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Abstract: Deep convolutional neural networks (DCNNs) with alternating convolutional, pooling and
decimation layers are widely used in computer vision, yet current works tend to focus on deeper
networks with many layers and neurons, resulting in a high computational complexity. However,
the recognition task is still challenging for insufficient and uncomprehensive object appearance
and training sample types such as infrared insulators. In view of this, more attention is focused
on the application of a pretrained network for image feature representation, but the rules on how
to select the feature representation layer are scarce. In this paper, we proposed a new concept,
the layer entropy and relative layer entropy, which can be referred to as an image representation
method based on relative layer entropy (IRM_RLE). It was designed to excavate the most suitable
convolution layer for image recognition. First, the image was fed into an ImageNet pretrained DCNN
model, and deep convolutional activations were extracted. Then, the appropriate feature layer was
selected by calculating the layer entropy and relative layer entropy of each convolution layer. Finally,
the number of the feature map was selected according to the importance degree and the feature maps
of the convolution layer, which were vectorized and pooled by VLAD (vector of locally aggregated
descriptors) coding and quantifying for final image representation. The experimental results show
that the proposed approach performs competitively against previous methods across all datasets.
Furthermore, for the indoor scenes and actions datasets, the proposed approach outperforms the
state-of-the-art methods.

Keywords: image representation; insulator recognition; deep convolutional neural networks;
relative layer entropy; vector of locally aggregated descriptors

1. Introduction

An insulator is an important part of the transmission line and power substation. Aside from its
key role of providing electrical insulation and support lines [1], its running conditions directly affect the
normal operation of the whole power grid. Ensuring the reliability and stability of transmission lines
and power substations is an important part of smart grid inspection [2]. Temperature is an important
indicator of insulator conditions [3]. The infrared imaging technology can detect problems with the
insulation equipment under high voltage, high current and high temperature conditions. It is not
subject to electromagnetic interference, which makes it a safe and reliable way to inspect electrical
equipment. Its ability to assess the deterioration of insulators has been widely used [4,5]. However,
the fault detection under extreme conditions has shown the need for improvement in the accuracy and
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efficiency for real-time intelligent insulator recognition methods [6,7]. Figure 1 shows insulators on a
transmission line.

Figure 1. Infrared insulator images taken from a thermal image.

In the past few years, some progress has been made in insulator recognition based on machine
learning. Wang et al. [8] proposed a novel insulator recognition method for images taken by unmanned
aerial vehicles (UAVs). Because the UAV cameras provided highly cluttered backgrounds, a machine
learning algorithm, support vector machine (SVM), was used as a classifier to distinguish the insulator
from the cluttered background based on Gabor features. Wang et al. then expanded their research
to develop an innovative background suppression method to remove the redundant background
information as much as possible. Liu et al [9] proposed a method that initialized a six-level convolution
neural network (CNN) and adjusted the training parameters to train the model. The obtained model
was then applied to predict the candidate insulator position for insulator recognition. With the help of
a non-maximum suppression algorithm and a linear fitting method, Liu et al. were able to pinpoint
the exact location of an insulator. An insulator recognition method based on target recommendation
and AdaBoost algorithm was proposed in [10], which can quickly locate insulators and improve
the processing speed by changing the search window mechanism. In [11], a novel approach was
proposed to inspect insulators with CNN. A CNN model with a multi-patch feature extraction method
was applied to represent the status of insulators, and an SVM was trained based on these features.
A thorough evaluation was given in [11] on this insulator status dataset of six classes by using on-site
inspection videos.

Insulator feature representation based on deep learning is a novel recognition method. However,
in practical applications, the labeled image data are scarce and expensive. Many researchers cannot
obtain the required amount of labeled image data for CNN training and hence turn to the insulator
feature representation method based on pretraining models instead.

2. Related Work

Deep convolutional neural networks (DCNNSs) are state-of-the-art models for many computer
vision tasks, such as image recognition, object detection, semantic segmentation and natural language
processing [12,13]. Recent progress in computer vision has been driven by the use of large convolutional
neural networks. Such networks benefit from alternating convolutional and pooling layers; the pooling
layers serve to summarize small regions of the lower layer.

Since the remarkable progress made by AlexNet on ILSVRC 2012 [13], great efforts have been
devoted to image recognition tasks with various machine learning skills. Most of these works focus on
designing deeper network architectures, such as VGGNet [14], GoogleNet [15], Inception Network [16]
and ResNet [17], which may contain hundreds of layers in their final forms. Nevertheless, they tend to
have many layers and many neurons, resulting in high computational complexity. Several regularization
techniques and data transformations have been designed to reduce the over-fitting effect of the deep
network, such as multiscale cropping, dropout and a smaller convolutional kernel size. In addition,
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several optimization techniques have been proposed to reduce the computation amount of training
networks to improve recognition performance, such as batch normalization (BN) and feature selection.
Training a new deep model requires tuning millions of parameters, involving enormous training
datasets and expensive computing hardware (e.g., the GPU). The whole optimization process usually
takes a few days or even weeks, and the training process requires a lot of skills. In consequence,
the need for a more efficient method was evident from the beginning.

Recently, a new method has been proposed that utilizes the deep feature activations extracted from
a pretrained CNN model as a general feature extractor for images. DCNN activations are extracted
for classifier training and have been successfully applied in various image recognition tasks. To get
a generic representation, after a series of convolutional filtering and pooling, the neural activations
from the first or second fully connected layers are usually extracted from a pretrained CNN model [18].
The research of [19] shows that the convolutional features can capture the local features and adjust the
image structures, which can yield important cues for discriminating image recognition, whereas these
features are mostly eliminated in the highly-compressed, fully-connected layers.

As noted in [20,21], the ensemble of features from different layers could boost the performance.
A DCNN network contains multiple levels of image abstraction, which can be seen as rich semantic
feature hierarchies. In [22], the features in the fourth or fifth convolutional layer were more robust due
to their greater global scope, but the spatial locations of the features of the higher-level pattern were
inaccurate (e.g., text or human faces). Confirming intuition, color and texture concepts dominated
at lower layers, such as convl and conv2, while more object and part detectors emerged in conv5.
Zeiler et al. [23] pointed out that the fifth layer activations reconstructed the visualization to make it look
more like an input image. Later, in [24] it was pointed out that using sum-pooling to aggregate deep
features on the last convolutional layer leads to better performance. The authors of [25] investigated
several effective usages of CNN activations on both image retrieval and classification. In particular,
they aggregated activations of each layer and concatenated them into the final representation,
which achieved satisfactory results. The research of [26] and [27] also showed that visual recognition
tasks make a considerable difference, which needs to be considered in the process of constructing a depth
model. For example, during the construction of the action recognition model of [28], the adaptability
of the model to a weak supervised dataset was taken into account.

To generate deep feature descriptors, we looked to the vector of the locally aggregated descriptors
(VLAD) aggregator [29,30], which built an image representation by aggregating residual errors for the
grouped descriptors based on a locality criterion in the feature space. We visualize the feature maps
of two insulators in Figure 2. The corresponding activations in the intermediate layers are shown in
diverse patterns, which means the deep features are sensitive to rotation changes.

From the above research, we concluded that these approaches directly used the DCNN
activations/descriptors and encoded them into a single representation without evaluating their
suitability for different computer vision tasks. In light of this, we proposed a new concept of
layer entropy and relative layer entropy. Then, an image representation method based on relative
layer entropy (IRM_RLE) designed to excavate the most suitable convolutional layer for our image
recognition was put forward. First, the infrared image of an insulator is fed into an ImageNet pretrained
DCNN model, and deep convolutional activations are extracted. Then, the appropriate feature layer is
selected by calculating the layer entropy and relative layer entropy of each convolutional layer. Finally,
the number feature map according to the importance degree and the feature maps of the convolutional
layer are vectorized and pooled by VLAD coding and then quantified for the final image representation.
In IRM_RLE, a pretrained CNN model (which was not fine-tuned) was used for absolute supervision.
We conducted extensive experiments on the infrared image dataset, which contained 4780 insulator
images and 13,012 background images. We also accessed visible image datasets such as MIT-67 and
Stanford 40 Actions. The experimental results not only verified the accuracy of our method, but also
proved that our method can be applied to multi-modal images.
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Figure 2. Infrared insulator images and their corresponding feature maps. The deep neural activations
are highly related to the deformations of the input images. (a) Input image, (b) conv1 224 x 224 X 64,
(c) conv2 112 x 112 x 128, (d) conv3 56 X 56 X 256, (e) conv4 28 x 28 x 512 and (f) conv5 14 x 14 x 512.

The rest of the paper is organized as follows: Section 3 presents the proposed method. Section 4
presents experimental results and a discussion. Conclusions are given in Section 5.

3. The Proposed Method

We propose the image representation method based on relative layer entropy (IRM_RLE).
Our primary objective was to obtain compact and spatial invariant image representations. Instead of
extracting features from the fully connected layers, we focused on the intermediate convolutional layers.
Compared with activations from fully connected layers, the convolutional features are embedded
with more spatial information. In this section, we introduce the DCNN model applied in our work
and the convolutional feature maps in each layer. We then describe the deep convolutional layer and
the in-layer feature map selection method. To encode the extracted DCNN features for classification,
we adopt VLAD to aggregate the DCNN descriptors into a compact representation. The global image
descriptor generated the framework is shown in Figure 3.

Layer entropy and relative
layer entropy calculation
Convolution layer selection

Feature maps number selection

Inputimage Convolutionsl Networks Convelutional Feature maps Inter-layer and In-layer Deep feature descriptor
VGG-16 from different layer sdeclien

Figure 3. The global image descriptor generating framework. An infrared image of the insulator is
fed into an ImageNet pretrained DCNN (deep convolutional neural networks.) model; then, deep
convolutional activations are extracted. The appropriate feature layer is selected by calculating the layer
entropy and relative layer entropy of each convolutional layer. The feature maps of the convolutional
layer are vectorized and pooled by VLAD coding and quantifying. Finally, the final image representation
is generated.
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The following definitions are used herein: the “feature map” indicates the convolutional results of
one channel; ”activations” indicates feature maps of all channels in a convolutional layer; “descriptor”
indicates the d-dimensional component vector of activations; and “conv5_3" refers to the last
convolutional layer.

3.1. Deep Convolutional Neural Network Activations

We employed the VGG-16, also known as OxfordNet, which is a convolutional neural network
structure developed by the Visual Geometry Group. The network consists of 13 convolutional layers
and three fully connected layers. The convolutional layer consists of 3 x 3 small convolutional filters
and five max-pooling layers. This network was the winner of the 2014 ImageNet Large Scale Visual
Recognition Challenge (ILSVRC2014). Today, VGG is still considered an outstanding visual model,
although its performance has actually been behind Inception and ResNet. The detailed parameters of
the network architecture are listed in Table 1.

Table 1. Details of the feature maps from VGG-16.

Output Size
Layer
Width Height Depth
convl_1 224 224 64
convl_2 224 224 64
conv2_1 112 112 128
conv2_2 112 112 128
conv3_1 56 56 256
conv3_2 56 56 256
conv3_3 56 56 256
conv4_1 28 28 512
conv4_2 28 28 512
conv4_3 28 28 512
conv5_1 14 14 512
convb_2 14 14 512
convb_3 14 14 512

On each convolutional layer /, a convolutional operation is conducted on its M;_; input maps
from previous layer /-1 with a filter of size k; X k;. The resulting output is the summations of the
responses with a non-linear function:

1 _ -1 1 ]
Fi=f ZPI- + W+ b 1
IEM]‘

where [ indicates the layer; Fjl and Fjl_l are the activations from layer / and layer /-1 with filter size
k; X kj, respectively. The term b indicates the bias, and f(-) is the ReLU (rectified linear unit) function:

Xi, xi>0

oy ={ 57 @

A feature map reveals the distribution of the neural activity [31]. Given an input image I with
size H X W, the activations from a convolutional layer are formulated as a third-order tensor T with
size h X w X d, which includes a set of 2D feature maps S = (S1, Sy, ..., Sp)(n =1, ..., d). S, (size
h x w) is the n-th feature map of the corresponding channel, as illustrated in Table 1. By applying
the pretrained VGG-16 model, we extract the feature maps from a low-level convolutional layer to a
high-level convolutional layer.

In Figure 4, we randomly selected an infrared insulator image and its background image from our
infrared insulator dataset. Then we visualized the feature maps from different convolutional layers.
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From the visualization of these feature maps, we can see that the rich semantic feature hierarchies with
lower convolutional layers captured local features with detailed spatial information, and the features
in the higher layers were more abstract with rich semantic information, which is very powerful at
distinguishing different classes.

3

Figure 4. Visualizations of randomly sampled feature maps from intermediate convolutional layers of
convl_2,conv2_2, conv3_3, conv4_3 and conv5_3 images from an infrared insulator dataset. (a) Insulator
and (b) background.

3.2. Deep Convolutional Layer Selection

The existing selection approach uses DCNN activations directly and encodes them into a
representation without evaluating whether it is the most suitable feature representation method for
different classification and recognition tasks. In view of this, we proposed a method to correct this
approach. We employed the image entropy; i.e., the image representation method based on relative
layer entropy, which is designed to determine which convolutional layer is the most suitable one
for different image recognition tasks. The image entropy was expressed as the average number of
bits in the image gray level set, and it can describe the average amount of information for the image
source. First, we proposed a new concept of convolutional layer entropy. We defined the layer entropy
as the sum of the image entropy of all the feature maps from the convolutional layer. To mine the
neuron’s response pattern, the feature map elements were normalized to a range from 0 to 255, and the
image entropy of the feature map can be calculated by Equation (3). For the convolutional layer 1,
the number of output feature maps is M, and the layer entropy of each convolutional layer is calculated

by Equation (4).
255

H(S) = =) pulog,(pn) 3
n=0
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where, p;, represents the probability of the gray-scale value 1 emerging within the image, and

H =) H(S) @

We found that layer entropy is different due to the image entropy of the input image’s divergence.
To balance this difference, we raised the concept of relative layer entropy, which is the ratio of the
entropy of a convolutional layer to the image entropy of the input image and the product of the number
of feature maps. First, the image entropy H(S;) of the input image is calculated by Equation (3), and the
relative layer entropy of each convolutional layer is calculated using Equation (5).

H = H;/[H(S;) *M] (@)

The standard deviation of a layer entropy can be acquired as:

(6)

where G is the total number of convolutional layers of the deep model and u is the mean value.
By combining the two quantification methods, the deep convolutional layer selection can be described as:

L=H-o(H)/[H(S))*M)]*I )

For all layers of the deep neural network, the layers with the smallest L value were selected to
make up the final feature representative layer.

3.3. In-Layer Feature Map Selection

From AlexNet to ResNet, the DCNNs for visual recognition have grown deeper in the quest for
higher classification accuracy. Depth has been shown to be important to high discrimination ability [32].
However, the width of layers (the number of units per layer) has been less explored. One reason is
that increasing the number of convolutional units in a layer significantly increases computational cost
while yielding only tiny improvements in classification accuracy. Nevertheless, some recent work [33]
shows that a carefully designed network can achieve classification accuracy, superior to the commonly
used thin and deep counterparts.

To explore how the width of layers affects interpretability of CNNs, we did a preliminary
experiment to test the influence of the width on the emergence of interpretable classification.
According to the visualization result of the convolutional layer feature map, we found that some
feature graphs contain redundant information and have great influence on the classification result.
The research shows that a feature map is usually sparse and some semantic regions are indicated.
To remove the redundant information, we selected the number of convolutional layer feature maps.

Suppose x;' is the information contained in the I-th feature map of the i-th layer; x;"** is the
maximum information in the i-th layer effective information; x is the ratio between x;! and x;"; and
y;! is the useful information contained in the I-th feature map of the i-th layer.

plc ) plx)-p(y)

. Iy s _ NS Y.
iﬂp(yilx)—]lgr; p(x) _ch1_r)r; p(x) p(yl)

X2 <x1 = 1=p(y2) <p(y1)

The more information contained in a feature map, the more useful information it contains.
Therefore, we employed the feature map ranking strategy based on the activation patterns of neurons
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and adopted it for feature map selection. The first step was to quantify the importance of feature maps.
We used the classic image entropy as the quantification method. Thus, the entropy of a feature map §;

can be computed as:
255

H(S)) = —Z pnlog, (pn) ®)
n=0

The standard deviation of a feature map S; can be acquired as:

©)

where x; means the value of the j-th element and u is the mean value. By combining the two
quantification methods, the importance degree of convolutional feature map S; can be presented as:

K(5)) = H(s)) + 1 Jo(5) 1)

where A is empirically set at 0.01. We then computed the importance degree score of the feature map
extracted. Based on the computed importance degree score, we sorted all the feature maps from the
same layers. Part of the sorting results of insulators with conv4_3 layer and the scene images with
conv5_2 layer are demonstrated in Figures 5 and 6, respectively.

(©)

Figure 5. Ranking feature maps with high importance degree scores from conv4_3 layer of the insulator
image. (a) Input image, (b) top-ranking images and (c) the lower ranking images.



Entropy 2020, 22, 419 90f17

(c)

Figure 6. Ranking feature maps with high importance degree scores from conv5_2 layer of the scene

image. (a) Input image, (b) the top-ranking images and (c) the lower ranking images.

We selected the top-Q feature maps from M convolutional feature maps. The selected feature
maps contain most of the useful information, while the depth is half that of the unselected feature
tensor. We then stacked all the selected feature maps as the newly generated tensor, and applied the
new tensor for the following feature pooling.

3.4. Deep Convolutional Descriptor Aggregation

Intuitively, we applied VLAD for the IRM_RLE feature generation. We first performed the deep
convolutional layer and in-layer feature map selection, and the codebook C = {cy, ¢, ..., ¢k} was
generated by k-means clustering on the selected deep feature maps from the deep convolutional layer
as described in Section 3.2. When the clustering is finished, the centers are assigned as k visual words.
The codebook is a k x D matrix, composed of k visual words with dimension D.

Given an input image I, first, the selected feature map can be seen as a set of deep descriptors
X =(x1,x2, ..., xy). Then, each descriptor x; is associated with its nearest visual word ¢, = NN(x;,),
and NN indicates the nearest neighbor search. The nearest c(x;) can be indexed by Equation (11),
where d|e| denotes the distance between two features.

c(xy) = argmind|c;, x| (11)
Ci
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VLAD encodes feature x, by considering the residuals:

0 = Z Xn —Cj

Xp:c(x)=c;

Then the residuals are stacked together to obtain the final vector:

o(I) =[v,...,0i,..., 0]

10 of 17

(12)

(13)

The ensemble of features from different layers can boost the performance. Thus, we applied a set
of convolutional layers for compact image representation generation, and we considered all layers as
contributing equally to the final representation. We distributed a same weight to each layer employed.
The method is summarized in Algorithm 1.

Algorithm 1: Deep convolutional feature representation generation.

Input: Pretrained model, image I
Output: IRM_RLE feature vector V(I)
Procedure:

1.
. Layer entropy and relative layer entropy calculation
. Deep convolutional layer selection

= W N

(o BEN e e |

9.

Extract deep feature maps from layer [, S =[Sy, ... ,S;, ... ,Su]

. Compute importance degree of each feature maps

K(S;) = H(S;) + A+a(S;)

. Select top-ranked Q feature maps
. Extract deep descriptors from the feature map tensor X = (x1, x, ...
. k-means clustering for codebook C = {c1, ¢p, ... , ¢}
. Aggregating deep descriptors

fori=1tondo
t = index argmin d|c;, x;|,j €{1,2, ..., k}
Vi=vi+ (X —cr)
end for

U(I) = [vl,...,v,-,...,vk]

V(1) = [0l W, .. ol W]

Return: V(I)

4. Experiments

two publicly available visible image datasets called MIT Indoor67 and Stanford 40 Actions.

We evaluated our proposed method based on our current infrared insulator image dataset and

4.1. Dataset and Experiment Setup

Due to the difficulty of obtaining insulator infrared images and the absence of public infrared
image datasets, we used lots of infrared images collected from our insulator inspection system to build
the insulator infrared image datasets. The infrared insulator image dataset consists of 4780 insulator
images and 13,012 background images. The insulator images were manually cropped from the original
images taken in the power substations and transmission lines, which varied from 110 to 500 kV in
levels. We divided the dataset into two parts: 30% for training and the remaining 70% for testing.
All the training samples were labeled as “insulator” and “background.” Examples of the images in our
infrared insulator dataset are shown in Figure 7.
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(b)

Figure 7. Sample images of infrared insulator dataset. (a) Insulators and (b) background.

The DCNN model we employed is VGG-16 with 13 convolutional layers pretrained on ImageNet.
We did not fine-tune the arbitrary dataset. SVM was chosen for classification of insulators which is
widely used because of its ability to avoid over-fitting and its excellent performance on small datasets.

4.2. Results on the Infrared Insulator Dataset

In this experiment, we simply extracted features from the conv4_3 according to the selected
results based on IRM_RLE and selected the feature map number for descriptor aggregation. In VLAD
encoding, the number of centers k determines the dimension of the final feature. To save time and
reduce the quantity of calculations, we fixed the number of VLAD centers to 100 in our infrared
insulator experiments to obtain good performances. The performance parameter of the classifier is

calculated as:
TP+ TN

TP+ TN +FP+FN
where TP is the true positive, TN is the true negative, FP is the false positive and FN is the false
negative. The proposed deep feature vector generation was conducted for each image in the training
set, and an SVM classifier was trained for classification. To evaluate the performances, we extracted

Accuracy =

(14)

the feature maps from all convolutional layers and applied VLAD encoding to aggregate these feature
maps. Different features were compared, and the classification accuracies of all the convolutional
layers are presented in Table 2.

When the distribution of positive and negative samples in the test set changes, the ROC (receiver
operating characteristic) curve remains unchanged. To show the necessity of selecting the deep
convolutional layers and the number of intra-layer feature maps, we used the ROC curve to illustrate
the experimental results in Figure 8.

As can be seen from Table 2, the performance of conv4_3 is the best, corresponding to our IRM_RLE
method selection results. The experiment results show that the deep convolutional layer with the
richest semantic information is not the most suitable layer for classification and recognition. For the
single-objective classification problem of insulators, the relatively low-level convolutional layer can
achieve a better effect and take less time.
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Table 2. Details of the classification results of different intermediate layers. (codebook size = 100).

Depth Size of the Feature Maps Descriptor Length Accuracy (%)
conv2_1 112 x 112 x 128 1,254,400 0.9322
conv2_2 112 x 112 x 128 1,254,400 0.9839
conv3_1 56 X 56 x 256 313,600 0.9869
conv3_2 56 X 56 x 256 313,600 0.9921
conv3_3 56 X 56 x 256 313,600 0.9930
conv4_1 28 x 28 x 512 78,400 0.9869
conv4_2 28 x 28 x 512 78,400 0.9904
conv4_3 28 x 28 x 512 78,400 0.9942
conv5_1 14 x 14 x 512 19,600 0.9883
conv5_2 14 x 14 x 512 19,600 0.9897
conv5_3 14 x 14 x 512 19,600 0.9921

True positive rate

conv4_1+256 |
conv4_2
conva_2+256
conv4_3 i

conv4_3+256
n i

. . . . . . .
01 02 03 04 05 06 07 08 0.9 1
False Positive Rate

Figure 8. ROC (receiver operating characteristic) of different layers and different numbers of feature
maps. Conv4_1 represents extraction of all the feature maps in conv4_1 for descriptor aggregation.
Conv4_1+256 represents extraction of half of the feature maps in conv4_1 for descriptor aggregation.

In ROC space, the more directed the ROC curve is to the upper left, the better effect is. As can be
seen from Figure 8, the cyan curves represent experimental results of conv4_1 while the blue curve
represents the experimental result of extracting half of the feature maps in conv4_1 for descriptor
aggregation. The experimental results of the blue curve are obviously better than the cyan curve.
The blue, red and black curves represent the experimental results that extract half of the feature maps
in conv4_1, conv4_2, and conv4_3 for descriptor aggregation, respectively. The black curve works best,
corresponding to our classification results shown in Table 2.

4.3. Evaluation Experiment on Public Datasets

In our evaluation experiments, we evaluated the proposed approach on two public visible image
datasets, the MIT Indoor67 [34] and the Stanford 40 Actions (Stanford-40) [35]. The MIT Indoor67 is a
unique large and diverse database for indoor scene recognition. This database consists of 67 indoor
categories covering a wide range of domains, and contains 15,620 images in total. The standard
training/test split for the Indoor dataset has 80 training and 20 test images per class. Sample images are
shown in Figure 9a.

Stanford 40 Actions contains images of humans performing 40 different classes of actions, including
visually-challenging cases such as “fixing a bike” versus “riding a bike” and “phoning” versus “texting
a message.” The number of samples per class varies from 180 to 300, for a total of 9532 images.
A standard training/test split is made available by the authors on their website, selecting 100 images
from each class for training and leaving the remainder for testing. Sample images are shown in
Figure 9b.
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',-!’}

W

(b)

Figure 9. Sample images of MIT Indoor67 and Stanford 40 Actions. (a) MIT Indoor67 and (b) Stanford
40 Actions.

In the VLAD encoding, we fixed the number of VLAD centers to 256 in our experiments to obtain
good performances. We first applied component-wise I, normalization on each feature vector vy and
then used global /; normalization on the VLAD descriptor V(I). In image classification, the generated
feature dimension was usually very high. Thus, we applied a one-versus-all multi-class linear SVM as
the classifier. The LIBLINEAR [36] implementation was used in our experiments. We set parameter C
to 0.01, and used open source libraries such as VLFeat, Caffe and LIBLINEAR.

In the MIT Indoor67 experiment, the performance of conv5_2 layer was the best, while conv5_1
layer came in second and conv5_3 layers was third according to our calculation results using
the IRM_RLE method. In the Stanford 40 Actions experiment, the performance of conv5_1 layer
was the best; conv5_2 layer came in second and conv5_3 layers came in third according to our
calculation results using the IRM_RLE method. The classification results are shown in Tables 3 and 4.
To improve accuracy, we applied a set of convolutional layers (conv5_1, conv5_2 and conv5_3) for
compact image representation generation. We considered all the layers as contributing equally to the
final representation.

Table 3. Classification results on MIT Indoor67.

Method Accuracy
SPM 34.40%
FV+Bag of parts 63.18%
DPM 37.60%
VLAD Multi-scale [37] 66.12%
VLAD level 2 [37] 65.52%
MOP-CNN [37] 68.88%
Fine-tuning [38] 66.00%
CNN-FC-SVM 58.40%
CL+CNN-Jitter [39] 71.50%
IRM_RLE 68.88%
IRM_RLE 70.52%
IRM_RLE 66.87%

IRM_RLE[5_1,5_2,5_3] 71.87%
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In Table 3, VLAD Multi-scale is the pooling baseline in [37], and VLAD level 2 was formed by
extracting activations from 128 x 128 patches. We used VLAD to pool them with a codebook of
100 centers. The MOP-CNN (multi-scale orderless pooling for CNN) is the method proposed for
combining several levels. CL+CNN-Jitter refers to the cross-convolutional-layer pooling proposed
in [39]. Table 4 shows the results of the methods proposed in [40] after training on the various
Places-CNNs; then, the final output layer of each network was used to classify the test set images.

From Tables 3 and 4, we can see that our method achieved good performance with respect to
accuracy and calculation quantity. The DCNN based methods outperformed the traditional methods,
which are based on hand-crafted features and the end-to-end training method. Directly extracting the
activations from the fully connected layer for SVM training is not the best method. From our point of
view, the activations from the fully-connected layers are sensitive to spatial transformations, and the
images in the MIT Indoor67 and Stanford 40 Actions share a large number of global transformations.
Discovering the most important information from the convolutional layers can be a useful strategy for
better feature extraction. The IRM_RLE method provided direction for the deep convolutional layer
selection, saving both time and computation.

Table 4. Classification results on Stanford 40 Actions.

Method Accuracy
Sparse Bases 45.7%
Color Action Recognition 51.9%
Multiple Instance Learning 55.6%
Very Deep Network 71.7%
Action-Specific Detectors 75.4%
Places365-VGG [40] 49.20%
Places205-VGG [40] 53.33%
ImageNet-VGG [40] 66.63%
Hybrid1365-VGG [40] 68.11%
IRM_RLE 5-1 70.05%
IRM_RLE 5-2 69.50%
IRM_RLE 5-3 69.38%
IRM_RLE [5-1, 5-2, 5-3] 72.23%

5. Conclusions

Deep convolutional neural networks are the state-of-the-art approaches in the computer vision
and pattern recognition field, especially in image classification tasks. Inspired by the recent success
of deep learning, we proposed the image representation method based on relative layer entropy for
infrared insulator recognition. By calculating the relative layer entropy to select the most suitable
convolutional layer and extracting the feature maps for aggregation to form feature representation,
some good results were obtained. In this paper, we propose a new concept, the layer entropy and
relative layer entropy, for infrared insulator recognition. DCNNs have a powerful ability to learn
and represent features in a more distinctive way. Thus, time is saved by the absence of the need for
fine-tuning in the infrared insulator recognition and scene classification task. However, the image
representation method based on relative layer entropy has a higher recognition accuracy for infrared
insulator images than for public visible light images, which means that the method has room for
performance improvements on public, visible light image dataset recognition tasks. For example,
in order to improve the recognition accuracy, the more optimized network structure design based on
layer entropy can be studied.

In the future, the method presented in this paper can be applied to the recognition and detection
of transmission line defects and provide excellent feature expression calculation.
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