriched in genes in (f) (hypergeometric test, FDR < 0.05, at least 3 deregulated genes in each 
GO term). H. HLA I-down status associates with earlier relapse in PCNSL (Kaplan-Meier curves, log-rank test, n = 17, normal = above median, down = below median). 

 
Dependence between HLA class II down- 

regulation and the immune subtypes was significant 
(Fisher exact two-sided test, p-value = 0.05). Small 
homozygous deletions are known to affect the HLA- 
DR gene in PCNSL [31] and HLA-DRA expression was 
reported as a prognostic factor in DLBCL [34]. We 
hence compared HLA-DRA expression between the 
three immune subtypes and found it more highly 

expressed in the immune-rich group than in the 
immune-poor PCNSL (Fisher exact one-sided test, 
p-value = 4.4.10-4) or the immune-intermediate (Fisher 
exact one-sided test, p-value = 0.01) tumors. In 
particular, HLA-DRA expression was correlated with 
activated CD8+ T cells (spearman correlation r = 0.71, 
p-value = 4.10-4) and Th1 cells (spearman correlation r 
= 0.53, p-value = 0.0027). Differentially expressed 
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genes between HLA-DRA normal versus loss of gene 
expression samples identified genes related to the 
innate immune response, cytokines, antigen 
presentation, and extracellular matrix (ECM) 
organization (Figure S4A-B, Table S5). Contrary to 
patients with DLBCL, patients with PCNSL showed 
no association between HLA-DRA gene expression 
and outcome (Figure S4C-D). 

Immune subtypes of PCNSL and related 
signaling pathways 

Next, we explored the potential relations 
between the PCNSL immune subtypes identified in 
our present study and the deregulated signaling 
pathways discussed in the literature on PCNSL 
[7-9,11-14,35,36]. The NF-κB, Signal transducer and 
activator of transcription 3 (STAT3), IFNγ, 

Phosphoinositide 3-kinase/Protein kinase B 
(PI3K/AKT), Kirsten ras sarcoma viral oncogene 
(KRAS), Vascular endothelial growth factor (VEGF), 
P53, MAPK, Salvador-Warts-Hippo (HIPPO), 
Interleukin-10 (IL-10), TNF-α, WNT/β-catenin, 
Transforming growth factor beta (TFG-β), and 
NOTCH pathways were investigated. We retrieved 
their gene signatures from the Molecular Signatures 
DataBase (MSigDB) [21]. Average z-scores of 
signature genes were computed as previously 
described [37]. Our investigation aimed at assessing 
whether the cell type composition may influence the 
activation of certain signaling pathways. 

We observed distinct activations of the signaling 
pathways depending on the immune subtypes of 
PCNSL (Figure 3A). The immune-rich tumors 
logically featured strong activation of signaling 

 

 
Figure 3. The immune landscapes of PCNSL unravel distinct oncogenic signaling. A. Signature scores (average z-scores of signature genes) of different oncogenic 
signaling pathways according to the immune subtypes defined in Figure 1bc. B. Gene Set Enrichment Analysis performed between the immune-rich and other subtypes 
(intermediate & poor). We report the normalized enrichment score (NES) and indicate statistical significance (FDR < 0.05) by a pink dot (otherwise blue). C. Quantification of 
NOTCH, WNT, and HIPPO signature scores in the different immune subtypes (Wilcoxon one-sided tests, p-value < 0.05, n = 4+8+8 = 20, one immune-poor subtype outlier 
was removed (significant according to Grubbs and Dixon tests). D. Correlation between the main cell-type scores (EC, CAF, Act CD8, Tregs, Act DC, TAM, MDSC) and 
oncogenic signaling z-scores. Highly significant correlations are indicated only (spearman rank correlation coefficient, r > 0.6, p-value < 0.01). E. Correlation between STAT3 
and IFNγ signature scores and CD274 gene expression in the PCNSL cohort (spearman rank correlation coefficient, r > 0.6, p-value < 0.0001). Note that correlation is 
observed with both mRNA-sequencing (RNA-seq) and microarray (MA) data. F. High INFγ and STAT3 signaling z-scores were associated with lower relapse-free survival (RFS) 
in PCNSL (Kaplan-Meier curves, log-rank test, n = 20, high = above median, low = below median). 
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pathways known to be involved in the immune 
response, e.g., STAT3, IFNγ, IL-10, TNF-α, and NF-κB, 
as well as in stromal signaling, i.e., TGF-β. Activation 
of KRAS and P53 signaling appeared also favored in 
immune-rich PCNSL samples, although in a less 
pronounced manner and not exclusively. In contrast, 
WNT/β-catenin, NOTCH, and HIPPO pathways 
were more activated in the immune-poor PCNSL 
samples. GSEA was performed to confirm the 
differences observed between the immune-rich and 
the other PCNSL subtypes (Figure 3B). Signature 
scores for NOTCH, WNT/β-catenin, and HIPPO for 
each immune subtype are featured in Figure 3C. 

We then assessed correlations between the main 
cell types we used to profile PCNSL TME (Figure 
1B-C), i.e., activated CD8+ T cells, activated CD4+ T 
cells, Tregs, macrophages, DC, EC, and CAF, and the 
different signaling pathways (Figure 3D). The TGF-β 
z-score was correlated with CAF abundance as 
expected, while the four immune cell types (activated 
CD8+ T cells, Tregs, TAMs, and DCs) were highly 
correlated with IFNγ, TNF-α, IL-10, and STAT3 
z-scores. Angiogenesis, as well as WNT/β-catenin, 
NOTCH, and HIPPO pathways correlated with the 
EC signature score. 

STAT3 and IFNγ signaling pathways are 
generally considered coupled to PD-L1 up-regulation 
in solid tumors and DLBCL [38]. Although a 
consensual good prognostic value for IFNγ activity 
has been acknowledged, hyper-activation of STAT3 
signaling has been associated with varying survival 
outcomes [38–40]. Given a link between 
PD-L1-expressing TAMs and STAT3 signaling has 
been reported in PCNSL [41], we exploited a PCNSL 
retrospective cohort of 57 patients [16] that we 
previously described in the assessment of an 
association between PD-L1-expressing TAMs and 
survival. We defined two histological scores for this 
purpose: TAM density, evaluated by CD68-positive 
staining, and the percentage of PD-L1-positive TAMs. 
High PD-L1 protein expression in TAMs was defined 
as the simultaneous detection of high TAM density 
(grades 2-3) and high PD-L1 expression in these 
TAMs (>50% of CD68-positive staining). High 
PD-L1-expressing TAMs were found to be strongly 
associated with better survival and a lower risk of 
relapse in patients with PCNSL (Figure S5A). At the 
gene expression level, the PD-L1 transcript (CD274) 
was highly correlated with STAT3 and IFNγ signature 
scores in RNA-sequencing and microarray data 
(Figure 3E). Segregating patients according to STAT3 
and IFNγ median expressions resulted in an 
association of high STAT3 and IFNγ expressions with 
lower relapse risk (Figure 3F). We also observed a 
trend with OS but not a significant association (Figure 

S5B-C). 

Mapping PCNSL intercellular interactions 
Intercellular interactions, particularly ICs, within 

the TME are known to contribute to tumor 
progression and therapy resistance. In this context, 
specific ligand-receptor (L-R) interactions, e.g., 
PD-1/PD-L1, have been extensively studied in solid 
tumors and PCNSL [12,16,41,42]. We recently 
proposed an algorithm to infer L-R interactions from 
bulk transcriptomics [24]. Here, this algorithm was 
applied to mRNA-sequencing and microarray data 
separately (Figure 4A, Tables S6-7) to identify 
candidate L-R pairs that arise in the PCNSL TME. This 
resulted in the identification of 165 confident L-R 
pairs, from which brain cell-related interactions were 
discarded as potential background noise, yielding a 
total of 128 PCNSL-specific confident L-R pairs (Table 
S8). Since our algorithm associates each L-R pair to 
signaling pathways in order to test receptor 
downstream activity, we summarized recurrent 
pathways in Figure 4B. These pathways largely reflect 
the oncogenic signaling pathways already 
investigated above in Figure 3. We then searched for 
immune infiltration-related L-R pairs by computing a 
score (the L-R score), indicative of the L-R pair 
co-expression level in a given sample [24], and 
correlated that score with immune infiltration (sum of 
all the immune cell signatures) as reported in Figure 
1. We found 46 correlated L-R pairs (Spearman 
correlation, r>0.5, adjusted p-value < 0.05, Figure 4C). 
Among these, we denoted several ICs, e.g. CD86/ 
CTLA4, LGALS9/HAVCR2, LILRB2 and its ligands, 
as well as inflammatory pairs, e.g., B2M/CD247, and 
CCR5 and its ligands. Other pairs, e.g., ANGPT1/ 
TEK, DLL1/NOTCH1, THBS1/ITGB1, were linked to 
angiogenesis according to the pathways used by our 
algorithm. Some L-R pairs, e.g., SELPLG/ITGB2, 
PDGFB/LRP1, C3/C3AR1, and LGALS9/HAVCR2, 
were expressed in PCNSL devoid of lymphoid cells 
(Figure 4C). 

Among the 128 PCNSL-specific confident L-R 
pairs, we found 26 pairs significantly associated with 
RFS. These included eight pairs significantly 
associated with both OS and RFS (Figure 4A and 
Table S8). LGALS9/HAVCR2 L-R scores were higher 
in the immune-rich PCNSL samples (Figure 4D) and 
were significantly associated with RFS (Figure 4E). 
T-cell immunoglobulin mucin receptor 3 (TIM-3, 
HAVCR2 gene) is an IC receptor that mainly plays a 
role in T-cell exhaustion. It suppresses T cell 
responses upon its binding to galectin-9 (LGALS9 
gene). However, TIM-3 has demonstrated several 
behaviors depending on context [43], and hence its 
role in the brain TME of PCNSL demands 
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investigation. Protein expression of TIM-3 and its 
ligand, galectin-9, was quantified by digital imaging 
in 32 PCNSL patient tumor samples from a 
retrospective cohort we published recently [16] and in 
one postmortem normal brain sample (Figure 5A-B). 
In the normal brain tissue, we observed galectin-9 
protein expression in glial cell ramification, ECs, and 
rare macrophages, while TIM-3 was rarely expressed 
(only by a very few ECs and macrophages) (Figure 
5A). In the tumors, we found up-regulation of both 
TIM-3 and galectin-9 expression (Figure 5B-C). TIM-3 
and galectin-9 protein expression were also correlated 
in tumor samples (Figure 5D). TIM-3 was mainly 
expressed by tumor cells, TAMs, and small 
lymphocytes, whereas galectin-9 was mainly 
expressed by TAMs, ECs, glial cells, and gemistocytes. 
Notably, galectin-9 was strongly expressed in the 
tumoral area and glia, characterized areas of brain 
inflammation. The characterization of the cell type 
morphology was assessed by expert pathologists 
(VLS, VCM). Given the clinical relevance of 
TIM-3/galectin-9, we looked at its role within the 
TME of PNCSL. TIM-3 (HAVCR2) and galectin-9 
(LGALS9) gene expression were highly correlated 
with most IC ligands and/or receptors, e.g., HVEM, 
HVEML, LAG3, PD-L1, IDO1, and CD86 (Figure 5E). 
We also found that LGALS9 and HAVCR2 gene 
expressions were highly correlated with gene 
signatures of cell types that were enriched in the 
immune-rich subtype of PCNSL, i.e., TAMs, Th1, 
MDSC, and TFh (Figure 5F). Finally, LGALS9 and 
HAVCR2 expression was highly correlated with 
STAT3 and IFNγ z-scores, and correlated well with 
TNF-α, MAPK, and IL-10 signaling. HAVCR2 gene 
expression was also correlated with TGF-β and P53 
(Figure 5G). 

Discussion 
Bulk transcriptomic analysis of PCNSL patient 

samples allowed us to recognize three well-defined 
subtypes related to the immune infiltrate abundance 
and composition based on T cell presence. Other cell 
types [44–46] have recently been shown to play an 
important role in TME or therapeutic resistance, but 
their importance for PCNSL has to be further 
investigated. We defined the T cell-based subtypes as 
immune-rich, intermediate, and poor subtypes. These 
subtypes were independent of clinical parameters 
except for the patient outcome. Moreover, comparing 
PCNSL and DLBCL, we found immune-poor tumors 
enriched in PCNSL, whereas DLBCL tumors were 
relatively more abundant in the immune-rich 
subtype. This indicates that the particular brain 
microenvironment could influence the immune 
response in PCNSL physiopathology. 

We found specific associations when correlating 
the three PCNSL immune subtypes with signaling 
pathways commonly deregulated in this entity 
[7-9,11-14,35,36]. Indeed, inflammatory pathways, e.g., 
IFNγ or NF-κB, as well as anti-inflammatory 
pathways, e.g., STAT3 or TNFα, were found active in 
immune-rich PCNSL. In addition, IL-10, TGF-β 
signaling, and angiogenesis mediated by VEGF are all 
STAT3 activators [47] and were also found up- 
regulated in the immune-rich PCNSL. Immune-poor 
PCNSL harbored activated WNT/β-catenin, HIPPO, 
and NOTCH signaling. All the deregulated pathways 
in the immune-poor subtype were correlated with 
ECs and are known to play a role in angiogenesis 
[48,49]. No clear association was found with the 
immune-intermediate subtype, which is not 
surprising given its heterogeneous immune cell 
composition. 

Pathways related to ICs are of particular interest 
to tumor biology and the clinics [50]. The PD-1/PD-L1 
interaction has been described in PCNSL [16,41] and 
PD-L1 was found to be expressed by TAMs [16] in this 
tumor. We show here that high PD-L1-expressing 
TAMs were associated with better survival and lower 
relapse. Interestingly, we also showed that two 
important PD-1/PD-L1-regulated mechanisms 
(STAT3 and IFNγ signaling) were active in the 
immune-rich subtype and were associated with 
improved survival. This highlights the prognostic 
value of PD-L1-expressing TAMs in PCNSL. This 
result is in agreement with PD-L1 expression in TAMs 
and its correlation with STAT3 in large DLBCL 
cohorts, where it was also associated with improved 
outcome [38]. This result could help identifying an 
immunologically distinct patient subgroup amenable 
to ICI therapy. 

Another IC interaction, LGALS9 
(galectin-9)/HAVCR2 (TIM-3), was identified by a 
new algorithm that we recently described [24]. High 
LGALS9/HAVCR2 co-expression scores (the so-called 
L-R scores) were found in every immune subtype of 
PCNSL, although they were higher in the 
immune-rich tumors. Concomitant up-regulation of 
TIM-3 and galectin-9 proteins occurred in PCNSL 
tumors compared to normal brain tissue, an 
observation already reported for other tumors in the 
brain [43,51,52]. In contrast to PD-1, we show that 
TIM-3 was mostly expressed by both tumor cells and 
microglial/TAMs in PCNSLwhereas it is mainly 
expressed by CD8+ T cells, and microglial cells in 
brain tumors, such as glioma [43]. This result suggests 
different intercellular communication and immune 
surveillance escape mechanisms in PCNSL compared 
to solid brain tumors. HAVCR2 gene expression was 
associated to the presence of other IC molecules, 
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inflammatory pathways, e.g., STAT3 or IFNγ, and the 
abundance of immune cells found in the immune-rich 
subtype of PCNSL. Previous reports have suggested a 
regulatory role of TIM-3 on the expression of other IC 
molecules, such as PD-L1 in glioma [43], thus 
implying that anti-TIM-3 agents could be used to 
strengthen anti-PD-1 agents. 

The size of our cohort did not allow to assess an 
association with patient survival. However, high 
TIM-3 expression in either T cells [53] or tumor cells 
[54] was reported in DLBCL and associated with a 
poor outcome in DLBCL patients. Thus, it would be of 

clinical relevance to validate the predictive value of 
TIM-3 expression in the different cellular components 
on survival in a larger PCNSL cohort. 

The immune-poor subtype of PCNSL featured 
low HLA class I and II molecule gene expression, 
whereas immune- rich PCNSL associated with higher 
HLA expression. The immune-intermediate subtype 
predominantly harbored low expression of HLA class 
I or both class I and II genes. Low HLA class I gene 
expression was associated with low immune 
infiltration, an absence of T-cell activation, and earlier 
relapse, in all corroborating that low HLA class I gene 

 

 
Figure 4. Ligand-receptor interactions within the PCNSL microenvironment. A. Ligand-receptor (L-R) pair selection strategy: our algorithm selected 673 and 393 
confident L-R pairs from the mRNA-sequencing (n = 20) and microarray (n = 34) datasets respectively. A total of 128 confident and PCNSL-specific L-R pairs were selected from 
both datasets. Out of these 128 L-R pairs, survival analysis found 26 L-R pairs significantly associated to RFS and 8 to overall survival (OS). B. Functional categories associated to 
the L-R pairs selected. C. Immune infiltrate-associated L-R pairs in our PCNSL cohort (n = 20). D. LGALS9/HAVCR2 L-R scores are higher in the immune-rich subtype of PCNSL 
(Wilcoxon one-sided tests, p-value < 0.01, n = 20 = 8+12 and n = 2+22 for mRNA-sequencing and microarrays data respectively). E. LGALS9/HAVCR2 above median L-R scores 
are associated with better RFS (Kaplan-Meier curve, log-rank test, p-value < 0.05). 
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expression results in poor prognosis in solid cancers 
[55,56]. This observation is also in agreement with the 
bad prognosis linked to low immune infiltration we 
observed in PCNSL. In our study, HLA DRA gene 
down-regulation was associated with antigen 
presentation, innate and adaptive immune responses, 
activated CD8+ T cells and Th1 cells. Although 
HLA-DRA gene expression was recognized as an 
independent adverse prognosis factor for RFS in 
DLBCL [57], we did not find any association with 
patient outcome in PCNSL, a result that may be linked 
to the poorer overall outcome of patients with PCNSL 
compared to DLBCL [58]. 

Altogether, our results highlight the similarities 
between the immune-rich, intermediate, and poor 
subtypes of PCNSL and the hot, intermediate, and 
cold subtypes observed in primary testicular 
lymphoma (PTL) [53] and in solid tumors [59]. 
Despite the obvious differences in terms of spatial 
architecture between PCNSL and solid tumors, 
analogies could be drawn between PCNSL 
immune-intermediate tumors displaying reduced 
HLA gene expression and solid and altered tumors 
[60,61]. Herein, knowledge on these PCNSL immune 
subtypes could help in stratifying patients prior to 
treatment selection. Most of our patients (18/20) were 

 

 
Figure 5. Galectin-9/TIM-3 crosstalk is up-regulated and linked to immune activities in PCNSL. A. TIM-3 protein expression is up-regulated in PCNSL compared 
to normal brain tissue. B. Galectin-9 (Gal-9) protein expression is up-regulated in PCNSL tissue compared to normal brain tissue. C. TIM-3 and galectin-9 expression are 
up-regulated in PCNSL tumors in comparison to normal brain tissue (student test). D. TIM-3 and galectin-9 expression are correlated in our PCNSL cohort (spearman rank 
correlation, n = 20). E. Correlation between either HAVCR2 (TIM-3) or LGALS9 (galectin-9) gene expression and other immune checkpoints (spearman rank correlation, adjusted 
p-value < 0.01). F. Correlation between either HAVCR2 (TIM-3) or LGALS9 (galectin-9) expression and the cell-type z-scores (spearman rank correlation, adjusted p-value < 0.05). 
G. Correlation between either HAVCR2 (TIM-3) or LGALS9 (galectin-9) gene expression and PCNSL related signaling pathway z-scores (spearman rank correlation, adjusted 
p-value < 0.05). 
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treated with immunochemotherapy containing 
rituximab. Despite the modest size of our cohort due 
to the rarity of PCNSL, we did however show longer 
RFS for patients harboring an immune-rich tumor and 
preserved HLA class I and II gene expression. This 
result emphasizes the informative value of PCNSL 
immune patterns. One limitation of our study remains 
the lack of a validation cohort. Nonetheless, a T 
cell-inflamed signature has been found associated to 
favorable patient outcome in a PTL cohort treated 
with a rituximab-containing immunochemotherapy 
[53]. 

Several PCNSL clinical trials with ICIs are 
ongoing. Despite a high response rate in HL, 
melanoma, and lung cancers [62,63], response to ICIs 
remains generally heterogeneous [64]. The status of 
HLA machinery [65], as well as the presence of active 
signaling pathways (such as STAT3), are considered 
as immune evasion mechanisms that influence 
responses to ICIs [66]. Therefore, patients with 
PCNSL harboring the immune-rich subtype could be 
further stratified by assessing potential 
hyper-activation of STAT3 signaling. In such a case, a 
combined regimen including an ICI and a STAT3 
inhibitor could be envisioned [67]. Patients with 
immune-poor PCNSL are obviously less likely to 
benefit from ICI. Tumors featuring an intermediate- 
immune subtype and down-regulation of either HLA 
class I or II might not respond optimally to ICI 
monotherapy. Nevertheless, novel immunotherapies 
that have emerged in lymphoma, such as targeting 
CAR-T cells, cancer vaccines, or bispecific antibodies 
[3–5] could help in restoring an immune response in 
such intermediary immune subtypes. 

NF-κB signaling was also found hyper-activated 
in immune-rich PCNSL. Previous studies have shown 
that MYD88 gene mutations are highly prevalent and 
support lymphoma growth through NF-κB signaling 
in PCNSL [10–13]. It would hence be reasonable to 
co-assess the genomic and immune phenotypic 
statuses of PCNSL to propose combined ibrutinib/ICI 
therapies to immune rich/MYD88-mutated PCNSL 
patients (ongoing trial NCT03770416). 

Finally, reported epigenetic profiles have 
revealed different methylation profiles among 
patients with PCNSL [68]. In particular, the PTPN6 
gene promoter region was found highly methylated in 
48.5% of PCNSL tumors, leading to STAT3 
hyper-activation [69]. Given that epigenetic regulators 
can cross the blood-brain barrier (BBB), such as DNA 
methyltransferase (DNMT) inhibitors, one might 
hypothesize that DNMT inhibitors could restore a 
normal STAT3 expression in immune-infiltrated 
PCNSL tissues. For immune-poor PCNSL, another 
option would be to re-establish the HLA class II 

expression in lymphoma cells by the use of histone 
deacetylase (HDAC) inhibitors [70] that can cross the 
BBB. These speculations further highlight the 
profound consequences of PCNSL immune subtype 
stratification, for instance in the addressing of 
immune-intermediate tumors. 

In conclusion, we characterized the immune 
landscape of human PCNSL by combining bulk 
transcriptomic analysis, histopathology, and digital 
imaging. The immune-rich subtype is associated with 
HLA expression preservation, activation of specific 
signaling, e.g., IFNγ, STAT3, or NF-κB, and expression 
of inhibitory ICs, such as PD-1/PD-L1 and 
TIM-3/Galectin-9. The immune-poor subtype of 
PCNSL is characterized by active WNT/β-catenin, 
NOTCH, and HIPPO signaling, limited presence of 
active T-cells, and down-regulation of HLA 
expression. Several immune evasion mechanisms and 
new potential therapeutic opportunities, including 
anti-TIM-3, highlight the clinical relevance of PCNSL 
immune subtype classification. 
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