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The tumor microenvironment (TME) is an intricate system within solid neoplasms. In this
review, we aim to provide an updated insight into the TME with a focus on the effects of
tumor necrosis factor-a (TNF-a) on its various components and the use of TNF-a to
improve the efficiency of drug delivery. The TME comprises the supporting structure of the
tumor, such as its extracellular matrix and vasculature. In addition to cancer cells and
cancer stem cells, the TME contains various other cell types, including pericytes, tumor-
associated fibroblasts, smooth muscle cells, and immune cells. These cells produce
signaling molecules such as growth factors, cytokines, hormones, and extracellular matrix
proteins. This review summarizes the intricate balance between pro-oncogenic and
tumor-suppressive functions that various non-tumor cells within the TME exert. We
focused on the interaction between tumor cells and immune cells in the TME that plays
an essential role in regulating the immune response, tumorigenesis, invasion, and
metastasis. The multifunctional cytokine, TNF-a, plays essential roles in diverse cellular
events within the TME. The uses of TNF-a in cancer treatment and to facilitate cancer drug
delivery are discussed. The effects of TNF-a on tumor neovasculature and tumor
interstitial fluid pressure that improve treatment efficacy are summarized.

Keywords: tumor microenvironment, tumor necrosis factor-a, transforming growth factor beta, extracellular
matrix, interstitial fluid pressure
INTRODUCTION

The tumor microenvironment (TME) is a complex biological ecosystem of solid tumors
encompassing all the cells and structures found in healthy organ tissue (1). These include, but
are not limited to, blood vessels, immune infiltrates, fibroblasts, and the extracellular matrix. Tumor
cells, immune cells, fibroblasts, myofibroblasts, and microvascular structures such as vascular
endothelial cells and pericytes found within the TME play various critical roles in regulating tumor
initiation and progression (1–3). These cell types can control tumor growth through their normal
regulatory functions. However, the dysregulation of these cells can promote tumor growth and
metastasis. Recent studies demonstrate that the relationships between cancer cells and their
surrounding microenvironments affect cancer cell survival, growth, proliferation, epithelial-
mesenchymal transition (EMT), and metastasis (4). Thus, the modulation of the TME as a target
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for clinical applications is an area of interest in cancer
treatments. Communication between neoplastic cells and the
TME is conducted mainly through standard mechanisms
observed in communication between healthy cells in normal
organ tissue: through intercellular junctions and receptor-signal
pathways encased in a three-dimensional extracellular matrix
(ECM). Glycoproteins, proteoglycans, cytokines, and growth
factors provide structural support and information exchange
(5). In both normal tissue and solid cancers, TNF-a has
diverse regulatory roles in the TME depending on the type
of cells.

TNF-a is, to a large degree, produced by macrophages but
also by other immune cell types, including lymphoid cells, mast
cells, and by non-immune cells such as endothelial cells,
fibroblasts, and smooth muscle cells (6–9). The members of
the TNF-a family exert their effects through two distinct
receptors, TNFRSF1A (TNFR1) and TNFRSF1B (TNFR2).
TNFR1 is ubiquitously expressed and found in all cell types.
Among many diverse effects induced by TNF-a, the major role of
TNFR1 is the initiation of apoptosis through its death domain,
which is not found on TNFR2 (9). Seemingly contradictory to its
apoptotic signaling function, activation of TNFR1 also can
induce cell survival mechanisms (9). The determination of the
final downstream activity of this receptor is based on the
concentration of TNF-a in the microenvironment as well as
the effects of other involved cytokines. TNFR2 is mostly found
on immune cells, where its pathway activation by TNF-a assists
in regulating the immune response and inflammation. TNFR2
activation on immune cells within the TME and cancer cells
themselves can promote tumor growth and progression (10).
Increased TNFR2 expression found on regulatory T cells within
the TME can suppress the immune response and prevent
activation of cytotoxic T cells, which decreases the ability of
the immune response to suppress the tumor (10, 11). Myeloid-
derived suppressor (MDSC) are a group of immature cells that
can differentiate into several different immune cell types, but in
their immature state, are potently immunosuppressive (10).
TNF-a can suppress the MDSC differentiation and induce
a c c umu l a t i o n o f MDSC , wh i c h enh an c e s t h e i r
immunosuppressive effects in the TME through TNFR2
signaling (10, 12, 13).

Through its roles in apoptosis, angiogenesis, and immune cell
recruitment and regulation, as well as its function in assisting
with the construction of the ECM, this review summarizes many
roles of TNF-a and its relation to the various components of the
TME. Many cell-signaling mechanisms are involved in these
functions, and we attempt to explain the roles of these pathways
in relation to this versatile cytokine. Through the understanding
of these pathways, scientists and clinicians are finding ways to
exploit them as therapeutic targets. For example, inhibition of
endogenous TNF-a is a standard of care for chronic
inflammatory diseases such as ulcerative colitis, Crohn’s
disease, rheumatoid arthritis, and several other diseases. In
addition, TNF-a was previously used with good efficacy in
patients with limb soft tissue sarcomas (STS) and in-transit
melanoma by targeting the hap-hazard neovascular growth
Frontiers in Immunology | www.frontiersin.org 2
within the TME of these lesions (14–16). In this review, it is
evident that there are many potential applications to manipulate
TNF-a pathways, specifically in its role in the TME for
cancer therapy.
TNF-a PATHWAY AT GLANCE

Research dating back more than twenty years has shown that the
TNF-a superfamily comprises at least 19 members that signal
through 29 receptors (17). It is a pleiotropic cytokine, binds two
receptors – TNFR1(receptor type 1: CD120a; p55/60) and
TNRFR2 (TNF receptor type 2; CD120b; p75/80) – and is
produced by many different types of cells (17). Unlike the
TNFR2 expression which is limited to immune cells and a few
other cell types, TNFR1 expression is present in various cell types
(18–20). TNF-a binds to these receptors resulting in several
diverse effects, cell proliferation, survival, and apoptosis (21–23).
Abnormal production of TNF-a and TNF receptor signaling has
been associated with the pathogenesis of several inflammatory
diseases including rheumatoid arthritis, Crohn’s disease,
atherosclerosis, psoriasis, and cancer (24). TNF-a has both
tumor-promoting and tumor-suppressing roles in the TME. It
is well reported that the tumor parenchyma and the TME
continuously produce endogenous TNF-a, which induces
tumor angiogenesis and promotes progression. The innate
immune cells of the TME secrete various cytokines such as
TNF-a and interleukin-6 (IL-6), which can promote cancer
cell survival (25) and induce the expression of vascular
endothelial cell adhesion molecules (CAM) that facilitate
extravasation of leukocytes (26). TNF-a mediated matrix
metalloproteinase (MMP) production in tumor cells or the
TME also promotes tumor expansion (27, 28).

TNF-a plays an important role in tumor metastasis. It
increases the expression of angiogenic factors such as basic
fibroblast growth factor (bFGF), interleukin-8 (IL-8), and
vascular endothelial growth factor (VEGF) in endothelial cells
of the TME. TNF-a induced the expression of adhesion
molecules such as intracellular adhesion molecule (ICAM)-1,
E-selectin, and VCAM-1 in liver sinusoidal endothelial cells and
induced tumor metastasis (29). So far, several FDA-approved
TNF-a inhibitors, such as infliximab, etanercept, and
adalimumab have been used to treat various human illnesses
(30). We have summarized the multiple roles of TNF-a in
different solid cancers based on preclinical studies (Table 1).
TNF-a MEDIATED SIGNALING PATHWAYS
IN THE TME

Two different forms of TNF-a have been identified: (i) soluble
TNF-a (sTNF-a) and (ii) transmembrane TNF-a (mTNF-a)
(42). The mTNF-a is the precursor of sTNF-a. TNF-a
converting enzyme (TACE) can cleave mTNF-a, releasing
sTNF-a. Previous findings reported dual roles of TNF-a based
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on the exposure time and cytokine levels reached within the
TME (33). Soluble TNF-a mostly binds with TNFR1 and
controls the inflammatory immune response, whereas mTNF-
a mostly binds with TNFR2 and controls cell proliferation,
survival, and other biological activities. The interaction
between mTNF-a and TNFR2 is dependent on responses to
different signaling pathways. In colorectal cancer, TNFR2
modulates the expression of Ki67, influences fibroblast
associated protein and a-smooth muscle actin, and increases
cellular proliferation and migration (43). Anti-TNFR2 antibodies
suppress tumor-associated regulatory T cells (Tregs) and inhibit
ovarian cancer cell proliferation (44). Ligand binding to TNFR2
leads to the activation of NF-kB and several kinase pathways,
including JNK, p38, MAPK, ERK, and PI3K (45). Apart from
NF-kB and kinase pathways, other processes and signaling
pathways, such as EMT and TGF-b receptor-mediated
signaling, are also critically regulated through TNF-a signaling
(described in detail below). We have summarized different
oncogenic signaling pathways such as b-catenin, STAT3, PI3K/
PTEN/AKT/mTOR, p53, which are directly or indirectly
regulated by TNF-a in Table 2.
ROLE OF TNF-a IN TGF-b RECEPTOR
MEDIATED SIGNALING PATHWAYS

The multifunctional cytokine transforming growth factor-beta
(TGF-b) regulates cell growth, extracellular matrix protein
synthesis, and immune cell functions (53). In normal and
premalignant cells, TGF-b acts as a tumor suppressor through
the induction of apoptosis. However, when cancer cells have
mutations or lose tumor suppressor genes, cells become resistant
TGF-b mediated growth arrest. The crucial role of the TGF-b
signaling pathway in the TME has been demonstrated in several
studies. Several molecules regulate the TGF-b pathway, among
them, TNF-a is of significant importance. However, it is not
clear whether TNF-a directly or indirectly interacts with the
TGF-b pathway. Understanding the molecular mechanisms of
the antagonistic activities of TNF-a against TGF-b is critical.
Frontiers in Immunology | www.frontiersin.org 3
Studies have demonstrated that TNF-a inhibits TGF-b and ECM
production, such as type I collagen and elastin in cancer cells and
fibroblasts (47, 54, 55). TGF-b inhibits cancer growth through
the activation of tumor angiogenesis and regulates prominent
compounds involved with cancer-associated fibroblasts (CAF) in
TME (56). Fibroblasts have been shown to facilitate cancer
progression by supporting tumor growth, extracellular matrix
remodeling, angiogenesis and by mediating tumor-promoted
inflammation (57). Recent research has clarified the
relationship between TGF-b regulation mediated by TNF-a
and CAF. In brief, TNF-a triggers the downregulation of TGF-
b receptor II leading to desensitization of human dermal
fibroblasts toward TGF-b. Additionally, TNF-a impaired the
response of the cells to TGF-b by regulating the turnover of TRII
(47). Normal fibroblasts acquire characteristics of CAFs when
stimulated with TNF-a. The most widely used marker for CAFs
is a-smooth muscle actin (a-SMA). TGF-b induces a-smooth
muscle actin expression in fibroblasts (58).
ROLE OF TNF-a IN NF-kB PATHWAYS

The TME contains various types of cells, including tumor-
associated macrophage (TAMs), dendritic cells, myeloid-
derived suppressor cells, neutrophils, mast cells, natural killer
T (NKT) cells, cancer-associated fibroblast (CAFs) and
endothelial cells (59). The nuclear factor kappa-light chain
enhancer of activated B cells (NF-kB) functions in these cell
types and modulates inflammation, tumorigenesis, and
metastasis. NF-kB activates several inflammatory genes in
TABLE 1 | The roles of TNF-a in different cancer types.

Cancer Type Known TNF-a target pathways

Prostate cancer Induce pro-survival signaling in androgen-dependent prostate
cancer (31)
Sensitize the cells to irradiation to induced apoptosis in
LNCaP cells (32)
Induce apoptosis in androgen-sensitive and insensitive
LNCaP and PC-3, respectively (33)

Breast Cancer Promotes the growth of breast cancer in MDA-MB 468 and
SK-BR3 cells (34)
Inhibits proliferation and tumorigenesis (35)

Lung Cancer Induce apoptosis in H292 and H1975 cell lines (36)
Induce cell necrosis in H460 cells (37)

Melanoma Inhibits apoptosis in A375, WM266.4, and Colo829 (38)
Cervical Cancer Induce apoptotic cell death in cervical cancer cells (39)
Ovarian Cancer Induce apoptotic cell death (40)
Hepatocellular
carcinoma

Induce EMT (41)
TABLE 2 | The roles of TNF-a in different transcription factors, cytokines, and
signaling pathways by cancer type.

Cell type Known TNF-a target
genes

Effects

Breast Cancer
(MDA-MB-231, MCF7, and HCC1937)

TIPE2 (35) Induced

Lung Cancer
(H292, H1299, H1975 and H460)

NF-kB (36) Inhibited

Melanoma
(A375, WM266.4, and Colo829)

BRAF (38) Inhibited

Ovarian Cancer
(SKOV-3, MDAH-2774, OVCAR-3)

AKT (46) Induced

Human Dermal b Fibroblast TGF-b (47) Inhibited
Prostate carcinoma cells
(LNCap)

PI3K/AKT (48) Inhibited

Hepatocellular carcinoma
(HepG2, SK-Hep-1, L02, MHCC97-H,
MHCC97-L, and Huh7)

PI3K (41) Induced

Human colon carcinoma stem cells
(HT29)

WNT (49) Induced

Hepatocellular carcinoma
(HepG2, SK-Hep-1, L02, MHCC97-H,
MHCC97-L, and Huh7)

GSK 3-b/b-catenin
(41)

Induced

Breast Cancer
(MCF‐7 and MDA‐MB‐231)

Nur77 (50) Induced

Breast cancer
(MDA-MB-231 and MDA-MB-468)

CCL2 (51) Induced

Gallbladder Cancer
(GBC-SD and SGC-996)

ERK1/2/AP-1/VEGF-D
(52)

Induced
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response to cytokines like TNF-a and IL-1, as well as to bacterial
endotoxin and physical stress. Whiteside reported NF-kB
activation in myeloid cells enhances inflammation in the TME
(60). When cells are stimulated by an extracellular signal such as
TNF-a, NF-kB is activated and enters the nucleus to bind to
target genes and promotes cell death or increases cell survival in a
context-dependent manner (61). In lung carcinoma cells,
deoxynivalenol induces dependent proteolytic cleavage of
TNFR1 through the activation of ERK and p38 MAPK, and
subsequently inhibits the TNF-a-induced NF-kB signaling
pathway (62). Tang et al. reported that in oral squamous cell
carcinoma, TNF-a activates the NF-kB pathway, which
promotes invasion and metastasis (63). In addition, NF-kB is
also an important player in modulating the tumor-associated
macrophages (TAM). The NF- kB pathway regulates anti and
pro-inflammatory signaling pathways in the TME through
tumor-associated macrophage (TAM) regulation.
ROLE OF TNF-a IN THE RECEPTOR
TYROSINE KINASE PATHWAY

Receptor tyrosine kinases (RTK) act as a mediator between the
extracellular and intracellular compartments by transferring
signals from the TME into the tumor cells (64). So far, 58
different RTKs have been discovered in humans and classified
into 20 different subfamilies based on their structural features,
and activation of these enzymes is well defined to regulates
various cellular processes (64). Mutations in RTKs and their
associated downstream signaling pathways have oncogenic roles
in many solid cancers, hence the development of targeted
therapy specifically for these RTKs (64). However, many
cancer types often acquire treatment resistance to various RTK
inhibitors such as VEGFR inhibitors (bevacizumab), EGFR
inhibitors (gefitinib), and FGFR inhibitors (AZD4547) (65).
The mechanism associated with RTK inhibitors to disrupt
neoplastic cellular growth are (i) immunogenic modulation of
the TME and (ii) immune subset conditioning (66). RTK
inhibitors induce immunogenic modulation via tumor cell
sensitivity to immune cells-mediated lysis through an
alternation in tumor cell phenotype and cause immune subset
conditioning by activating immune cells and suppressing the
immune suppressor cells in the TME (66).

TNF-a regulates multiple RTK pathways, including mitogen-
activated protein kinases (MAPK) (i) extracellular-signal-
regulated kinases (ERKs); (ii) cJun NH2-terminal kinases
(JNK); and (iii) p38 MAP kinases pathways. Downregulation
of MAP2K isoforms MKK4 and MKK7 in mice model prevents
TNF-a mediated JNK activation (67, 68).

Apart from MAPK pathways, TNF-a signaling also controls
vascular endothelial growth factor receptor (VEGFR), an RTK,
which influences angiogenesis in the TME (69). This happens
through TNFR1 signaling inflammatory macrophages to
upregulate expression of vascular endothelial growth factor
receptor 3, which causes increased production of vascular
endothelial growth factor-C, and in turn, induces angiogenesis
Frontiers in Immunology | www.frontiersin.org 4
(69). The result was validated in vivo in mice with loss of function
of TNFR1 (Tnfr1(-/-)) which reduced lymphangiogenesis and
lymphatic metastasis (69). Tumor-mediated TNF-a and VEGF
production is also associated with integrin receptor alpha V and
beta 3 and beta 5 (avb3/avb5) mediated neovascularization,
which shows an active interaction between tumor cells and
endothelial cells through TNF-a (70). Another study
demonstrated that a weakness of Akt/NF-kB signaling from
TNF-a-mediated cross-talk signaling via EGFR causes the
collateral sensitivity to TNF-a in a gefitinib resistant cell line
(71). For instance, the over-expressions of EGFR and platelet-
derived growth factor receptor a/b have been explored in tumor
growth and progression (72). Sasi et al. confirmed that blocking
of TNFR2/p75 with short-hairpin RNA in a Lewis Lung
Carcinoma cell line induced apoptosis and decreased
expression of the angiogenic growth factors VEGF, HGF, and
PLGF (73). The VEGF inhibitor bevacizumab regulates a process
called vessel normalization during angiogenesis through the
upregulation tumor-infiltrating lymphocytes such as CD4+ and
CD8+T cells in the TME (73). Below we more thoroughly discuss
how TNF-a regulates T cells in the TME.
TNF-a AND EPITHELIAL-MESENCHYMAL
TRANSITION REGULATORY MOLECULES

The epithelial to mesenchymal transition (EMT) is a process
whereby epithelial cells lose epithelial features and acquire
properties of mesenchymal cells. The EMT is classified into
three main types depending upon the biological context. Type
I EMT is observed during embryonic development, Type II
occurs during wound healing and tissue regeneration, and
Type III occurs during cancer progression. Previous findings
demonstrated that TNF-a had been implicated as a major factor
in EMT through cancer initiation and progression in the TME (6,
41, 74). Wang et al. showed that TNF-a induces EMT in human
HCT116 cells and promotes colorectal cancer invasion and
metastasis (75). The zinc finger protein SNAI1 plays a crucial
role in TNF-a induced EMT. TNF-a treatment increased the
expression of SNAI1 but not SLUG, ZEB1or Twist.
Overexpression of SNAI1induced a switch from E-cadherin to
N-cadherin expression in HCT116 cells, which is a characteristic
of EMT. Recent findings from Li et al. showed that TNF-a
mediated NF-kB activation upregulates EMT regulatory gene
TWIST1 expression in breast cancer cells (76). Mikesh et al.
discovered the expression of molecular markers of mesenchymal
phenotype in melanoma. Melanoma cells were treated with TNF-
a in a 3-dimensional culture system, and the changes in the
expression of E-cadherin, N-cadherin, vimentin, and fibronectin
were assessed. Melanoma cells treated with TNF-a reduced the
epithelial marker E-cadherin and induced mesenchymal markers
N-cadherin, vimentin, fibronectin (77). The role of TNF-a in
regulating the EMT in hepatocellular carcinoma cells (SMMC-
7721) was studied by Chen et al. TNF-a is elevated in the
supernatants of M2-tumor-associated macrophages (M2-
TAMs), promoting the EMT of SMMC-7721 cells in vitro (78).
April 2021 | Volume 12 | Article 656908
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EXTRACELLULAR MATRIX AND TUMOR
MICROENVIRONMENT

The TME comprises various cell types embedded in an altered
extracellular matrix (ECM). The ECM is a major structural
component of the TME and is mainly produced by cancer-
associated fibroblasts (CAF) (79). It is largely composed of
fibrous prote ins , g lycoproteins , proteoglycans and
polysaccharides (79). The ECM in solid tumors differs
significantly from normal organs. During cancer progression,
cancer cells cross the ECM and basement membrane. MMPs are
a large family of calcium-dependent, zinc-containing
endopeptidases which are proteolytic enzymes capable of
degrading the macromolecules of the ECM (80). Cancer cells
secrete many members of the MMP family that facilitate the
cellular migration into the ECM and thereby causing local
invasion and can lead to metastasis (80). This process is largely
regulated by TNF-a. Dilshara et al. reported that mangiferin
inhibits TNF-a induced MMP9 expression and cellular invasion
by suppressing the NF-kB activity in human LNCaP prostate
carcinoma cells (81). An isoquinoline derivative compound,
berberine inhibits TNF-a induced MMP9 and cell invasion
through the inhibition of AP-1 activity in MDA-MB-
231human breast cancer cells (82).

Several studies demonstrated that the biologic phenotype of
cancers not only depends upon the activities of cancer cells but
also tumor-infiltrating immune cells in the TME. TNF-a is
produced by macrophages and other immune cells, including
dendritic cells, B cells, activated natural killer cells, and activated
T cells (83, 84). We summarized the effects of TNF- a on various
non-cancerous cells in the TME below (Table 3).
MACROPHAGES

The main function of a macrophage is to engulf and digest
foreign substances, cellular debris, and other components of the
TME. Once macrophages are recruited into the TME, they are
polarized into M1 or M2 TAMs depending on the varying
concentrations of cytokines in the TME. A high density of
TAMs can be found in several cancers such as pancreatic (85),
breast (86), ovarian (87), and esophageal (88) and is associated
with adverse prognostic features (86, 89, 90). However, the story
of TAMs is more sophisticated than simply the number of cells in
the TME. There are two types of mature macrophages: (i)
classically activated macrophages (M1) and (ii) alternatively
activated macrophages (M2). M1 and M2 macrophages play an
important role in immune regulation in the TME. TAMs are a
significant producer of TNF-a within the TME and interestingly
are also highly responsive to TNF-a. The M1 macrophage can be
stimulated to secrete a high level of TNF-a, resulting in high
concentrations of superoxide, free oxygen, and nitrogen radicals
(91) which promotes cell death in TME. M2 TNF-a secretion has
been shown to promote EMT and induce “stemness” in an in
vitro hepatocellular carcinoma model (78). Porta et al. reported
that the p50 subunit of NF-kB plays an important role in
Frontiers in Immunology | www.frontiersin.org 5
macrophage polarization both in vitro and in vivo. They
concluded that the p50 homodimer inhibited the NF-kB
signaling pathway and induced macrophages to display an M2
phenotype with reduced expression of TNF-a and inducible
nitric oxide synthases (iNOS) (92). M2 macrophages produce
anti-inflammatory cytokines such as IL-10, IL-13, and TGF-b
that may facilitate tumor development in TME. Experimental
therapies to date have focused on depletion of M2 macrophages
in the TME, specifically in glioblastoma through the inhibition of
the colony-stimulating factor-1 receptor, which skewed
macrophage polarization in the TME away from M2 and
toward M1 in vivo (93). Data from another group using
multiple different tumor models in vitro and in vivo showed
higher TNFR activation shifts the balance toward the M1
phenotype and partially inhibited gene expression, specifically
characteristic of M2 TAMs (94).
NEUTROPHILS

Like macrophages, two types of neutrophil populations have
been identified within the TME. First described by Fridlender
et al. in mesothelioma in vitro and xenograft model, the tumor-
associated neutrophils (TAN) are polarized into a subpopulation
of anti-neoplastic (N1) or, through induction by TGF-b within
the TME, pro-neoplastic (N2) neutrophils (95). While TNF-a
has not been directly implicated in this polarization, its role in
TGF-b pathway and the other pathways in which it modulates
neutrophil activity described below highlights the importance of
neutrophil-neoplasm interaction. In normal vasculature in vivo,
TNF-a increases neutrophil recruitment and endothelial
adhesion via cytoskeletal remodeling (96, 97). TNF-a also has
a “priming” effect on neutrophils, causing them to be more
responsive to stimuli (98). This priming causes a respiratory
burst and the generation of intracellular reactive oxygen species
(ROS) and reactive nitrogen species (RNS) for neutrophils to
interact with pathogens and to modulate local inflammation. In
in vitro model of pancreatic ductal adenocarcinoma, neutrophils
promoted EMT and metastasis in co-culture (99). In these
experiments, cancer cells caused neutrophils to secrete large
amounts of TNF-a and TGF-b in a co-culture model,
indicating that the cytokines were responsible for regulating
the EMT and the metastasis (99). A recent study demonstrated
higher levels of circulating TNF-a in patients with breast cancer.
The neutrophils from these patients exhibit more cytotoxicity
against breast cancer cell lines ex-vivo than that of the
neutrophils from patients without breast cancer (100). This
work also showed that neutrophils from patients with and
without breast cancer exposed to TNF-a ex-vivo exhibited
enhanced cytotoxicity, with even further cytotoxicity seen in
patients with breast cancer (100). TNF-a and TANs interact in
many ways: 1) TANs are recruited into tumors partially from the
influence of TNF-a 2) T cells attract and prime TANs with TNF-
a 3) N1 TANs can attract cytotoxic T cells by TNF-a secretion 4)
TANs can activate dendritic cells with TNF-a and assist CD4+ T
cells with anti-neoplastic memory (101). In summary, neutrophil
April 2021 | Volume 12 | Article 656908
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secretion of and reaction to TNF-a causes many interactions in
the TME may be exploited as potential targets in cancer therapy.
T CELLS

A heterogeneous population of tumor‐infiltrating lymphocytes,
CD8+ cytotoxic T cells, CD4+ helper T cells, and regulatory T
cells (Tregs) are present in the TME. As with both TAMs and
TANs, these tumor-infiltrating lymphocytes either suppress or
enhance tumor growth. Previous studies demonstrated that T
cell responses are regulated by TNFR activation and mediated
cross-talk between T cells and other cell types. The TNFR
superfamily (TNFRSF) OX40, 4-1BB, CD27, and DR3 are
associated with TNFR associated factors (TRAF). In detail,
TRAFs can bind with the a subunit of NF-kB and I Kappa B
Kinase Beta (IkB kinase-b) to assist in the activation of both
canonical and non-canonical NF-kB signaling pathways. OX40,
4-1BB, and CD27 mediated activation of signaling pathways in
CD4+ and CD8+ T cells increase the expression of the anti-
apoptotic molecule BCL-2, which correlates with the promotion
of T cell survival (102). Prior work has demonstrated that the
treatment with recombinant human TNF-a in a B16F10
melanoma mouse model of lung metastasis increased tumor
burden and metastatic foci and was associated with increased
numbers of pulmonary regulatory CD4+/Foxp3+ T cells. TNF-a
activates TNFR2 on Tregs which helps expand the
immunosuppressive role of the immune cell population by
inducing CD8+ and CD4+ T cells. But the accumulation of
Tregs can be prevented through dysregulation of TNF-a or
TNFR2 which creates less tolerogenic environment and
prevents B16F10 tumor metastasis and growth (103). Hu et al.
reported that TNFR2 progranulin induced the proliferation of
suppressive mouse CD4+/Foxp3+ regulatory T cells (104).
Therefore, the targeting of T cell-associated mechanisms has
been considered a major strategy for cancer immunotherapy.
DENDRITIC CELLS

The antigen-presenting cells (APC), dendritic cells (DC) can take
up, process, and present different types of antigens, including
tumor antigens, to naïve T cells. This antigen presentation can
induce the creation of tumor-specific cytotoxic T cells (105). DC
can also downregulate the immune response or induce immune
tolerance in the TME through exposure to different stimuli. For
example, when exposed to thymic stromal lymphoprotein from
tumor or thymus (105), or TNF-a (106), DC express OX40
ligand, which is a member of the TNF superfamily (TNFSF4).
The T cell membrane OX40 binds to OX40L on DC and induces
a phenotypic subtype of CD4+ T cells, promoting tumor growth
(105). DC induced CD4+ T cells to polarize to this subtype which
highly secreted IL-13, which promoted breast cancer progression
in vivo (107). Conversely, a subset of inflammatory DC which
secrete TNF-a and produce nitric oxide are known to be tumor
suppressive (108, 109). In vivo adjunctive use of this
Frontiers in Immunology | www.frontiersin.org 6
inflammatory DC subtype was shown to potentiate the effect of
adoptive cell transfer, allowing for a more potent treatment
strategy for cancer immunotherapy (108).
ROLE OF TNF-a IN CANCER STEM CELLS

The cancer stem cells (CSC) is a subpopulation within a primary
cancer that have the potential to differentiate into a more mature
phenotype and exhibit properties of self-renewal and
immortality. CSC were first described in acute myeloid
leukemia (AML) from the identification of a subset of specific
surface proteins, which were found to regenerate AML in vivo
(110). Since this initial description, they have been described in
many different solid cancers in addition to hematologic
malignancies and are implicated in chemotherapy resistance
and progression to metastasis (111). Accumulating evidence
suggests that TNF-a has a role in CSC regulation. TNF-a
increased the breast CSC population through NF-kB/HIF1a/
Slug (112). Zhao et al. reported that TNF-a treatment in a colon
cancer cell-line (NCM460) derived spheroids induced NF-
kB and Wnt/b-catenin pathways which can accelerate
malignant transformation in intestinal stem cells (113).
Additionally, using an osteosarcoma cell line in vitro, Yao et al.
showed TNF-a exposure upregulated a specific microRNA (miR-
155) and found that miR-155 produced a stem cell-like phenotype
which promoted cancer progression (114). Suggested by these
studies, the role of TNF-a in CSCmay contribute to tumorigenesis
and progression. However, other TNF-a-related tumor-
suppressive effects may counter the effects of TNF-a on CSC.
TNF-a MEDIATED MicroRNA
REGULATION

MicroRNAs (miRNA) are short non-coding RNAs that regulate
gene expression at the post-transcriptional level by binding to the
3’-untranslated region of their targeted mRNA resulting in the
suppression of protein production. miRNAs are dysregulated in
several cancer types. Thus, understanding the role of miRNAs in
the TME is crucial (115). The remodeling of miRNAs in the TME
has a role in tumor growth, metastasis, and resistance to
treatment. Several miRNAs are released from neoplastic cells
into the TME and regulate the functions of endothelial cells,
immune cells, and fibroblasts. Previous studies from several
TABLE 3 | The effect of TNF-a on various cell types in the TME.

Cell type Effects

Macrophages TNF-a secreted by M1
M2 phenotype inhibition

Neutrophils Recruitment into the TME
Priming and enhanced cytotoxicity

T cells Enhances CD4+ memory
Causes Treg accumulation and immunosuppression

Dendritic cells Induce pro-tumorigenic CD4+ T cells
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groups reported that miR-145, miR-15a, miR-29a, miR-181A,
miR-19a, miR-130a, miR-21, miR-765 are regulated by TNF-a in
several cancers produced by both cancer cells and TME-related
immune cells. Eleven miRNAs were shown to be differentially
expressed between cancer-associated fibroblasts and healthy
tissue, and 114 upregulated and 85 downregulated miRNAs
have been identified in gastric cancer mesenchymal stem cells
(GC-MSCs) (116). Zeng et al. showed that the tumor suppressor
miR-145 is downregulated in triple-negative breast cancer cell
lines MDA-MB-231, and when treated with TNF-a, this miRNA
is overexpressed and induces apoptosis (117). Co-
immunoprecipitation data revealed that miR-145 facilitates the
formation of RIP1-FADD -caspase 8-mediated apoptotic
complex with TNF-a treatment (118). Huang et al. showed
that miR-19a is associated with lymph node metastasis and
mediates TNF-a induced EMT in colorectal cancer (119).
Furthermore, miR-19a is upregulated by TNF-a and miR-19a
is required for TNF-a induced EMT and metastases in CRC cells
(120). TNF-a also has a role in nuclear translocation of NF-kB
followed by induction miR-130 and expression and
downregulation of TNF-a (121). Higher levels of TNF-a have
been observed in B-cell chronic lymphocytic leukemia (CLL)
(122). Some miRNAs can regulate the TNF/TNFR gene
superfamily in CLL (122). Therefore, the identification of the
cross-talk between TNF-a and miRNAs could show promising
effects for chemotherapeutic agents to control the TME.
CLINICAL USES OF TNF-a AND ITS
IMPORTANCE IN DRUG DELIVERY

Carswell et al. discovered in 1975 TNF in the serum of bacilli
Calmette-Guérin infected mice inoculated with endotoxin and
found that “the substance” induced in vivo hemorrhagic necrosis
in sarcoma. The substance was named “tumor necrosis factor”
(123). Since then, the clinical utility of TNF-a is limited due to its
severe systemic toxicity. To mitigate systemic toxicities, the
application of TNF-a in cancer treatments became significantly
more sophisticated. Its combined use with chemotherapeutic
agents in isolated limb perfusion (ILP) has shown good results
in tumor response and limb salvage in patients with soft tissue
sarcomas (15) and regression in locoregional metastatic
melanoma of a limb (14). Because ILP uses arterial and venous
canulation with a closed extracorporeal circuit, high doses of
TNF- a and chemotherapy can be used in the limb with minimal
systemic toxicity. However, the ILP system is cumbersome and
does not address its limitation to use TNF-a systemically to
improve the efficacy of cancer treatments. The work by our group
has shown that when attached to gold nanoparticles (CYT-6091),
recombinant human TNF-a (rhTNF) can be given systemically
without dose-limiting toxicities up to 3 times that of
intravenously-administered unbound rhTNF in phase I clinical
trial (124). Although we demonstrated the safety of gold
nanomedicine carrying TNF-a in humans, the anti-cancer
efficacy was limited, with only a partial response in 27 evaluable
participants with advanced solid cancers (124). To prove the
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concept that this cytotoxic agent was needed to improve the
treatment efficacy, paclitaxel analog was added to the gold
nanomedicine carrying rhTNF (CYT-21625) and the treatment
efficacy, drug delivery efficiency, and systemic toxicities were
assessed in multiple mouse models with pancreatic
neuroendocrine tumors (pNET) and metastatic aggressive
thyroid cancers. We demonstrated significantly improved
treatment efficacy across all mouse models treated with CYT-
21625 compared to mice treated with intravenous paclitaxel or
CYT-6091, with no detectable systemic toxicities or histologic
evidence of normal tissue damage or vascular leakage (125). The
principle behind its efficacy is related to its effect on tumor
vasculature and overcoming high intratumoral interstitial fluid
pressure (IFP), allowing for more efficient drug delivery and
resulting in markedly increased intratumoral concentrations of
paclitaxel (126).

TNF-a has a dose-dependent effect on vascular endothelial
cells, inducing angiogenesis at low levels and inhibiting or
disrupting it at high levels (127). Neoplasms, just as do healthy
tissues, require a blood supply to provide nutrients and allow for
growth. In contrast with normal healthy vasculature, neovascular
growth in cancers is imperfect, exhibiting a non-continuous
endothelium and a sporadically present or absent basement
membrane, which increases vessel permeability (16). This
increased permeability, along with high cell density, poor
venous and lymphatic outflow, and an abnormal ECM
contribute to high intratumoral hydrostatic and osmotic IFP
(128, 129). Elevated IFP is a barrier to efficient drug delivery in
solid tumors as drug cannot effectively travel against a pressure
gradient to achieve local therapeutic levels. TNF-a mitigates this
barrier by disrupting tumor vasculature, reducing tumor IFP,
and allowing chemotherapeutic agents to diffuse into the TME. It
disrupts the vasculature by inducing endothelial cell apoptosis,
specifically in the tumor while having minimal effect on native
healthy vessels due to the differential expression of TNF-R1 in
the cancer neovascular network. Increased levels of TNF-R1 in
neovascular endothelium has been shown in several tumor types,
including thyroid cancer and pNET (125).

Vascular disruption leading to the reduction in intratumoral
IFP is the key concept behind the therapeutic uses of TNF-a to
improve drug delivery efficiency in cancer treatments. Its most
common clinical application is in ILP for locoregionally
metastatic melanoma or soft tissue sarcomas of the limb. In
this procedure, the limb is isolated with a tourniquet and
perfused with oxygenated blood from an extracorporeal circuit,
similar in concept to extracorporeal membrane oxygenation for
cardiopulmonary failure. Within the perfusion circuit,
hyperthermic high-dose chemotherapy (typically the alkylating
agent melphalan) is infused with TNF-a. TNF-a serves two
functions – inducing hemorrhagic necrosis of the tumor by
disrupting the vasculature and allowing the melphalan to
locally accumulate in higher levels that would otherwise
cause severe systemic toxicities. The limb isolation minimizes
the systemic toxicity of both the chemotherapeutic agent
and TNF-a –as TNF-a is an acute phase reactant and
inflammatory cytokine and can lead to distributive shock –
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and allows for a several-fold increase in concentration. ILP with
melphalan and TNF-a was initially shown to be effective in a
phase II trial, which resulted in 21 of 23 complete responses and
two partial responses with no patient experiencing treatment
failure (130). This cumbersome treatment strategy is only
feasible in limb lesions and is not an option for primary or
metastatic cancers in solid organs.

Recent work by our group has employed the concept of TNF-
a as a facilitator of systemic drug delivery with a novel use of
gold nanomedicine. Gold nanoparticles passively target solid
tumors by the enhanced permeability and retention effect,
preferentially accumulating in their tissue through a
combination of highly permeable vasculature and the larger
size of the particles compared to molecules dissolved in plasma
(131, 132). Gold nanomedicine has a harder time passing
through the tight junctions of normal vascular endothelium in
non-neoplastic tissue and selectively extravasates into the TME,
where it accumulates (132). In addition, the gold nanoparticles
carrying rhTNF actively targets cancer neovasculature by
binding to the differentially expressed TNF receptors on tumor
neovascular endothelium (125). As is the case for ILP, this
modality of TNF-a delivery reduces its toxic systemic effects
through both active and passive tumor-specific targeting and
allows for higher concentrations to be delivered. To improve
treatment efficacy in cancers, we demonstrated a significantly
lower tumor burden across multiple in vivo models using
combined rhTNF and paclitaxel analog bound nanomedicine
over both rhTNF nanomedicine alone and IV paclitaxel alone in
anaplastic thyroid cancer and pNET with no apparent systemic
toxicity, further indicating increased efficacy (125). In addition,
radiographic imaging studies and histology showed the gold
nanomedicine carrying rhTNF only and rhTNF with paclitaxel
analog preferentially and specifically targeted tumor tissue and
induced vascular leakage only in tumor tissue (125). The
transgenic mouse model with pNET showed selective
extravasation of MRI contrast in the pancreatic area,
corresponding with 18F-FDG-avid lesions, from mice treated
with rhTNF bound nanoparticles but not in mice treated with
paclitaxel alone and vehicle control. We observed no evidence of
extravasation in normal tissue, indicating that the TNF-a
Frontiers in Immunology | www.frontiersin.org 8
induced tumor-specific vascular damage (125). To demonstrate
the applicability in a broader range of cancer, a pilot study
showed 100% survival in vivo in mice with pancreatic ductal
adenocarcinoma treated with gold nanomedicine carrying
rhTNF-followed by intravenous (IV) paclitaxel compared to
50% survival in the IV paclitaxel only group and 0% in the
control group at 42 days (126).
CONCLUSION

TNF-a plays a critical role in tumor signaling pathways and
immune cell manipulation within the TME. Since Carswell
discovered the cytokine in 1975, our understanding of its role
in cancers and chronic inflammatory diseases has improved,
resulting in the development of treatments that specifically target
systemic and TME-related immune cellular response. However,
the clinical application such as TNF receptor blockade is only
limited to the treatment of chronic inflammatory diseases.
Although preclinical data of TNF-a treatment in cancers to
improve drug delivery is promising, the treatment efficacy in
cancers is not known due to the lack of phase II clinical trials.
Because TNF-a induces diverse effects in TME, both oncogenic
and tumor-suppressive effects, further studies are warranted to
fully understand and selectively induce the anti-tumor effect to
improve treatment efficacy in patients with TNF-a
sensitive cancers.
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