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An aggressive primary brain cancer, glioblastoma (GBM) is the most common cancer of the
central nervous system in adults. However, an inability to identify its cell-of-origin has been a
fundamental issue hindering further understanding of the nature and pathogenesis of GBM,
as well as the development of novel therapeutic targets. Researchers have hypothesized that
GBM arises from an accumulation of somatic mutations in neural stem cells (NSCs) and glial
precursor cells that confer selective growth advantages, resulting in uncontrolled
proliferation. In this review, we outline genomic perspectives on IDH-wildtype and IDH-
mutant GBMs pathogenesis and the cell-of-origin harboring GBMdriver mutations proposed
by various GBM animal models. Additionally, we discuss the distinct neurodevelopmental
programs observed in either IDH-wildtype or IDH-mutant GBMs. Further research into the
cellular origin and lineage hierarchy of GBM will help with understanding the evolution of
GBMs and with developing effective targets for treating GBM cancer cells.

Keywords: glioblastoma, somatic mutation, neural stem cells, subventricular zone, genetically engineered
mouse model

INTRODUCTION

Glioblastoma (GBM) is a common, but aggressive, primary brain cancer of the central nervous
system in adults and is associated with poor prognosis due to its invasiveness and resistance to
therapy. According to 2016 WHO classification of glioma, GBMs are divided into: 1) IDH-wildtype
(about 90% of cases), 2) IDH-mutant (about 10% of cases), and 3) IDH not otherwise specified (1).
Molecular genetic features have emerged as fundamental factors contributing to its prognosis,
particularly isocitrate dehydrogenase (IDH) mutation, which is considered a favorable factor.
Whereas patients with IDH-wildtype GBM show a low median rate of survival of 14 to 16 months,
patients with IDH-mutant GBM exhibit prolonged survival (median survival up to 31 months) and
slower progression (1, 2). Over the past two decades, extensive and comprehensive genetic analysis
of GBM has improved our understanding of GBM pathogenesis, and researchers have hypothesized
that GBM arises from an accumulation of somatic mutations (3, 4). However, redundant signaling
pathways and intratumoral heterogeneity underlie treatment failure and tumor recurrence (5–7).
Thus, identifying the cellular origin of GBM would help with further understanding of tumor
initiation/propagation and effective targets of use in treating GBM cancer cells. Regarding the
cellular origin of cancer, cell-of-origin refers to normal cells in which oncogenic mutations first
Abbreviations: GBM, Glioblastoma; NSCs, Neural stem cells; IDH, Isocitrate dehydrogenase; GEMM, genetically engineered
mouse model; RTK, receptor tyrosine kinase; PI3K, Phosphatidylinositide 3-kinase; TERTp, telomerase reverse transcriptase
promoter; SVZ, Subventricular zone; ALT, alternating lengthening of telomeres; OPC, Oligodendrocyte precursor cell; SGZ,
subgranular zone; GPC, glial precursor cell; APC, astrocyte precursor cell; NPC, neural progenitor cell.
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occur and accumulate to initiate tumor formation, while cancer
stem cells (CSCs) refers to a subset of proliferating cancer cells
that sustain tumor growth (8). The CSCs in GBM have been well-
reviewed in many other papers (9–11). In this mini review, we
mainly focus on the cell-of-origin in GBM and discuss the recent
genomic analyses of GBM and genetically engineered mouse
models (GEMMs) investigating tumorigenesis of GBM.
GENETIC ALTERATIONS
IN GLIOBLASTOMA

Recent large-scale sequencing analyses have uncovered
molecular alterations in somatic single nucleotide variants,
copy number variations, gene expression profiles, and
epigenetic signatures in GBM (3, 4, 12, 13). In addition,
longitudinal genetic characterization of GBM has supported
predictions of the order of mutation events and patterns of
tumor evolution (14–18). Reviewing these studies, we summarize
in the following paragraphs key somatic mutations, known as
driver mutations, frequently occurring in IDH-wildtype and
IDH-mutant GBM, respectively (Figure 1).
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IDH-Wildtype Glioblastoma
Although GBM is genetical ly and transcriptionally
heterogeneous, previous studies have demonstrated concordant
genetic alterations, including those in TP53, PTEN, EGFR,
PIK3CA, and PIK3R1, NF1, and RB1, in human GBM samples
(3, 4, 12). These mutations represent a set of deregulated
signaling pathways, including growth factor (receptor tyrosine
kinase [RTK]/phosphatidylinositide 3-kinase [PI3K]/Ras), p53,
and retinoblastoma (Rb) signaling pathways. In the growth
factor signaling pathway, EGFR is frequently activated with
variant III deletion of the extracellular domain in GBM.
Additionally, activating mutations in PI(3)K complex and
inactivating mutations or deletions in tumor suppressor genes,
such as PTEN and NF1, lead to uncontrolled proliferation. In the
p53 pathway, inactivating mutations in TP53, along with
CDKN2A (ARF) deletion, have been reported. Finally,
deletions in CDKN2A/CDKN3B and amplifications of CDK4
have been found to result in Rb pathway inactivation, along
with mutation or deletion of RB1 itself. The majority of
GBMs harbor genetic alterations in multiple signaling
pathways, suggesting that these pathways are required for
GBM pathogenesis.
FIGURE 1 | Overview of genetic alterations and cell-of-origin in IDH-wildtype and IDH-mutant GBMs. (Upper panel) Frequently occurring driver mutations and CNVs
in IDH-wildtype and IDH-mutant high-grade gliomas (WHO grade 3 & 4) were listed as above. The frequencies were obtained from published data using cBioPortal
(19, 20). (Lower panel) Multipotent neural stem cells (NSCs) have capability to self-renewal and differentiate into progenitors with restricted potential including glial
precursor cells (GPCs), oligodendrocyte precursor cells (OPCs), astrocyte precursor cells (APCs), and neural progenitor cells (NPCs). Using specific genetic
alterations and cell-specific promoters, NSCs and progenitor cells can be transformed to generate either IDH-wildtype or IDH-mutant GBMs in GEMMs.
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Interestingly, up to 83% of IDH-wildtype GBMs exhibit
telomerase reverse transcriptase promoter (TERTp) mutations
(3, 21). The TERTp mutations, at positions 124 bp (C228T) and
146 bp (C250T) upstream of the TERT ATG site, generate de
novo transcriptional factor binding sites leading to increased
expression of TERT and subsequent telomere activation (21, 22).
A recent study has demonstrated that IDH-wildtype GBM
patients carry a high frequency of TERTp mutations in the
astrocytic ribbon, the neurogenic niche of the postnatal human
brain (23). This suggests that mutation of TERTp is an early
shared event through which NSCs in the SVZ avoid replicative
senescence, thereby increasing the possibility that these cells
acquire GBM driver mutations (24). On the other hand, Körber
and colleagues argued that TERTp mutations are subsequent
mutations following copy number changes in EGFR, PTEN, or
CDKN2A (14). These studies imply that among many GBM
driver mutations, TERTp, EGFR, PTEN, or CDKN2A mutations
seem to play a key role in the early stage of IDH-wildtype
GBM formation.

IDH-Mutant Glioblastoma
IDH-mutant GBM accounts for about 12% of all GBMs, with
an occurrence rate of IDH1/2 mutations of approximately 73%
to 83% in secondary GBMs (12, 25). IDH1/2 mutations have
been observed in the vast majority of astrocytomas and
oligodendrogliomas, and have been described as early
molecular events during gliomagenesis (25, 26). Mutated IDH1
elicits altered catalytic functions in metabolic, epigenetic, and
reactive oxygen species managing pathways (27). GBMs with
IDH1 mutations show a higher frequency of loss-of-function
mutations in TP53 (3, 28). Based on a recent longitudinal study
on IDH-mutant glioma, mutations in IDH1 and/or TP53 occur
prior to ATRX alteration on the evolutionary trajectories of IDH-
mutant gliomagenesis (24, 29). In addition, IDH-mutant GBMs
exhibit alternating lengthening of telomeres (ALT) due to
concurrent ATRX mutations, which are mutually exclusive
with TERTp mutations (30, 31). Thus, genetic alteration
enabling telomere maintenance are likely to be critical steps in
GBM tumorigenesis.

Researchers have attempted to classify GBMs with similar
molecular genetic characteristics into proneural, classical, and
mesenchymal subtypes (32, 33). Each of these subtypes show an
enrichment of lineage-specific gene signatures from distinct
neural-glial lineages; for example, proneural GBMs show
enrichment in oligodendrocyte precursor cell (OPC) genes
(34). This implies that gene expression patterns in different
subtypes may reflect the phenotype of their specific cell-
of-origin.
CELL-OF-ORIGIN IN GLIOBLASTOMA

To identify the cell-of-origin in GBM, understanding of normal
cellular hierarchy is required. NSCs are ubiquitously found in all
regions of the central nervous system during embryonic
development and are capable of initiating cell lineages, leading
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to the formation of differentiated neurons and glial cells (35).
NSCs give rises to intermediate progenitor cells with more
restricted potential, which can proliferate and further
differentiate into the three major cell types of the central
nervous system. A subset of NSCs and lineage-restricted
progenitor cells continue to reside in restricted regions of the
postnatal and adult brain: the subventricular zone (SVZ) of the
lateral ventricle and the subgranular zone (SGZ) of the dentate
gyrus in the hippocampus (36, 37).

Considering that multiple oncogenic mutations are necessary
for gliomagenesis, the self-renewal and proliferative properties
of NSCs ensure appropriate conditions for endogenous
accumulation of somatic mutations. Moreover, research has
indicated that most driver mutations in cancer are attributable
to DNA replicative errors, which are correlated with the total
number of divisions of stem cells (38). Based on this notion, it
has been hypothesized that the NSCs in the ventricular-
subventricular zone is the main source of de novo somatic
mutations throughout one’s lifetime. A recent study indeed
showed that 55.5% of tumor-free SVZ tissue contains low-level
mutations, such as TP53, EGFR, RB1, PDGFR, or TERT
variations shared by matching tumor tissue in IDH-wildtype
GBM patients, but not in IDH-mutant GBM patients (23).
However, this study did not show any evidence of which cell
type is the cell-of-origin in IDH-mutant GBM. Knowing now
that human genetic studies provide the evidence of the cellular
origin of IDH-wildtype GBM, we can recapitulate human GBM
in mouse models, which are an invaluable tool with which to
study the processes of tumorigenesis from originating cells (39–
41). Below, we give an overview of GEMMs reflective of specific
cell lineages and different combinations of GBM driver
mutations, with or without IDH mutation (Figure 1).

Animal Modeling of IDH-Wildtype
Glioblastoma
To target NSCs in the adult brain, researchers utilized Cre
recombinase-expressing adenovirus injected into the SVZ of
mutant mice with conditional Tp53, Pten, and Nf1 or Rb
knockout, which resulted in the development of GBM (42, 43).
Induction of the same tumor suppressor mutations in mice with
Nestin-CreER transgenes also led to GBM formation (42). In
addition, GBM has been successfully generated from NSCs
harboring somatic mutations in NF1, TP53, and PTEN using in
utero electroporation of CRISPR/Cas9 system (44). Similarly,
TP53 and PTEN mutations were introduced into the SVZ of
conditional EGFRvIII transgenic mouse to generate a GBM (23).

Another model has suggested that GBM arises from
committed precursor cells, such as glial precursor cells (GPCs),
OPCs, and astrocytes. Researchers have used mice with an Ascl1-
CreER transgene to target bipotential progenitors expressed in
both adult neural and oligodendrocyte lineage progenitors (45).
Bipotential progenitors carrying NF1, TP53, and/or PTEN
mutations give rise to GBM, as do NG2-expressing OPCs (45–
47). Several studies have suggested OPCs as the prominent cell-
of-origin in GBMs, because of their aberrant growth prior to
malignancy (23, 34, 47, 48). In contrast to glial lineage,
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susceptibility to malignant transformation declines with neural
lineage restriction (49). Researchers utilized cell-specific
promoters such as Dlx1, Neurod1, and Camk2a to introduce
oncogenic mutations at specific time points during neural
lineage specification.

There were several studies showing that mature astrocytes
are also capable of tumor formation through de-differentiation.
Loss-of-function mutations in TP53, PTEN, and/or RB1 in GFAP-
CreER mice (50) and injection of shNF1-shp53- or H-RasV12-
shp53 lentivirus in the cortex of GFAP-cre resulted in glioma
formation (51). The oncogenic virus induced astrocytes to de-
differentiate into NS/PC-like state, by expressing the transcriptional
factors Sox2, c-myc, and Nanog. The manipulation of pluripotency
regulators are capable of inducing de-differentiation or cellular
reprogramming (52, 53); however, the above studies have a
limitation that GFAP-cre does not discriminate GFAP+

astrocytes from GFAP+ NSCs.

Animal Modeling of IDH-Mutant
Glioblastoma
The expression of IDH1R132H mutation in SVZ NSCs led to a
proliferating phenotype, but it was insufficient to generate glioma
(54, 55). Therefore, researchers have examined tumor-forming
capacity by induction of additional oncogenic mutations in
conjunction with IDH1 mutation. Researchers utilized the RCAS-
TVAsystemtoexpress IDH1R132H andPDGFA inCdkn2a,Pten,Atrx
conditional knockout mice, thereby showing high-grade IDH-
mutant glioma formation (55). Similarly, IDH-mutant glioma also
was successfully generated by IDH1R132H and NRAS knock-in and
shp53 and shATRX knockout in neonatalmice lateral ventricle using
the Sleeping Beauty transposon system (56). Induction of Idh1R132H

mutation with the loss of p53 and Pten led to GBM formation using
retrovirus expressing PDGFB-IRES-Cre recombinase and
adenovirus expressing Cre recombinase (57). To date, all of IDH-
mutant animal models mainly target NSCs in the SVZ; thus,
additional animal studies need to be done to carefully examine the
tumorigenic potential of other lineage-restricted cell populations
following IDH1R132H and co-occurring oncogenic mutations.

Collectively, the cell-of-origin and subsequent mutant cell
behavior appear to underlie different biological and genomic
phenotypes in GBM. A recent study demonstrated that distinct
characteristics in transcriptome profiles, obtained from GBM
animal models targeting either NSCs or oligodendrocyte lineage
cells, can be used to classify IDH-wildtype GBMs into two
subtypes based on the cellular origin (58). However, individual
cells from the same tumor harbor different mutations and exhibit
diverse transcriptional patterns and phenotypes (59), making it
difficult to completely unravel cellular origins and tumor
evolution processes.
DISSECTING CELLULAR HIERARCHY
IN GLIOBLASTOMA

With advances in single-cell sequencing, brain tumors have
been examined at the single-cell level in an attempt to
Frontiers in Oncology | www.frontiersin.org 4
document developmental programs in GBM. Using single-cell
whole-genome sequencing, researchers noted intratumoral
clonal evolution based on EGFR aberrations (60). Patel and
colleagues also showed the mosaic pattern of EGFR and other
RTK signaling molecules (59). Despite the observed
clonal heterogeneity in GBM, researchers have attempted
to identify key neurodevelopmental programs from
transcriptional profiles. Hierarchical clustering revealed that a
subset of genes regulating oligodendrocyte function are
important in primary GBM, along with genes related to the
cell cycle, hypoxia, and complement/immune responses (59).
Müller and colleagues also demonstrated that PDGF-driven
GBMs exhibit a progressive induction of OPC-like cells (61).
Additionally, several studies have recently indicated that IDH-
wildtype GBM recapitulates a normal neurodevelopmental
hierarchy (62, 63): malignant cells exist in four cellular states
of distinct neural cell types, including NPC-like, OPC-like,
astrocyte-like, and mesenchymal-like cells (62). Meanwhile,
Couturier and colleagues demonstrated that putative originating
cell populations share similar expressionprofiles ofglial progenitors
and that tumor cells are organized into the normal neural lineage
hierarchy observed in fetal brain (63).

Although single-cell RNA sequencing of IDH-mutant GBM
has not been conducted due to a small number of patients,
several studies of IDH-mutant glioma have shed some light on
the cellular hierarchy of IDH-mutant GBM. Therein, most
malignant cells are differentiated into and are reminiscent of
glial lineages (oligodendrocyte-like and astrocyte-like), while a
small subset of cells remain undifferentiated, exhibiting features
of NSCs (64, 65). Overall, aberrant differentiation toward glial
lineage cells and developmental programs appears to dominate
the cellular diversity in IDH-mutant glioma. These studies
suggest that IDH-mutant GBM might originate from progenitor
cells with more restricted potential.
DISCUSSION

A number of studies have described the cellular origin and
hierarchy of IDH-wildtype GBMs in humans, and accumulating
evidence from genome, transcriptome, and animal studies
suggests that IDH-mutant GBMs have characteristics distinct
from those in IDH-wildtype GBMs. This raises the hypothesis
that IDH-mutant GBMs may arise from a different cell-of-origin
that undergoes malignant transformation. Based on the
hypothesis, we may consider another possible candidates for
the cell-of-origin of brain tumor such as glial progenitor cells
(66). Accordingly, additional genetic analysis and animal
modeling of IDH-mutant GBM should be performed to identify
the cell-of-origin. Furthermore, future research should seek to
carefully characterize the underlying mechanisms of which cells
initially acquire mutations and how mutation-harboring cells
evolve and undergo lineage specification during gliomagenesis.
Such research may benefit from focusing on influences from the
tumor microenvironment (e.g., immune cell infiltration) on the
January 2021 | Volume 10 | Article 615400
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fate of tumor initiating cells and subsequent expression-based
subtypes in GBM.
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