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Abstract

Pseudomonas aeruginosa is the predominant microorganism in chronic lung infection of cystic fibrosis patients. The chronic
lung infection is preceded by intermittent colonization. When the chronic infection becomes established, it is well accepted
that the isolated strains differ phenotypically from the intermittent strains. Dominating changes are the switch to mucoidity
(alginate overproduction) and loss of epigenetic regulation of virulence such as the Quorum Sensing (QS). To elucidate the
dynamics of P. aeruginosa QS systems during long term infection of the CF lung, we have investigated 238 isolates obtained
from 152 CF patients at different stages of infection ranging from intermittent to late chronic. Isolates were characterized with
regard to QS signal molecules, alginate, rhamnolipid and elastase production and mutant frequency. The genetic basis for
change in QS regulation were investigated and identified by sequence analysis of lasR, rhlR, lasI and rhlI. The first QS system to
be lost was the one encoded by las system 12 years (median value) after the onset of the lung infection with subsequent loss
of the rhl encoded system after 17 years (median value) shown as deficiencies in production of the 3-oxo-C12-HSL and C4-HSL
QS signal molecules respectively. The concomitant development of QS malfunction significantly correlated with the reduced
production of rhamnolipids and elastase and with the occurrence of mutations in the regulatory genes lasR and rhlR.
Accumulation of mutations in both lasR and rhlR correlated with development of hypermutability. Interestingly, a higher
number of mucoid isolates were found to produce C4-HSL signal molecules and rhamnolipids compared to the non-mucoid
isolates. As seen from the present data, we can conclude that P. aeruginosa and particularly the mucoid strains do not lose the
QS regulation or the ability to produce rhamnolipids until the late stage of the chronic infection.
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Introduction

The onset of the chronic lung infection with Pseudomonas aeruginosa

in CF patients is preceded by intermittent colonization [1] usually

with environmental strains [2]. The chain of events leading to the

establishment of a persistent infection is mainly due to the biofilm

forming capacity of P. aeruginosa with important contributions from

individual virulence factors such as elastase [3], LPS [4],

rhamnolipids [5] and alginate [6]. We have demonstrated that

rhamnolipid plays a major role in the defense against the cellular

components of the immune system, especially against the polymor-

phonuclear neutrophilic leukocytes (PMNs) which dominate the

immune response in the CF lung [7–9]. P. aeruginosa respond to the

presence of PMNs by upregulating synthesis of a number of

virulence determinants including rhamnolipids, all of which are able

to cripple and eliminate cells of the host defense which support a

‘launch a shield’ model by which rhamnolipids surround the biofilm

bacteria and on contact eliminate incoming PMNs [9].

Production of several P. aeruginosa virulence factors is

coordinated by a cell density monitoring mechanism termed

Quorum Sensing (QS) [10–12]. P. aeruginosa employ two

dominating QS system the las and the rhl encoded system. Both

systems feature specific signal molecules for separation of the

processes, 3-oxo-C12-HSL and C4-HSL respectively. The basic

AHL QS system is comprised of an I gene encoding the AHL

synthetase and a R gene encoding the receptor. During the

growth of the bacteria, system specific signal molecules are

produced by the synthetase, the I protein. The signal molecules

produced by the bacteria bind to the receptor, the R-protein,

the AHL-responsive transcriptional activator. The regulator

proteins contain two functional domains. The signal molecule

binding region, which is located in the N-terminal portion of the

protein and a helix-turn-helix motif (HTH) located in the C-

terminal, which is responsible for the protein binding to the

target promoters [13–15]. Within these systems a third

analogous receptor, the QscR operates with 3-oxo-C(12)-HSL
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to modulate gene expression of a specific regulon which overlaps

with the two other las and rhl regulons [16]. P. aeruginosa has an

additional QS regulatory pathway termed the Pseudomonas

quinolone signal (PQS) system [17]. In vitro the QS systems of P.

aeruginosa have been shown to be hierarchically arranged, with

the las system on top, controlling the rhl system [18] and the

PQS system positioned as a mediator functionally positioned

between the las and rhl systems. However, it has been proposed

that the rhl system can be activated independently of the las

system, and it has been suggested that PQS system controls this

activation [17]. This was further substantiated in a recent paper,

where the authors provided evidence that rhl system is able to

overcome the absence of the las system by activating specific

LasR-controlled functions, including production of 3-oxo-C(12)-

HSL and PQS [19].

When the chronic lung infection in CF patients is established

it is well recognized that P. aeruginosa isolated from the sputum

differ phenotypically from the initial intermittent strains even

though they produce similar pulse field gel electrophoresis

patterns and therefore are considered isogenic [20,21]. Loss of

epigenetic regulatory systems such as QS is one of the

dominating changes that occur during the adaptive process

of the bacteria in the CF lung [22]. Different models

accounting for the selection of non-functional QS systems

have been reported. One such model focuses on the special

nutrient availability in the CF lung which P. aeruginosa has to

adapt to [22]. This model is supported by comparison of the

genomes obtained from different CF isolates [23] suggesting

that P. aeruginosa has the potential to act in a range of

environmental conditions. Furthermore, the authors suggest

that the bacterium acquires or discards genomic segments in

order to optimize its genomic repertoire for the present specific

environment. Another model focuses on the fact that P.

aeruginosa is exposed to oxygen radicals which in turn induce

genetic mutations [23,24]. We have recently demonstrated that

the polymorphonuclear leukocytes (PMNs) are the major

contributors of oxygen radicals in CF sputum [25]. It is

therefore likely that oxygen radicals are derived from the

PMNs. Recently, the cooperative behavior of mixed popula-

tions of bacteria has been studied using populations including

both QS wild-type and lasR mutants [26]. These studies have

introduced the concept of ‘‘cheaters’’ (the QS mutants)

exploiting the functional QS systems of other members of the

population [26,27]. It might be that in CF lungs, although P.

aeruginosa lasR- mutants may accumulate, QS-active members

of the population are still maintained for the benefit of all

members of the bacterial community.

Based on these observations we aimed to correlate the changes

that occur in the QS systems with expression of virulence during

stages of intermittent and chronic lung infections in CF patients.

The capability to produce 3-oxo-C12-HSL and C4-HSL signal

molecules and the sequences of lasR and rhlR encoding the

receptor-transcriptional regulators as well as the lasI and rhlI

encoding the synthethases were investigated in a large number of

randomly collected CF isolates, (pairs of mucoid and non-mucoid

if available) obtained from the intermittent or chronic stages of

lung infection. The dynamics of the functionality of QS systems in

the clinical strains were correlated to rhamnolipids and elastase

production as well as to the mutational frequencies of the isolates.

Our results show that functionality of the rhl encoded system is

maintained longer than the las system during the chronic infection,

especially in the mucoid isolates, providing evidence for the

possible role of QS inhibitors in the treatment of early as well as

late stages of P. aeruginosa infections.

Results and Discussion

QS functionality and duration of infection
Loss of QS regulation is generally considered a hallmark of

chronic virulence and has been described for several P. aeruginosa

CF isolates [22,28]. To investigate the dynamics of the QS loss at

different stages of the P. aeruginosa lung infection, we determined

the production of QS signal molecules of isolates collected from

patients with intermittent colonization as well as chronic lung

infection at different time points.

The P. aeruginosa CF isolates from the intermittently colonized

patients showed significantly higher frequency of strains with

simultaneous production of both QS molecules (x2 test p,0.0001)

and higher levels of rhamnolipid production (median [ranges] =

15.3[0–26.4] mg/ml) compared to the isolates from the group of

chronically infected patients (median [ranges] = 2.4[0–72.8] mg/

ml)(Mann-Whitney, p,0.0001) (figure 1).

The CF isolates were divided in four groups according to their

ability to produce QS molecules: a group producing both 3-oxo-

C12-HSL and C4-HSL (n = 58), a group producing only C4-HSL

(n = 63), a group producing only 3-oxo-C12-HSL (n = 16) and a

group not producing QS molecules (n = 73). A significant

difference was found between the duration of the chronic lung

infection of the CF patients harboring the isolates belonging to the

different groups (table 1). The majority of the CF isolates (63) were

not producing 3-oxo-C12-HSL after 12 years of infection while

only a small proportion (16 isolates) were 3-oxo-C12-HSL

producers but lost the ability to produce C4-HSL. Importantly,

the lost of both QS molecules was found first after 17 years of

infection. This shows that the abilities to produce 3-oxo-C12-HSL

and C4-HSL signal molecules are lost at different time points

during the chronic lung infection and particularly interesting is the

finding of C4-HSL molecules in isolates from the late stages of the

infection. This indicates that the rhl system is functional even in the

late phases of the chronic lung infection and suggests that the Las-

independent regulation of rhl system is maintained during the

chronic lung infection. These data emphasize that the shielding

through rhamnolipid production might play an important role

during the first 17 years of infection.

Figure 1. Distribution of in vitro rhamnolipid production in P.
aeruginosa isolates from CF patients at different stages of lung
infection. The box and whisker plots represent the median (thick line
inside the box), 10, 25, 75 and 90 centiles of the in vitro rhamnolipid
production (mg/ml) of P. aeruginosa isolates from intermittently colonized
and chronically infected patients; Mann-Whitney test was used to
investigate the significance of the difference between the groups.
doi:10.1371/journal.pone.0010115.g001

QS and P. aeruginosa in CF

PLoS ONE | www.plosone.org 2 April 2010 | Volume 5 | Issue 4 | e10115



Significant differences in the level of rhamnolipid (table 1) and

elastase (table 1) were found between the four groups of QS signal

molecule producers concurring that these virulence factors require

a functional QS system for expression.

QS and mucoidity
Early occurrence of mucoid P. aeruginosa in the sputum of CF

patients has been correlated to a poor prognosis [5,29]. Mucoidity

has been shown to be selected for in the CF lung due to the

protective role of alginates against oxygen radicals from activated

PMNs [30]. In addition, as judged from flow-cell and animal

experiments, mucoid isolates form more robust biofilms[31,32].

Investigations of QS functionality and connected phenotypes

expressed by mucoid and non-mucoid isolates that were obtained

from the chronically infected patients, showed that a significantly

higher proportion of mucoid isolates produced C4-HSL compared

to their non-mucoid counterparts (x2 test, p = 0.02). Furthermore,

this number was found to correlate with significantly higher

amounts of rhamnolipids (median [ranges] = 4.5 [0–72.8] mg/ml)

produced by mucoid compared with non-mucoid isolates (median

[ranges] = 0[0–48]), (p = 0.02, Mann-Whitney) (Figure 2).

Thus, mucoid isolates may be protected against the antimicro-

bial properties of the PMNs not only by alginate but also due to

the production of rhamnolipids. This is in accordance with recent

data from an animal model of chronic lung infection which

showed that persistence against the host defense was maintained in

mucoid but lost in nonmucoid isolates during the chronic lung

infection of one CF patient [33]. This difference in the

functionality of the QS system between mucoid and non-mucoid

isolates strongly support that different adaptation strategies are

employed by the two phenotypes [5,31].

QS and clonal distribution
The typing analysis showed that three previously identified

bacterial clones entitled DK-1 (39 isolates), DK-2 (29 isolates) and

NO (26 isolates) were represented among the 238 CF isolates.

Clones DK-1 or ‘‘red’’ and DK-2 or ‘‘blue’’ are two dominant

clones in the Copenhagen CF Center and clone NO is a clone

identified among the Norwegian isolates[32–34]. The rest of the

isolates were considered non-clonally related.

Significant differences in the functionality of the QS systems

were found among the various clonal groups. While functionality

loss of both the las and rhl systems was found in 75% of the DK-2

strains, this phenotype was encountered in only 46% and 33% of

the NO and DK-1 isolates, respectively. These differences in the

ability of the isolates to produce QS signal molecules were

associated with significant differences in the ability of the isolates to

produce rhamnolipids (Figure 3). Importantly, we always saw a

positive correlation between production of C4-HSL and rhamno-

lipids but no correlation between 3-oxo-C12-HSL and rhamno-

lipid production. This is in accordance with findings by us [35]

and others who showed that PAO1 do not require a functional las

system for expression of rhl and pqs controlled genes.

Several isolates belonging to the DK-2 clone did not harbor a lasR

gene as shown by the lack of gene amplification which in turn suggests

that this particular mutant of the DK-2 clone might have spread

among CF patients after the apparent loss of QS signal recognition, or

that a deletion hotspot exists at the particular chromosomal position.

However, this second option is statistically very unlikely. Similar

results were obtained with isolates belonging to the NO and DK-1

Table 1. Duration of the chronic lung infection of CF patients harboring P. aeruginosa isolates producing both C4-HSL and 3-oxo-
C12-HSL, either C4-HSL or 3-oxo-C12-HSL or none of the QS molecules and distribution of the rhamnolipid and elastase levels in CF
P. aeruginosa isolates producing both, one or none of the QS molecules.

C4-HSL +
3-oxo-C12-HSL+
(n = 58)

C4-HSL +
3-oxo-C12-HSL -
(n = 63)

C4-HSL –
3-oxo-C12-HSL +
(n = 16)

C4-HSL –
3-oxo-C12-HSL -
(n = 72)

Duration of chronic infection(years)
Median[ranges]

7.5*
[intermittent-29]

12**
[intermittent-32]

13
[1–32]

17*,**
[intermittent-31]

Rhamnolipid (mg/ml)
Median[ranges]

16.6a,b,d

[0–53.8]
10.7a,c

[0–72.8]
1.7d

[0–11]
0b,c

[0–48]

Elastase activity (mU)
Median[ranges]

481

[0–276]
40.3
[0–180]

46.7
[0–109]

36.81

[0–104.8]

*p = 0.0002.
**p = 0.016 (Mann-Whitney).
ap = 0.008.
bp,0.0001.
cp,0.0001.
dp,0.0001 (Mann-Whitney).
1p = 0.01 (Mann-Whitney).
doi:10.1371/journal.pone.0010115.t001

Figure 2. Distribution of rhamnolipid production in mucoid and
nonmucoid isolates. Box and whisker plots represent the median (thick
line inside the box), 10, 25, 75 and 90 centiles of the in vitro rhamnolipid
production (mg/ml) of mucoid and non-mucoid P. aeruginosa isolates
from chronically infected CF patients. Mann-Whitney test was used to
investigate the significance of the difference between the groups.
doi:10.1371/journal.pone.0010115.g002

QS and P. aeruginosa in CF
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clones, although these isolates were found to harbor a functional rhl

system. This suggests that dissemination and establishment within a

community of CF patients does not require a functional LasR-

system. Alternatively, LasR proficient bacterial subpopulations might

have been present in the initial infection but these subpopulations

were not identified in our study. However, it is important to mention

that we identified two CF patients that harbored QS-proficient DK-2

bacteria, suggesting that several evolutionary lineages develop in the

CF population as recently published by Wilder [36].

QS signal molecules and sequence of the QS genes
To investigate the cause of QS loss we performed sequence

analysis of the genes lasR and rhlR encoding the QS-regulators

LasR and RhlR as well as of the genes lasI and rhlI encoding the

signal molecule synthetases LasI and RhlI, respectively. The

analysis showed that the wild-type sequences of lasI were

conserved among the CF P. aeruginosa isolates. From 238 isolates,

we only found a single occurrence of a loss of function mutation in

lasI gene and intact lasR gene. However, the vast majority of the

isolates presented point mutations in rhlI (data not shown)

especially C249A leading to D83E which interestingly has also

been found in isolates from CF patients attending the Oregon

Health and Science University [36]. The measurements of C4-

HSL were not affected by these point mutations. This indicates

that these point mutations have no effect on the functionality of

the gene and its encoded product. Mutations preferentially

occurred in the genes encoding the regulatory proteins, in

accordance with previous observations [37].

CF isolates with mutations in the regulatory genes lasR or rhlR

produced significantly less 3-oxo-C12-HSL (x2 p,0.0001) and

C4-HSL (x2 p,0.0001) respectively and lower levels of rhamno-

lipids compared to the isolates with wild-type genes (Figure 4A

and 4B).

The type of mutations identified in lasR and rhlR genes are

presented in Figure 5 and 6. Mutations in lasR were identified in

both the signal-binding N-terminal domain and the DNA-binding

domain (C-terminal). The mutations observed (Figure 5) were

insertions and deletions leading to frame shifts and point

mutations (both transitions and transversions) resulting in either

stop codons or substitutions in conserved, semi-conserved, or

non-conserved amino acids [38]. The complementation assays

showed that the identified point mutations were responsible for

the phenotypes (marked in yellow in figure 5). In the signal-

binding domain, particular interesting are the mutations causing

a Tyr56 to Cys exchange and a Thr75 to Lys exchange as both

Tyr56 and Thr75 have been shown to be important for the

binding of signal molecules to LasR [39]. In addition, Pro74,

Ala105 and Gly113 were all amino acids that have been

described as important for the multimerization and function of

LasR (marked by squares in figure 5) [38]. Several of the

mutations described in this study have been found by other

investigators in lasR mutants of P. aeruginosa obtained under in vitro

evolution experiments (encircled in figure 5) [22,27,38,40]. This

Figure 3. Distribution of rhamnolipid production in isolates
belonging to different clones. Box and whisker plots represent the
median (thick line inside the box), 10, 25, 75 and 90 centiles of the in
vitro rhamnolipid production (mg/ml) of P. aeruginosa isolates belonging
to different clones included in the study. The clones DK1 and DK2 are
the two dominating clones in Denmark. Clone NO is a dominating clone
in Norway and the non-clonal isolates have no clonal relationship.
Mann-Whitney test was used to investigate the significance of the
difference between the groups.
doi:10.1371/journal.pone.0010115.g003

Figure 4. Distribution of rhamnolipid production in isolates with or without mutations in the QS regulatory genes. Box and whisker
plots represent the median (thick line inside the box), 10, 25, 75 and 90 centiles of the in vitro rhamnolipid production (mg/ml) of P. aeruginosa isolates
(A) with (rhlR2) or without mutations (rhlR+) in the regulatory gene rhlR; (B) with (lasR2) or without mutations (lasR+) in the regulatory gene lasR
Mann-Whitney test was used to investigate the significance of the difference between the groups.
doi:10.1371/journal.pone.0010115.g004

QS and P. aeruginosa in CF
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reflects a level of similarity between the in vitro and in vivo bacterial

evolution and suggest a possible selective advantage of these kinds

of mutations in vivo.

The lasR gene could not be amplified in 32 out of 39 DK-2

isolates suggesting the deletion of this gene in this particular

clone at the time of investigation. Loss of function mutations in

Figure 5. Mutations in the lasR gene (A) and rhlR gene (B) of P. aeruginosa isolates from CF patients. The nucleotide sequence alterations
were identified by alignment with the PAO1 sequence. On top of the PAO1 sequence the nucleotide substitutions, insertions (ins) or deletions (D) are
indicated. Under the amino acid sequence, frame shifts (fs), stop codons(*) or amino acid deletions (D) or changes are indicated in bold. The altered
nucleotides are shown in yellow if the mutation was complemented with a plasmid containing the wild-type lasR or in grey if not complemented.
Amino acid changes that have been previously shown to impair the LasR function [37,38] are marked in squares and amino acid changes that have
been previously described in in vitro studies [22,39,48] are encircled.
doi:10.1371/journal.pone.0010115.g005

QS and P. aeruginosa in CF
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the rhlR gene were identified in 24 out of 39 DK-2 isolates. The

most frequently encountered mutation was a 3 bp deletion at

position 519 (4 isolates) or 520 (18 isolates) with loss of Leu

173. These gene changes explained the basis for the loss of

both 3-oxo-C12-HSL and C4-HSL signal molecules in the

DK-2 clone.

Mutations in QS genes and mutability of the isolates
Increase in mutation frequencies leading to a weak mutator

phenotype of the isolates was found to correlate with the loss of

functionality of either lasR or rhlR (Figure 7) and occurred after

a mean of 15 years. However, strong mutators occurred late

during chronic infection (mean 19.7 years) and correlated to

accumulation of mutations in both lasR and rhlR (Figure 7).

These data are in accordance with previous observations

showing that lasR mutants of P. aeruginosa obtained in in vitro

evolution experiments were not hypermutable [27]. We propose

that mutations in either of the QS regulatory genes can occur in

isolates with non- or weak mutator phenotype, followed in time

by the occurrence of strong mutators with increased accumu-

lation of mutations which disables the entire QS system. This

sequence of events in the CF lung might be explained by an

impaired protection of the QS deficient strains against the

mutagenic effects of reactive-oxygen species liberated by

activated PMNs due to their decreased production of catalase

and superoxide-dismutase.

Figure 6. Mutations in the rhlR gene of P. aeruginosa isolates from CF patients. The nucleotide sequence alterations were identified by
alignment with the PAO1 sequence. On top of the PAO1 sequence the nucleotide substitutions, insertions (ins) or deletions (D) are indicated. Under
the amino acid sequence, frame shifts (fs), stop codons(*) or amino acid deletions (D) or changes are indicated in bold.
doi:10.1371/journal.pone.0010115.g006

QS and P. aeruginosa in CF
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Conclusion
The current knowledge regarding the chronic P. aeruginosa

infection of the CF lung suggests that P. aeruginosa adjust its

phenotypes to the environment of the CF lung. We have previously

proposed that QS and especially the production of rhamnolipids are

important for the initial stage of infection providing the bacteria with

an immune shield which is protective against the antimicrobial

activity of PMNs. As seen from the present data we can conclude

that P. aeruginosa isolates may lose LasR dependent QS but keep the

capability of RhlR dependent QS regulation enabling production of

a number of important host damaging virulence factors particularly

rhamnolipids. This capability is maintained till late in the chronic

infection, in particular in mucoid isolates. Our results show that the

mucoid isolates are protected from the antimicrobial activity of

PMNs in the CF lung by both alginate which act as a ROS

scavenger but also by their ability to produce rhamnolipids which

provide a shield against cellular components of the innate immune

response. This also suggest that a treatment with drugs interfering

with QS and in particular the lower hierarchy of QS regulated

virulence factors such as rhamnolipids might be useful not only in

the early stages of the infection but also in the treatment of chronic

infections with QS producing strains.

Materials and Methods

CF patients and bacterial strains
In the present study, 238 P. aeruginosa isolates obtained from

152 Scandinavian CF patients have been investigated. The

random collection consist of 31 non-mucoid isolates from

intermittently colonized patients, 35 non-mucoid isolates from

chronically infected patients and 86 pairs of mucoid and non-

mucoid isolates (172 isolates) from chronically infected patients.

The 152 patients were distributed in five CF centers in

Scandinavia as follows: Copenhagen, 22 intermittently and 62

chronically infected patients; Aarhus, 13 chronically infected

patients; Lund, 9 intermittently and 16 chronically infected

patients; Uppsala, 11 chronically infected patients and Oslo, 19

chronically infected patients. The mean duration of the lung

infection in chronically infected patients was 15 years (from 1 and

up to 32 years).

The CF patients were considered chronically infected when P.

aeruginosa was cultured in the sputum for six consecutive months or

serum precipitating antibodies to P. aeruginosa $2 by crossed-

immuno-electrophoresis [41].

Sputum samples obtained by expectoration or endolaryngeal

suction were Gram-stained and examined under the microscope to

confirm the origin from the lower airways with the exception of

the samples from Norway. The sputum samples of the 152

Scandinavian CF patients were plated on Blue agar plates (a

modified Conrad Drigalski medium selective for Gram-negative

rods, Statens Serum Institute, Copenhagen, Denmark containing

peptone 10 g, yeast extract 5 g, NaCl 5 g, agar 11 g, detergent

0,05 g, Sodium thiosulphate 1 g, bromthymolblue 0,1 g, lactose

9 g and glucose 0,4 g).

When mucoid and non-mucoid P. aeruginosa isolates were

simultaneously isolated from sputum samples, both phenotypes

Figure 7. Association between occurrence of mutations in the QS genes and the mutability of the isolates. Box and whisker plots
represent the median (thick line inside the box), 10, 25, 75 and 90 centiles of the mutation frequency measured by the occurrence of spontaneous
antibiotic resistance in isolates with mutations in both QS regulatory genes (lasR2rhlR2), only in one of the regulatory genes (lasR2rhlR+) or
(lasR+rhlR2) or without mutations in either of the regulatory genes (lasR+rhlR+). Mann-Whitney test was used to investigate the significance of the
differences between the groups.
doi:10.1371/journal.pone.0010115.g007

QS and P. aeruginosa in CF

PLoS ONE | www.plosone.org 7 April 2010 | Volume 5 | Issue 4 | e10115



were collected from the Blue agar plate (Gram negative selective

growth media).

Genotyping by pulsed-field gel electroforesis (PFGE)
All isolates were typed by PFGE as described previously using

SpeI enzyme [42,43]. After PFGE, the band patterns were

visualized by ethidium bromide staining and then photographed

(GelDocTM imaging system, Bio-Rad, Munich). The patterns were

analyzed by FingerprintingTM II software, Bio-Rad, CA, USA).

The clonal relatedness of the individual pairs of mucoid and non-

mucoid P. aeruginosa was confirmed according to Tenover [44].

Isolates with PFGE patterns that differ from each other by two to

three bands were considered clonally related, as this pattern is

consistent with a single genetic event, i.e. a point mutation or an

insertion or deletion of the DNA. Isolates with PFGE patterns that

differed by more than three bands were considered to belong to

different strains.

Measurement of mutant frequencies in cultures of P.
aeruginosa isolates

Mutation frequencies can be determined via fluctuation

analysis [45]. However, because fluctuation analyses are

laborious and the present study comprised 238 P. aeruginosa

isolates, we took advantage of the fact that mutation frequencies

and mutant frequencies are proportional in sufficiently large

cultures. To determine mutant frequencies each bacterial isolate

was grown overnight in 100 ml Luria-Bertani (LB) medium,

upon which 20 ml culture was centrifuged at 3,000 rpm for

10 min, and resuspended in 1 ml LB medium. A 100 ml volume

of undiluted, 1021 diluted and 1022 diluted was plated on LB

plates containing 300 mg/ml rifampicin and on LB plates

containing 500 mg/ml streptomycin. A 100-ml volume of 1027

to 10210 dilutions was plated on LB plates. After incubation at

37uC for 48 h the numbers of CFU were counted, and the

frequencies of rifampicin resistant and streptomycin resistant

mutants were calculated.

According to the mutant frequencies the isolates were grouped

in strong mutators (20 times the mutant frequency of PAO1

($261027), weak mutators (.161028,261027) or nonmutators

[46,47].

DNA sequence analysis of lasR, rhlR, lasI and rhlI genes
lasR, rhlR, lasI and rhlI genes from all isolates were PCR

amplified using the primer sets described below. After purification

(Promega Wisart purification kit, Madison,USA) the PCR

products were sequenced on a Macrogen automatic DNA

sequencer ABI3700. The number of reads was between two and

four for each gene of each strain. The sequencing results were

compared with the strain PAO1 sequence (www.pseudomonas.

com) with DNASIS Max vesion 2.0 (Hitachi software Engineer-

ing), in order to determine the occurrence of sequence variations.

Complementation of the lasR mutations in the clinical P.

aeruginosa isolates was done by electroporation of plasmid MH645

(Plac-lasR cloned in BamHI site of pBBR1-MCS5 [48]). The

success of complementation was verified by the reestablishment of

the protease activity.

For PCR amplification and sequencing the following primers

were used.

lasR start 59- ATGGCCTTGGTTGACGGTT-39

lasR stop 59-GCAAGATCAGAGAGTAATAAGACCCA-39

lasI start 59- ATGATCGTACAAATTGGTCGGC-39

lasI stop 59- GTCATGAAACCGCCAGTCG-39

rhlR Fw 59GCCATGATTTTGCCGTATCGG-39

rhlR rev 59- CGAGCATGCGGCAGGAGAAGC-39

rhlI Fw 59- GGAGTATCAGGGTAGGGATGC-39

rhlI rev 59- CGAGCATGCGGCAGGAGAAGC-3

Determination of elastase activity, rhamnolipid and
signal molecule production

Bacteria from 280uC freeze stocks were plated onto blue agar

plates (State Serum Institute, Denmark) and incubated at 37uC
overnight. From each plate (representing an isolate) one colony

was selected and grown as a overnight culture in either ox-broth

(for elastase activity) or AB trace minimal medium containing

3 mM glucose (32) at 37uC with shaking (rhamnolipid and signal

molecules production). The supernatant was either dialyzed

against sterile water (for elastase activity) or sterile filtered using

0.2 mm pore filters (16543; Sartorius), frozen and kept for further

analysis.

Elastase activity. Elastase activity was determined in a

spectrophotometric assay using elastin-Congo red (Sigma) as a

substrate, as previously described [49].

Rhamnolipid production. Liquid chromatography/electron

spray ionization mass spectrometry (LC-ESI-MS) data on pure

rhamnolipid was used to produce a standard curve for

rhamnolipid B (concentration vs. total ionization current (TIC)).

The rhamnolipid standards used for calculating the concentration

curve were analyzed immediately prior to, as well as after analysis

of the samples, in order to minimize potential differences in

ionization levels of rhamnolipid between the samples.

Rhamnolipid concentrations were normalized to the standard

curve for rhamnolipid B. In the analysis the total rhamnolipid

concentration was derived from the six major rhamnolipids, with

the following masses [M+NH4]+: 668,4; 694,4; 696,4; 522,4;

548,4 and 550.4. These equate to C10-C10-rha-rha, an

unidentified C10-C12D-rha-rha, C10-C12-rha-rha, and the

respective mono-rhamnose derivatives. BHPLC-MS analysis

was performed with an agilent 1100 series high performance

liquid chromatography (HPLC) connected to a micromass LCT

TOF MS.

Measurement of signal molecules. The measurements for

QS signal molecules were performed in ‘‘black 96 welled

microtiter plates’’ (Nunc, black PolyBase, USA), using specific

QS reporter strains. The reporter strains used were previously

described: MH205 (C4-HSL) [50] and MH155 (3oxo-C12-HSL)

[51]. ABT minimal media supplemented with thiamin (25 mg/ml),

0.5% glucose and 0.5% casaminoacids was used to grow the

reporter strains. For controls 10 mM N-butanoyl-L-homoserine

lactone (BHL), 10 mM N-Dodecanoyl-DL-homoserine lactone

(DDHL) and supernatant from a wild type P. aeruginosa was used.

Overnight cultures of each strain were prepared in 5 ml LB and

5 ml ABT supplemented with 0.5% glucose and 0.5%

casaminoacids, respectively. For QS signal molecule

measurements, 2 fold dilutions of the sterile filtered cultures

were performed with a final volume of 150 ml. To each well 150 ml

of the appropriate monitor strain diluted to OD450 0.1, was added.

The plate was then incubated and read in a Multi Label reader

(wallac 1320Viktor, Perkin Elmer). Measurements of turbidity at

OD450 and fluorescence (excitation 485 nm and emission 535 nm)

were done every 15 minutes for 17 hours. The temperature was

kept at 37uC.

Ethics
The Danish, Norwegian and Swedish Research Ethics Com-

mittees approved the collection of bacteria and informed written

consent was obtained from all patients.
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Statistical analysis
The description and analysis of the data were carried out using

StatViewH 5.0.1. software.

The distribution of the data did not follow in all groups a

Normal distribution and therefore the data are presented as

median [ranges] and the graphic representation was done by box-

plots indicating the median, 10, 25, 75 and 90 centiles of the

groups. The dots outside the whiskers represent single isolates with

values smaller than in 10% or higher than in 90% of the isolates.

The nonparametric Mann-Whitney test was used for compar-

ison between the different groups. Categorical data were analyzed

in frequency tables that fulfilled the guidelines for ‘‘ a large

sample’’ approximation and x2 test was used to test the null

hypothesis (e.g. QS producers in mucoid vs nonmucoid isolates).

The level of significance was 5%.
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