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Meningioma is the second most commonly encountered tumor type in the brain. -ere are three grades of meningioma by the
standards of the World Health Organization. Preoperative grade prediction of meningioma is extraordinarily important for
clinical treatment planning and prognosis evaluation. In this paper, we present a new deep learning model for assisting automatic
prediction of meningioma grades to reduce the recurrence of meningioma. Our model is based on an improved LeNet-5 model of
convolutional neural network (CNN) and does not require the extraction of the diseased tissue, which can greatly enhance the
efficiency. To address the issue of insufficient and unbalanced clinical data of meningioma images, we use an oversampling
technique which allows us to considerably improve the accuracy of classification. Experiments on large clinical datasets show that
our model can achieve quite high accuracy (i.e., as high as 83.33%) for the classification of meningioma images.

1. Introduction

Meningioma is a derivative of the meninges and spaces
between the meninges, which is the second most common
intracranial tumor, accounting for 13%–26% of intracranial
tumors [1]. Most meningiomas are benign, slow growing,
and surgically resectable. However, a small part is a ma-
lignant tumor, which has strong invasiveness and is easy to
relapse after surgery [2]. It may lead to some symptoms
including fading eyesight, vision loss, hemiplegia, epilepsy,
etc., and severe cases may have the risk of sudden death.
Meningioma poses a serious threat to people’s health. -ere
are three grades of meningioma according to the World
Health Organization standards [3].-e preoperative grading
of meningioma is extraordinarily helpful for clinical treat-
ment planning and prognosis evaluation, which can reduce
the recurrence rate of meningioma. At present, the method
of grading meningioma is still pathology and imaging di-
agnosis combined with clinical experience, and pathology is
the gold standard for meningioma grade classification.

However, the way that pathology classifies meningioma
grades takes a long time and is not efficient. Meningioma
recurrence is important and possibly can be predicted with
some certainty with preoperative MR image analysis [4]. In
order to assist clinical practice and predict the recurrence of
meningioma effectively, we use deep learning to predict the
MR image of meningioma grades.

As a multilayer neural network learning algorithm, deep
learning [5] learns not only nonlinear mapping between input
and output but also the hidden structure of the input data
vector [6]. It combines low-level features to form more ab-
stractive high-level features to discover distributed represen-
tations of data [7]. Deep learning makes a significant
breakthrough in face recognition, speech recognition, image
recognition, and other fields. Tang et al. [8] proposed an end-
to-end slice recognition method based on deep learning and
prior knowledge to identify echocardiographic slices. Ying et al.
[9] introduced a automatic classification algorithm based on
deep learning for identifying criticality of chronic obstructive
pulmonary disease from a large number of clinical samples.
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Yu et al. [10] used the deep learning technique to develop a
nontraditional automatic algorithm for fetal facial recognition
from ultrasonic standard section and obtained good result.

Convolutional neural network (CNN) [11, 12] is a
popular deep learning model. It has the characteristics in-
cluding local connections, weight sharing, and pooling
operations, which can jointly lower the complexity of net-
work and reduce the number of training parameters. CNN
provides the model a certain degree of invariance for
translation, distortion, and scaling and has strong robustness
and fault tolerance, which makes it easy to train and opti-
mize [13]. Al-Kadi [14] proposed a clinical decision support
system that exploits the subbands’ textural fractal charac-
teristics for best bases selection of meningioma brain his-
topathological image classification to classify the four
subtypes of grade I meningioma. -e correct rate reached
94.12%. However, this system only classified the four sub-
types of pathological sections in grade I meningioma and did
not analyze MRI of meningioma for grades I, II, and III.
Deepak and Ameer [15] used the concept of deep transfer
learning to study the classification of glioma, meningioma,
and pituitary tumors and used pretrained GoogLeNet to
extract features from brain MRI images. Proven classifier
models are integrated to classify the extracted features, and
the average classification accuracy is up to 98%. Swati et al.
[16] used pretrained deep CNN model and proposed a
blockwise fine-tuning strategy based on transfer learning.
-e result can achieve average accuracy of 94.82% under
five-fold cross validation. Although the above two models
have high classification accuracy for brain tumors, they do
not classify brain tumor grades. Yang et al. [17] used transfer
learning to classify glioma MR images and achieved great
results. However, this method requires the use of a rect-
angular region of interest segmentation for the tumor image
in advance, which is inefficient.

Despite the tremendous success in the classification and
diagnosis of brain tumors, there is still not much progress for
automatic prediction of MRI meningioma grades. -is is
mainly due to the fact that the difference between menin-
gioma grades is not very significant and needs to be eval-
uated by pathology, which is inefficient. -us, we use
convolutional neural network to assist in predicting me-
ningioma grades to improve diagnostic efficiency. Due to the
difficulty of narrowing down the critical features from as
many as 1000 types of image features, such approaches
cannot yield satisfactory results. To develop better tech-
niques, we propose in this paper a new approach which
combines an improved convolutional neural network with
meningioma images to extract deep features for automatic
classification. To resolve the issues of insufficient and un-
balanced clinical image data, we also adopt an oversampling
technique. It should be noted that grading of meningioma is
only possible by means of neuropathological assessment
(i.e., histology), and any analysis with anymethod (including
deep learning) can only predict to some extent the grade and
final tissue analysis-based diagnosis. -e gold standard of
meningioma diagnosis is still histopathological assessment,
and the method we used in this paper is only used to assist
the prediction of meningioma grade.

2. Meningioma and Classification Methods

-e WHO distinguishes three histological grades (I, II, and
III) and 15 subtypes of meningioma [18]. -e vast majority
of meningioma is grade I, benign tumor. -e growth of such
tumors is slow, recurrence after complete resection is rare,
and prognosis is good. 20% to 25% of meningioma is grade
II, atypical tumors, and 1% to 6% is grade III, malignancies
[19]. -ese types of meningioma have strong invasive ability
and characteristic of rapid growth and are easy to relapse
after surgery [20]. Among the 15 subtypes, there are 9 WHO
I subtypes (with lower risk of recurrence and invasiveness), 3
WHO II subtypes, and 3WHO III subtypes (with higher risk
of recurrence and invasiveness) [20] (see Tables 1 and 2 for
details). To reduce the risk of meningioma recurrence, we
use the improved LeNet-5 network to predict three grades of
meningioma.

3. The Principle of Convolutional Neural
Network Model

-e LeNet-5 model we use is from Deep Learning Toolbox
[21]. -e underlying convolutional neural network (CNN)
contains a feature extractor which consists of a convolu-
tional layer and a pooling layer. At the input layer, a size-
fixed image dataset is taken as input. In the convolutional
layer, the input image is convolved by the convolution kernel
to extract local features and the connections between the
layers of network are reduced, which could potentially lower
the risk of overfitting. In the pooling layer, the down-
sampling method is used to reduce the dimension and select
the feature image. -e convolution and pooling operations
can be repeatedly applied according to the actual problem.
Finally, the obtained result is fed into a fully connected layer
of the CNN to yield a column vector, which contains the
probabilities of various features, and represents the prob-
ability of each type. -e one with the highest probability is
taken as the final predicted type.

In the following sections, we discuss in detail each of the
three layers of convolutional neural network (CNN): con-
volution layer, pooling layer, and fully connected layer.

3.1. Convolution Layer. Each neuron in the convolution
layer is locally connected to the upper layer. -e eigenvalue
of the convolution layer is the result of dot-multiplication
and addition of each pixel point and convolution kernel
weight. Convolution kernel moves in a fixed step size to
perform local feature extraction on all pixels of the upper
layer image. Local connection reduces the number of net-
work parameters and computational time complexity, which
is conducive to network training of images. -e mathe-
matical expression of the convolution layer is

x
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j � f 

i∈Fj

x
n− 1
j × k

n
ij + b

n
j

⎛⎝ ⎞⎠, (1)

where n is the number of layers in the convolution layer, f()

is an activation function, Fj indicates the upper level feature
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map, k is the convolution kernel, b is a bias, i is the index of
an input neuron node, and j is the index of an output
neuron node.

3.2. Pooling Layer. Pooling layer pools the feature map of
convolutional output to reduce the dimensionality. It is
mainly used for feature extraction from the convolutional
features obtained in the previous layer. -e mathematical
expression of the pooling layer is

x
n
j � f βn

jdown x
l− 1
j  + b

n
j , (2)

where f() is an activation function, down() is a sub-
sampling function, β is the coefficient(s) of the subsampling
layer, b is a bias, and j is the index of an output neuron
node.

-ere are two types of pooling operations: max pooling
and average pooling. -e model uses the average pooling,
whose basic steps are similar to those in the convolution
layer. -e pooling layer has two key parameters, filter size
and fixed step size in its computation. It uses the maximum
value pooling or average pooling to reduce the dimension of
the convolution feature image and finally selects each pixel
according to the size of filter and the size of step.

3.3. Fully Connected Layer. -e fully connected layer in
CNN is a common layer connecting the convolution layer
and another common layer. It flattens the feature data from
its parent (convolution and pooling) layer and uses an

activation function to perform some nonlinear trans-
formations. -e obtained result is then used to classify the
images.

Each neuron of the fully connected layer has the fol-
lowing output:

hw.b(x) � f w
T
x + b , (3)

where hw.b(x) is the output value, f() is the activation
function, w is the weight vector, x is the feature vector, and
b is a bias.

4. Improvements of Convolutional Neural
Network Model

4.1. Adding Softmax Layer. -e convolutional neural net-
work model used in the experiment is a LeNet-5 model in
deep learning. After the full connection, the model is directly
normalized using the sigmoid activation function, and the
maximum value of the normalized probability value is taken
by the max method as the final output result. All the grades
of meningioma are classified in the original model, and the
grades II and III could not be separated. -erefore, after the
fully connected layer, the experiment is added with a soft-
max layer to improve the results.

-e softmax function has the following form:

f(z) �
eZc


C
d�1e

Zd
, (4)

where vector z is the input data of dimension c and f(z) is
the output vector of dimension c.

4.2. Data Amplification. Since some grades of meningioma
are relatively rare, our study suffers from the problem of
lacking sufficient original training sets, which could cause
the network model to learn inadequately the necessary
features of the images. To resolve this issue, we will use
mirroring and rotation oversampling techniques to augment
images of scarce grades to evenly distribute image data, while
expanding the training dataset (Figure 1).

We take the WHO III meningioma as an example to
show the images before and after oversampling. For ease of
presentation, we only select part of the images after over-
sampling. -e specific images are shown in Figure 2.

-e distribution of image data of meningioma is shown
in Figure 3:

As can be seen from Figure 3, the original meningioma
image data are less and the distribution is not balanced. After
using oversampling technique, the amount of image data of
the meningioma is increased and evenly distributed.

4.3. Improvement of CNN Architecture. As a classic model,
convolutional neural network is capable of achieving over
99% accuracy for MNIST handwriting recognition with a
five-layer architecture. For the problem of meningioma
classification, however, the original five-layer CNN archi-
tecture is no longer adequate for us to extract the necessary
features. -is is because the meningioma image is more

Table 1: Histological subtypes and biological behavioral charac-
teristics of meningioma with lower risk of recurrence and
invasiveness.

Subtype WHO
classification ICD-O code

Meningothelial meningioma I 9531/0
Fibrous meningioma I 9532/0
Transitional meningioma I 9537/0
Psammomatous meningioma I 9533/0
Angiomatous meningioma I 9534/0
Microcystic meningioma I 9530/0
Secretory meningioma I 9530/0
Lymphoplasmacyte-rich
meningioma I 9530/0

Metaplastic meningioma I 9530/0

Table 2: Histological subtypes and biological behavioral charac-
teristics of meningioma with high risk of recurrence and
invasiveness.

Subtype WHO
classification ICD-O code

Chordoid meningioma II 9538/1
Clear cell meningioma II 9538/1
Atypical meningioma II 9539/1
Papillary meningioma III 9538/3
Rhabdoid meningioma III 9538/3
Anaplastic (malignant) meningioma III 9530/3
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complicated with much higher dimensions than the MNIST
data. To further improve this model, we add additionally a
convolution layer and a pooling layer to the basis of the

original five-layer network. Accordingly, the network pa-
rameters are also adjusted. Particularly, we use 6 feature
figures in the first convolution layer. -e number of feature
figures in the second convolution layer is increased to 12,
and the convolution kernel size is changed to 4∗ 4 from
5∗ 5. For the newly added third convolution layer, we use 24
feature figures and 4∗ 4 convolution kernel size. Also, all
filters are 2∗ 2 in size. -e specific network structure is
shown in Figure 4:

4.4. Iterative Descent Rate. Iterative descent rate is re-
sponsible for updating the weights and offsets during the
training process. A change to this rate could affect the offset
of the neural network after each round of training. Since the
rate for classification, using the original iterative rate of
decline, is very low, which indicates that the original offset
cannot effectively update the network, we repeatedly adjust
the iterative descent rate in our experiments and finally
select an appropriate value for our problem.

4.5. Replacing the Original Activation Function. -e original
LeNet-5 network used the sigmoid activation function. -e
sigmoid activation function has soft saturation. It is easy to

(a) (b) (c)

Figure 2: WHO III images after oversampling. (a) Mirror image. (b) Rotation image. (c) Rotation image.

Figure 1: WHO III original image before oversampling.
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Figure 3: Distribution of meningioma data before and after
oversampling.
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produce gradient disappearance during training and
learning and is impossible to complete deep network
training. -e sigmoid activation function is not ideal for
grading meningioma. -erefore, the experiment will replace
the sigmoid activation function and apply the tanh activa-
tion function, ReLU activation function, and ELU activation
function to the network, respectively. Finally, we select the
appropriate activation function according to the final test
results.

5. Experiment Analysis

5.1. Experiment Platform. -e hardware and software en-
vironment involved in this experiment is as follows:

Software environment: Windows 7 (64-bit) operating
system, Matlab R2016b
Hardware environment: Intel Core i5 6500-3.2GHz,
4.0 GB RAM

5.2. Production of Medical Image Dataset. -e meningioma
dataset used in this experiment was obtained from the
Affiliated Hospital of Xuzhou Medical University. What we
need to declare is that meningioma dataset used in our study
has followed all the procedures required by the Chinese
government’s law (similar to IRB). -e data have been
strictly reviewed by those in charge of such issues, and all
sensitive information has been removed.-is study is purely
for research purpose and does not have any dispute of in-
terest. A total of 222 MR meningioma images in Ocor
(coronal) orientation were collected during the experiment.
Among them, 192 images are used as the training set and 30
images as the test set. -e gold standard of meningioma
diagnosis is still histopathological assessment. -e criteria
for the labeling of meningioma dataset used in our exper-
iments were all classified according to histopathology. -e
original MR images have size 512× 512. To improve the
efficiency, we set the image size in our experiment to
128×128.

In order to solve the problem of scarce data in me-
ningioma training set, the experiment used image mirroring
and rotation method in the preimage processing and finally
expanded the training set to 768 and guaranteed the number
of grades I, II, and III of meningioma.

5.3. Effect of Softmax Layer on Classification Results.
Figure 5 shows the comparison before and after adding the
softmax layer. -e abscissa indicates the number of test
sample size, and the ordinate indicates grades I, II, and III of
meningioma. When the softmax layer was not added, the
output results were of grade I; after adding the softmax layer,
meningioma grades could be distinguished, which showed
that the softmax layer is important for image classification of
meningioma.

5.4. Activation Function. -e sigmoid activation function is
prone to gradient disappearance, which leads to the network
not being able to update effectively. -erefore, this exper-
iment compares the commonly used activation functions of
tanh, ReLU, and ELU to select the activation function that is
most suitable for the network. Table 3 shows the impact of
different activation functions on test results.

As can be seen from Table 3, when the network uses the
ELU activation function, the test accuracy rate is the highest.
-e mathematical expression of ELU is

f(x) �
α ex − 1( ), x< 0,

x, x≥ 0,
 (5)

where α is a parameter, and in this experiment, we set α to
0.1. ELU combines sigmoid and ReLU, with soft saturation
on the left side, which makes the ELU more robust to input
changes or noise; the right side is nonsaturated, whichmakes
it possible to alleviate the gradient disappearance and
converge faster.

5.5. Comparison of the Original and Improved CNN
Architecture. -e original five-layer architecture has low
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Figure 4: Improved network structure.
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accuracy in meningioma grade classification. To achieve
better accuracy, we use the improved seven-layer CNN
architecture in our experiment. Accordingly, we also use the
improved size of convolution kernel, the number of feature
maps, filter size, and iteration rate. Table 4 lists the correct
classification rate of meningioma in some five-layer net-
works. Table 5 shows the effect of some changes on the error
rate of meningioma grading. Figures 4 and 5 show the error
distribution of the original architecture and the improved
one.

As can be seen from Figure 6, when epoch is equal to 40,
the network reaches convergence. -e test set error rate is
16.67%, and the training set error rate is 10.16%.

Figure 7 indicates a comparison of errors before and
after network improvement. -e abscissa indicates three
grades of meningioma, and the ordinate represents the
number of errors in each type. It can be seen from the figure
that the original network has a poor classification of grades II
and III of meningioma. After improvement, the error rate of

grades II and III of meningioma can be reduced. Table 6
shows the error location distribution table before and after
the network improvement. In the 30 test samples, the
meningioma grades are graded using the original network
architecture, and finally 17 images are incorrectly graded. It
is graded using an improved network architecture, with only
5 of the 30 test samples being incorrectly ranked. -e ex-
perimental results show that the improved network structure
classification accuracy rate is improved before the
improvement.

5.6. Comparison of an ExistingModel and theModel Proposed
in 7is Paper. We used the GoogLeNet model trained in
ImageNet dataset of the literature [15] to grade the original
meningioma dataset and compare it with the model of this
paper. -e results are shown in Figure 8.

Figure 8 shows the accuracy in the model of the lit-
erature [15] and the model of this paper on the grades of

Table 3: Impact of different activation functions on network test results.

Sigmoid Tanh ReLU ELU

Characteristics Gradient
disappears

Convergence speed is faster than
Sigmoid; gradient disappears

-e input is positive, the gradient
does not disappear; the input is
negative, the gradient disappears.

It combines sigmoid and ReLU;
and gradient disappears

Test accuracy
rate 70.00% 56.67% 76.67% 83.33%
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Figure 5: Original network classification. Classification of network after adding softmax layer.

Table 4: Impact of original network structure on the error rate of meningioma classification.

Network layer
Feature map Convolution kernel Filter size

Iteration rate Error rate
Conv1 Conv2 Conv1 Conv2 Conv1 Conv2

5 6 12 5× 5 5× 5 2× 2 2× 2 0.001 60.00%
5 6 12 5× 5 5× 5 2× 2 2× 2 0.0001 50.00%
5 6 12 5× 5 5× 5 2× 2 2× 2 0.0005 56.67%
5 6 12 9× 9 5× 5 2× 2 2× 2 0.0001 30.00%
5 8 16 9× 9 5× 5 2× 2 2× 2 0.0001 50.00%
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meningioma. It can be seen from the figure that the model
in this paper (training accuracy rate 89.84%; test accuracy
rate 83.33%) is better than the model in the literature [15]
(training accuracy rate is 82.33%; test accuracy rate is
73.33%).

5.7.Wilcoxon Signed-Rank Test. In this experiment, we used
the original network and the improved network to perform a
10-fold cross validation on the training set and recorded the
accuracy of each verification. At the same time, we per-
formed statistical tests using Wilcoxon signed-rank test for

Table 5: Impact of improved network structure on the error rate of meningioma classification.

Network layer
Feature map Convolution kernel Filter size

Iteration rate Error rate
Conv1 Conv2 Conv3 Conv1 Conv2 Conv3 Pool1 Pool2 Pool3

7 4 8 16 5× 5 5× 5 4× 4 2× 2 2× 2 2× 2 0.003 83.33%
7 5 10 20 5× 5 5× 5 4× 4 2× 2 2× 2 2× 2 0.0001 53.33%
7 5 10 20 5× 5 5× 5 2× 2 4× 4 3× 3 2× 2 0.0005 60.00%
7 6 12 24 5× 5 5× 5 2× 2 4× 4 3× 3 2× 2 0.0001 23.33%
7 6 12 24 5× 5 5× 5 4× 4 2× 2 2× 2 2× 2 0.0001 16.67%
7 6 12 24 5× 5 5× 5 4× 4 2× 2 2× 2 2× 2 0.00005 16.67%
7 8 16 32 5× 5 5× 5 4× 4 2× 2 2× 2 2× 2 0.0001 26.67%
7 8 16 32 9× 9 5× 5 2× 2 4× 4 2× 2 2× 2 0.0001 56.67%
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Figure 6: Error rate distribution.
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Figure 7: Comparison of error distribution before and after network improvement.
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paired sample comparison. -e specific table is shown in
Table 7.

According to the Wilcoxon signed-rank test, the P value
is 0.005 and less than 0.05, which is statistically significant.
-e results of the improved network have “clinical”
significances.

6. Discussion

In this study, several experiments were designed to validate
our method. Particularly, we first compared the effects of the
softmax layer on the accuracy of meningioma grade classi-
fication and found that adding the softmax layer can achieve
much better result. Subsequently, we expanded the training
set and compared the four activation functions and found that
the ELU function works best. -en, we compared the im-
proved LeNet-5 architecture with the architecture in the
literature [15] and found that the accuracy of our architecture
is higher (83.33%), and we confirm that our architecture has

an advantage in the prediction of meningioma grading. Fi-
nally, we used the Wilcoxon signed-rank test for paired
sample comparison to perform ten statistics on the model and
calculated that the P value was less than 0.05, which was
statistically significant. Despite the achievements reported in
this paper, several improvements remain possible: On the one
hand, the data samples used in the experiment are still in-
sufficient and it is easy to produce the phenomenon of
overfitting. On the other hand, the performance of the im-
proved model is still lacking and the accuracy of grading
meningioma is still not high enough. Future research in the
domain shall address these issues, possibly collecting new data
and using a suitable generative adversarial network to aug-
ment data and further improving the model in this paper.

7. Conclusions

In this paper, we used the mirroring and rotation over-
sampling techniques to augment the meningioma dataset

Table 6: Error location distribution before and after network improvement.

Network Number of test sets Number of test errors Error distribution location
Original network 30 17 7, 8, 9, 10, 11, 12, 13, 14, 22, 23, 24, 25, 26, 27, 28, 29,

30, 10, 14, 26, 28, 29Improved network 30 5
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Figure 8: Comparison of an existing model and the model proposed in this paper.

Table 7: Statistics based on Wilcoxon signed-rank test for paired sample comparison.

Times Original network accuracy (%) Improved network accuracy (%) Z P

1 67.53 81.82

− 2.804881 0.005

2 72.73 84.42
3 68.83 87.01
4 75.32 87.01
5 70.13 85.71
6 72.73 83.12
7 68.83 81.82
8 77.72 81.82
9 72.37 84.21
10 77.63 85.53
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and improve LeNet-5 to assist in predicting the grades of
meningioma. We increased the depth of the network and
adjusted the network parameters to obtain deeper features of
the image, while adding the softmax layer to distinguish the
three grades of meningioma and changing the activation
function to improve the accuracy of prediction. -e results
show that our proposed method can achieve rather high
accuracy and has the potential to assist clinical diagnosis.

Data Availability

-e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

-e authors declare that they have no conflicts of interest.

Acknowledgments

-is study was supported in part by the Overseas Training
Program for Outstanding Young Teachers and Principals of
Universities in Jiangsu Province, Key Laboratory of In-
telligent Industrial Control Technology of Jiangsu Province,
the National Natural Science Foundation of China (no.
61379101), and the Key Research and Development Project
of Xuzhou Science and Technology Bureau (KC19143).

References

[1] G. Y. Huang and Y. J. Wu, “Progress in Wnt/β-catenin sig-
naling pathway and meningioma,” Medical Innovation of
China, vol. 10, no. 33, pp. 162–164, 2013.

[2] T. Xie, F. Jin, X. D. Jiang et al., “Correlation study of path-
ological phenotype of 120 cases of meningioma with its WHO
classification and prognosis,” Journal of Southeast University
(Medical Science Edition), vol. 35, no. 5, pp. 688–691, 2016.

[3] C. Decaestecker, R. Van Velthoven, M. Petein et al., “-e use
of the decision tree technique and image cytometry to
characterize aggressiveness in world health organization
(WHO) grade II superficial transitional cell carcinomas of the
bladder,” Journal of Pathology, vol. 178, no. 3, pp. 274–283,
2015.

[4] H. Li, M. Zhao, S. Wang, S. Yong, and S. Jizong, “Prediction of
pediatric meningioma recurrence by preoperative MRI as-
sessment,” Neurosurgical Review, vol. 39, no. 4, pp. 663–669,
2016.

[5] G. E. Hinton and R. R. Salakhutdinov, “Reducing the di-
mensionality of data with neural networks,” Science, vol. 313,
no. 5786, pp. 504–507, 2006.

[6] M. Z. Lin, Research on Face Recognition Based on Deep
Learning, Dalian University of Technology, Dalian, China,
2013.

[7] R. Pang,7eResearch and Application of Deep Neural Network
Algorithm, Southwest Jiaotong University, Chengdu, China,
2016.

[8] C. X. Tang, X. D. Wang, and Y. Yao, “Transesophageal
echocardiography recognition based on deep learning and
medical priori knowledge,” Journal of Computer Applications,
vol. 37, no. S1, pp. 211–214, 2017.

[9] J. Ying, C. Y. Yang, Q. Z. Li et al., “Severity classification of
chronic obstructive pulmonary disease based on deep

learning,” Journal of Biomedical Engineering, vol. 34, no. 6,
pp. 842–849, 2017.

[10] Z. Yu, L. Y. Wu, D. Ni et al., “Fetal facial standard plane
recognition via deep convolutional neural networks,” Chinese
Journal of Biomedical Engineering, vol. 36, no. 3, pp. 267–275,
2017.

[11] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-
based learning applied to document recognition,” Proceedings
of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

[12] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,” in
Proceedings of the International Conference on Neural In-
formation Processing Systems, pp. 1097–1105, Curran Asso-
ciates Inc., Lake Tahoe, NV, USA, December 2012.

[13] F. Y. Zhou, L. P. Jin, and J. Dong, “Survey of convolutional
neural network,” Journal of Computer Applications, vol. 40,
no. 6, pp. 1229–1251, 2017.

[14] O. S. Al-Kadi, “A multiresolution clinical decision support
system based on fractal model design for classification of
histological brain tumours,” Computerized Medical Imaging
and Graphics, vol. 41, pp. 67–79, 2015.

[15] S. Deepak and P. M. Ameer, “Brain tumor classification using
deep CNN features via transfer learning,” Computers in Bi-
ology and Medicine, vol. 111, Article ID 1033, 2019.

[16] Z. N. K. Swati, Q. H. Zhao, M. Kabir et al., “Brain tumor
classification for MR images using transfer learning and fine-
tuning,” Computerized Medical Imaging and Graphics, vol. 75,
pp. 34–46, 2019.

[17] Y. Yang, L. F. Yan, X. Zhang et al., “Glioma grading on
conventional MR images: a deep learning study with transfer
learning,” Frontiers In Neuroscience, vol. 12, 2018.
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