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ARTICLE INFO ABSTRACT

Keywords: A normalized medium-thick plate of aluminum alloy (4038) was impact-strengthened using a
Artificial neural networks free-fall method at room temperature (approximately 20 °C). Specimens were then aged at
BP methods 450 °C, 550 °C and 650 °C for 10, 20, 30 and 40 min respectively. Micro-hardness of each sample

Medium-thick plate of normalized aluminum
alloy after impact strengthening
Medium-temperature thermal stability

was tested. Micro-structure of samples annealed at 650 °C for different durations was charac-
terized. A three-layer back propagation artificial neural network (BPANN) was trained using
actual state parameters of the prepared samples. Results reveal that medium-temperature thermal
stability of the prepared plate can be predicted through the BPANN model. Deviation of predicted
values from the experimental ones is within 6 %, with a prediction accuracy exceeding 94 %.
Variation trend of the predicted and the experimental thermal stability is consistent, but the
predicted values are all higher than the measurements. Prediction accuracy of BPANN can be
improved by increasing convergence rate of the error function. By adding relevant parameters of
the micro-structure from samples aged at 650 °C to the input layer, BPANN model further
improve its output and approach the real state of samples. The findings of this study can help
researchers reduce the number and cost of experiments. The aim of this work was to predict the
medium-temperature thermal stability of impact-strengthened normalized medium-thick plate of
aluminum alloy annealed at different temperatures, and it also can be used as reference for other
similar experiments.

Artificial neural networks (ANNs) are bionic structure and function information processing systems. ANNs are a network composed
of interconnected artificial neurons that function as nodes. They are abstracted models simulating the micro-structure and function of
the human brain. Hence, they can emulate certain fundamental features of the human brain and represent a crucial approach for
simulating human intelligence [1-4]° Therefore, ANNs exhibit outstanding attributes such as self-learning, self-organization,
self-adaptation, rapid processing, high fault tolerance, memory association, and an ability to approximate arbitrary complex nonlinear
systems. These networks are trained on numerous experimentally measured values, after which they can summarize the variations in
experimental data through a finite number of overlapping calculations without requiring a formula in advance.

ANN s have also been used for predicting various properties of alloy materials. Extensive research in the field of material science and
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engineering has revealed that material properties follow the characteristics of nonlinear systems. The properties of alloys, such as
thermal stability, strength and ductility, are complex functions of various factors, including micro-structure, temperature and pressure
etc. Then ANNs are suitable for providing strategies and predictions to address a multitude of challenges regarding material perfor-
mance, such as predicting phase transformations and estimating deficiencies in materials. Recently, several ANN and back propagation
network models have been developed for predicting the performance of metal materials [5-9].

A back propagation network is a multi-layer feed forward network composed of numerous linear and nonlinear processing units. Its
activation function is continuously differentiable, enabling its accurate calculation via the gradient method. Moreover, the process of
learning the analytical formula of weight can be well defined. Therefore, the back propagation network realize the nonlinear mapping
of arbitrary inputs to outputs as per the real-world working conditions [10-14].

Aluminum alloys are commonly used in medium-thick plates, which are widely employed in aerospace, machinery manufacturing,
land transportation, and national defense industry owing to their outstanding performance [15-18]. Fatigue is a prominent contributor
to the failure of these aluminum plates, which typically begins on surface of the alloys in service [19-21]. The service capacity of metal
materials can be improved by adopting simple procedures to improve the failure resistance of the surface [22-24]. To improve the
fatigue resistance of aluminum plates in engineering application under medium and high temperature conditions [25-28], the high
surface hardness, wear resistance, toughness and plasticity of the alloy is required.

Impact of aluminum components at room temperature refines the grains in the alloy and improve the hardness, strength, and wear
resistance, thereby enhancing the overall mechanical properties. Given the increasing demands for medium to high-temperature
working conditions in engineering, the medium-temperature thermal stability of normalized aluminum medium-thick plate after
impact strengthening has become a critical criterion for material selection [29-32].

In this study, we focused on the medium-temperature thermal stability of normalized aluminum medium-thick plates after impact
strengthening. To predict the thermal stability of the alloy, a back propagation artificial neural network (BPANN) model was trained.

1. Materials and experimental procedures

An aluminum (4038) medium-thick plate bar (diameter: 8 mm) produced in China was used as the raw material. Table 1 lists its
elemental compositions (mass fraction of alloying elements, wt.%). The aluminum medium-thick plate bar was cut into cylindrical
samples, as shown in Fig. 1. The samples were normalized, by annealing at 450 °C for 15 min, and then cooling in air to room
temperature. After normalizing, the samples were subjected to impact strengthening. An iron body with 18 kg was dropped freely from
a predefined height of 2.2 m, impacting the samples, as shown in Fig. 2. The preparing conditions of samples in this work are listed in
Table 2.

A micro-hardness tester (HVS-1000Z) was used to measure the micro-hardness of samples (load: 2 kg and load time: 10 s). The
hardness was tested from the center to the edge of each sample, with the separating distance of 1 mm between adjacent points. The
micro-structure along the radius of samples is not uniform after impact strengthening.

2. BPANN algorithm and implementation

In the back propagation algorithm, the signal input propagates forward in the network, while the error signal (the difference
between the desired and actual outputs) propagates backward. The sigmoid input-output relation was used to represent the nonlinear
neurons comprising the back propagation network used in this study, as shown below.

fow)= 1/ (1+e)= 1/ (14 (Km0 -1

where, f(w;) is the output of each layer, w;= > mjn; — 6; is the input of node i in the current layer. The first derivative of f(w;) exists and
satisfies the condition that the input and the output are nonlinear and monotonically rising.

The back propagation algorithm uses delta learning law and gradient search to minimize the mean square deviation between the
expected output and actual outputs. A three-layer BPANN is consisted of input, middle, and output layers containing a, b and ¢ number
of neurons, respectively, and the connection weights between front and back adjacent layers are wap and wy,, and the threshold is G.
The network is trained by collecting P learning samples from experimental data, namely xj, X ..., Xp. The corresponding expected
outputs are yj, y2 ... yp. The actual outputs are zj, z, ... zp. For a sample set, P; (h =1, 2 ..., g), the error at the output layer is as
following:

1 8
Ep, =3 ; (yh — z,)? (2-2)

The inclusion of 1/2 in the above formula is because of the sample’s cylindrical shape, which is symmetrical about the center of the

Table 1

Chemical composition of aluminum alloy (4038) medium-thick plate ( wt% ) .
element Mg Ni Cr C P S Si Al
content 0.086 0.026 0.012 0.083 0.008 0.011 0.032 balance
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Fig. 1. Aluminum alloy medium-thick plate sample.

impact
equipment

T

aluminum
alloy
specimen

-

Fig. 2. Impact strengthening device.

Table 2
Aging treatment of samples in two states.

Medium- temperature aging treatment  Different states of two aluminum medium plate samples

Normalized aluminum medium-thick plate Normalized aluminum medium-thick plate after impact strengthening
Holding time/min 10 20 30 40 10 20 30 40
Heating temperature/°C 450, 550, 650 450, 550, 650
Cooling Air cooling to room temperature Air cooling to room temperature

end face. The micro-hardness values were obtained point by point, starting from the center to the edge of the samples on the end face.
In view of the symmetrical structure of the samples, the points at the same radius are equivalent. Then the average hardness at
equivalent points were used. This is reflected in equations (2) and (3).

The total error for P number of samples is:

Er :% Z |:i (n = Zh)2:| (2-3)

h=1

The gradient method is used to adjust each connection weight by equations (2)-(4), as shown below.
VWap= —XP:n (aEP/awab) (2-4)

Following formula (2-4),

1 P
Vo = Wanrsr) — Wiy =~ ("EP/aw,,,,) By ,3(2 3 {E 5 zhf] ) / vy | =1 X
P P =1 P

8
h=1

The weights of the three-layer BPANN are given by equations (2)-(5), as shown below.
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P

The above approach used for weight correction which is also known as batch processing, is implemented by calculating the total
error after all samples are entered. This correction process ensures that the total error tends to decrease as the learning progresses.
When multiple copies are available, the batch processing converges rapidly.

The entire learning process of the BPANN consists of two parts. The first part is the calculation of the input signal from the bottom
up, i.e., from the neurons in the output layer. The second part is the computation of the error signal from the top down, i.e., from the
modification of the weights or thresholds. The two stages are converged by alternating repeatedly.

The BP algorithm is implemented as following, and the corresponding flowchart is shown in Fig. 3.

(1) Initialize the network. The weights and thresholds are evenly distributed in the range of [0,1].

(2) Successively input the learning samples (P) into the network, then calculate the output of each layer.

(3) Calculate errors at the output layer.

(4) Compute the total error after all the learning samples in P are entered into the network. Then, determine whether the error
meets the required standard. If it does, halt the process; otherwise, enter the next step.

(5) Back propagate the error to each output layer by layer and adjust the corresponding weights and threshold. Return to step (2)
until the error reduced under standard.

3. Prediction of the thermal stability using BPANN

Since the micro-hardness of the aluminum alloy changes with the conditions of heat treatment, here the micro-hardness is used as
an indicator for the thermal stability under medium temperature. Then the micro-hardness is entered into the BPANN model as an
equivalent of the thermal stability in the present work. The thermal stability data obtained at 450 °C and 550 °C for different holding
times were used to train the network, then the thermal stability at 650 °C for different holding times was predicted using the trained
model.

In this study, a BPANN model with three layers was adopted, and the number of input-layer units was determined based on factors
that significantly influence the medium-temperature thermal stability of the impact-strengthened aluminum medium-thick plate. The
BPANN structure adopted in this study is shown in Fig. 4 There are six factors in the input layer, which are the annealing temperature
and duration, the sample size, the micro-structure, the testing location, and the cooling rate. The middle layer consists of eleven nodes.
The output layer provides the micro-hardness. The micro-hardness used for model training is listed in Tables 3 and 4Fig. 5).

Based on the BPANN model, prediction of the thermal stability is implemented as following. Firstly, micro-hardness of the samples
annealed at 450 °C was used to train the ANN model until the error function converged. Secondly, using the trained model after the
first step, micro-hardness of the samples annealed at 550 °C for different durations was predicted. The predicted result at 550 °C is

Fig. 3. BPANN program flow.
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Fig. 5. Measured and predicted micro-hardness of normalized aluminum alloy medium-thick plate after impact strengthening at 450 °C for a
holding time of (a) 10 min, (b) 20 min, (¢) 30 min, and (d) 40 min.

presented in Table 5. By comparing the predicted and the measured values, the prediction accuracy as well as the output error was
estimated. Thirdly, the adjusted error function was back-propagated into the network, and the measured micro-hardness values of
samples annealed at 450 °C and 550 °C were used to train the network again. Fourthly, the micro-hardness of samples annealed at
650 °C was predicted, and the errors are estimated as step 2. The predictions and the experimental measures at 650 °C are listed in
Tables 6 and 7 respectively.

When only the data at 450 °C is used for model training, the predicted micro-hardness deviates from the corresponding measured
value by 9-14 % as shown by the difference between Tables 4 and 5, due to the insufficient number of training samples, which reduces
the gradient and convergence rate of the error function. However, it is noted that all the predictions are higher than the test values. The
BPANN model demonstrates a stable forecasting behavior.

Further adding the data at 550 °C to train the BPANN model, the deviation from the predictions to the measures reduces to below 6
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Fig. 6. Measured and predicted micro-hardness of normalized aluminum alloy medium-thick plate after impact strengthening at 550 °C for a
holding time of (a) 10 min, (b) 20 min, (c) 30 min, and (d) 40 min.

Table 3

Micro-hardness of impact-strengthened normalized aluminum alloy medium-thick plate at 450 °C for different holding times.

Heat temperature/°C 450
Holding time/min 10 20 30 40
Micro-hardness/HV Samples center 230 228 236 253
1 mm from the center 288 257 256 259
2 mm from the center 295 279 280 281
3 mm from the center 281 282 311 289
4 mm from the center 320 321 230 322
5 mm from the center 329 318 281 326
Table 4
Micro-hardness of impact-strengthened normalized aluminum alloy medium-thick plate at 550 °C for different holding times.
Heat temperature/°C 550
Holding time/min 10 20 30 40
Micro-hardness/HV Samples center 225 239 250 247
1 mm from the center 257 254 253 251
2 mm from the center 251 249 248 246
3 mm from the center 273 270 225 226
4 mm from the center 277 263 230 232
5 mm from the center 284 242 206 210

%, with a prediction accuracy exceeding 94 %, indicating a significant improvement in precision of the artificial neuron network. A
comparison of Tables 6 and 7 shows that the predictions consistently surpass the observed values.

To verify the positive deviation of the prediction from the experimental value, the data from samples annealed at 550 °C and 650 °C
were used to train the BPANN model, and the thermal stability at 450 °C was predicted using the trained network, and the difference
between the predictions and the test values was examined. Accuracy of the trained network and the convergence condition of the error
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Table 5
Predicted micro-hardness of impact-strengthened normalized aluminum alloy medium-thick plate heat-treated at 550 °C for different holding times.
Heat temperature/°C 550
Holding time/min 10 20 30 40
Micro-hardness/HV Samples center 233 244 265 258
1 mm from the center 262 264 270 262
2 mm from the center 259 267 256 260
3 mm from the center 282 282 237 241
4 mm from the center 285 275 244 247
5 mm from the center 296 253 219 221
Table 6
Predicted micro-hardness of impact-strengthened normalized aluminum alloy medium-thick plate heat-treated at 650 °C for different holding times.
Heat temperature/°C 650
Holding time/min 10 20 30 40
Micro-hardness/HV Samples center 255 209 194 175
1 mm from the center 198 197 200 180
2 mm from the center 246 185 184 171
3 mm from the center 217 172 173 173
4 mm from the center 191 193 185 161
5 mm from the center 203 183 184 182
Table 7
Micro-hardness of impact-strengthened normalized aluminum alloy medium-thick plate at 650 °C for different holding times.
Heat temperature/°C 650
Holding time/min 10 20 30 40
Micro-hardness/HV Samples center 252 197 182 163
1 mm from the center 193 189 187 169
2 mm from the center 239 173 170 157
3 mm from the center 208 161 160 160
4 mm from the center 183 182 174 149
5 mm from the center 194 171 172 170

function were also evaluated via several experimental procedures. Predictions of the thermal stability at 450 °C are presented in
Table 8. The difference between Tables 8 and 3 still shows that the predictions are slightly higher than the measured results.

The errors of predictions are irrelevant with the annealing temperature. Specifically, among the three annealing temperatures
shown in Figs. 5-7, i.e., 450 °C, 550 °C and 650 °C, the error at 550 °C is the largest, and the error at 450 °C is the smallest, with the
error at 650 °C being in the middle. Close examination of the data shows that the deviation of the predictions from the measurements
decreases with the increasing number of training datasets. At 550 °C, 650 °C and 450 °C, the number of training datasets used for
predictions increases, and the error of predictions decreases.

Internal micro-structure of the samples varies significantly with positions after the impact strengthening, leading to the uneven
distribution of micro-hardness from center to edge of the samples. The proposed BPANN model predicts such changes in the medium-
thick plate of aluminum alloys accurately. Such ability of BPANN model is useful for estimating the strength of the alloys, which is
important for engineers to control mechanical properties of the aluminum components and reduce the experimental cost.

Micro-structure of the impacted samples after annealing at 650 °C is shown in Fig. 8Fig. 7. With increasing of the annealing
duration from 10 min to 40 min, the micro-structure recovers gradually as shown in Fig. 8 (a)-(d). The recovering of micro-structure
results in the reduction of hardness with annealing time.

During the process of impact strengthening, the aluminum substrate deforms plastically rapidly by absorbing the impact energy,
and the temperature in the sample also rise instantly, resulting in the refinement of the grains and the dissolution of secondary phases.
During annealing these phases precipitate again as shown in Fig. 8 (a), leading to the secondary hardening phenomenon. The hardness
of samples with precipitated hard phase is listed in Table 7. Further increasing the annealing time leads to the coarsening of both the
grains and the secondary phases as shown in Fig. 8 (b)-(d), meanwhile the hardness continuously decreases.

According to the principles in materials science, the mechanical properties of an alloy is determined by its micro-structure. For an
artificial neuron network, it does not understand these principles, however, the more relevant parameters enter into the network, the
more accurate predictions can the model give. Since the micro-structure is one of the key factors influencing the hardness of the alloy,
the phase composition is also a crucial parameter for the BPANN model.



X. Wang et al.

Table 8

Heliyon 9 (2023) €23018

Predicted micro-hardness of impact-strengthened normalized aluminum alloy medium-thick plate heat-treated at 450 °C for different holding times.

Heat temperature/°C

450
Holding time/min 10 20 30 40
Micro-hardness/HV Samples center 232 231 239 257
1 mm from the center 291 261 260 263
2 mm from the center 297 283 284 285
3 mm from the center 286 285 317 293
4 mm from the center 324 327 234 327
5 mm from the center 332 322 286 329
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Fig. 7. Measured and predicted micro-hardness of impact-strengthened normalized aluminum alloy medium-thick plate heat-treated at 650 °C for a
holding time of (a) 10 min, (b) 20 min, (¢) 30 min, (d) 40 min.

4. Conclusion

(1) The medium-thick aluminum plates were prepared by room temperature impact and aging. To predict the thermal stability of
the aluminum plates, the BPANN model was trained with the main state parameters of the samples. By optimizing the training
strategy, the trained BPANN model predicts thermal stability of the aluminum plates with an accuracy over 94 %, or with the
error being controlled under 6 %.

(2) The predictions varies synchronously with the measurements at different locations. And the predictions are higher than the test
values owing to the limited number of training samples. Prediction accuracy of the network can be improved by increasing
convergence rate of the error function.

(3) Outputs of the BPANN model are consistent with the change of micro-structure in prepared samples, indicating that the key to
improve accuracy of the model is to use more relevant parameters to train it.
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Fig. 8. Morphology of normalized aluminum alloy medium-thick plate after impact strengthening kept at 650 °C: (a) 10min; (b) 20min; (c) 30min;
(d)40min.
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