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Reduced humoral immune response after BNT162b2 coronavirus disease
2019 messenger RNA vaccination in cancer patients under antineoplastic
treatment
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Background: Cancer patients are at a higher risk of developing severe coronavirus disease 2019 (COVID-19). However,
the safety and efficacy of COVID-19 vaccination in cancer patients undergoing treatment remain unclear.
Patients and methods: In this interventional prospective multicohort study, priming and booster doses of the
BNT162b2 COVID-19 vaccine were administered 21 days apart to solid tumor patients receiving chemotherapy,
immunotherapy, targeted or hormonal therapy, and patients with a hematologic malignancy receiving rituximab or
after allogeneic hematopoietic stem cell transplantation. Vaccine safety and efficacy (until 3 months post-booster)
were assessed. Anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor-binding domain (RBD)
antibody levels were followed over time (until 28 days after the booster) and in vitro SARS-CoV-2 50%
neutralization titers (NT50) toward the wild-type Wuhan strain were analyzed 28 days after the booster.
Results: Local and systemic adverse events (AEs) were mostly mild to moderate (only 1%-3% of patients experienced
severe AEs). Local, but not systemic, AEs occurred more frequently after the booster dose. Twenty-eight days after the
booster vaccination of 197 cancer patients, RBD-binding antibody titers and NT50 were lower in the chemotherapy
group {234.05 IU/ml [95% confidence interval (CI) 122.10-448.66] and 24.54 (95% CI 14.50-41.52), respectively}
compared with healthy individuals [1844.93 IU/ml (95% CI 1383.57-2460.14) and 122.63 (95% CI 76.85-195.67),
respectively], irrespective of timing of vaccination during chemotherapy cycles. Extremely low antibody responses
were seen in hematology patients receiving rituximab; only two patients had RBD-binding antibody titers necessary
for 50% protection against symptomatic SARS-CoV-2 infection (<200 IU/ml) and only one had NT50 above the limit
of detection. During the study period, five cancer patients tested positive for SARS-CoV-2 infection, including a case
of severe COVID-19 in a patient receiving rituximab, resulting in a 2-week hospital admission.
Conclusion: The BNT162b2 vaccine is well-tolerated in cancer patients under active treatment. However, the antibody
response of immunized cancer patients was delayed and diminished, mainly in patients receiving chemotherapy or
rituximab, resulting in breakthrough infections.
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INTRODUCTION

After the initial discovery of the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) in Wuhan, the coro-
navirus disease 2019 (COVID-19) pandemic has raged all
over the globe, affecting >180 million individuals and
leading to >4 million deaths up to now.1 Although the use
of dexamethasone and remdesivir may provide patients
with a modest benefit, there is currently no effective
treatment for severe COVID-19.2,3 The rapid development
https://doi.org/10.1016/j.esmoop.2021.100274 1
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and approval of several SARS-CoV-2 vaccines have provided
a powerful tool to control further spread of COVID-19.4

Recently, it was shown that SARS-CoV-2-exposed patients
with hematological malignancies display heterogeneous
humoral immune response, an exhausted T-cell phenotype
and a high prevalence of prolonged viral shedding.5-8

Although patients with solid tumors often develop
immune response signatures similar to those of noncancer
patients,9 they remain at increased risk of severe
COVID-19.10-13 Hence, according to various oncological as-
sociations, high priority for vaccination should be given to
these patients, regardless of age.

The PfizereBioNTech BNT162b2 messenger RNA (mRNA)
vaccinewas proven 95% effective at preventing PCR-confirmed
COVID-19 in people without evidence of prior infection.14

However, ongoing antineoplastic treatment with cytotoxic
drugs was an exclusion criterion in the pivotal phase III trial.14

Hence, it remains unclear how antineoplastic treatment affects
patient’s ability to mount protective immunity after BNT162b2
vaccination15-17 and data regarding the safety of BNT162b2
vaccination in these patients are lacking.

To address this knowledge gap, the B-VOICE study pro-
spectively investigated antibody response, vaccine effective-
ness and safety of BTN162b2 vaccination in cancer patients
receiving different types of antineoplastic treatment.

METHODS

Trial design and participants

This prospective, longitudinal, interventional, multicohort
trial was initiated on 15 February 2021 in the Multidisci-
plinary Oncology Center Antwerp, Antwerp University
Hospital, Belgium, aiming to enroll 200 cancer patients. All
participants signed written informed consent. All study
patients were aged 18 years or older with a life expectancy
of at least 6 months. Pregnant or breastfeeding women and
patients with an immune deficiency unrelated to cancer or
cancer treatment were ineligible. Eligible patients were
cancer patients with a solid tumor under (i) chemotherapy
(cohort A); (ii) immunotherapy (cohort B) and (iii) targeted
therapy or hormonal therapy (cohort C). Patients receiving a
combination of immunotherapy and chemotherapy were
included in cohort B. Eligible patients for cohort D were
cancer patients with a hematologic malignancy receiving
rituximab or having received allogeneic hematopoietic stem
cell transplantation (HSCT) at least 1 year before inclusion
(Figure 1). In addition, cohort A was split up into a sub-
cohort in which vaccine administration took place during
peak chemotherapy-induced cytotoxicity (the ‘on-cycle’
subcohort) and a subcohort in which vaccine administration
took place during the chemotherapy recovery period (the
‘off-cycle’ subcohort; see Supplementary Appendix, avail-
able at https://doi.org/10.1016/j.esmoop.2021.100274).

Trial oversight

The study was approved by the local ethics committee and
was executed in accordance with Good Clinical Practice and
the Declaration of Helsinki [ICH GCP E6(R2)]. The regulatory
2 https://doi.org/10.1016/j.esmoop.2021.100274
sponsor was the Antwerp University Hospital (EudraCT
number 2021-000300-38). This work was supported by the
Belgian Government through Sciensano [COVID-19_SC004,
COVID-19_SC059, COVID-19_SC061].

Procedures

All study participants received a priming and booster dose
of 30 mg BNT162b2 vaccine intramuscularly 21 days apart.
Blood samples for assessment of anti-SARS-CoV-2-specific
antibodies were collected before the priming dose, on the
day of the booster dose prior to vaccine administration and
at days 7 and 28 after the booster dose and processed by
Biobank Antwerp (BB190007, Antwerp, Belgium; ID: BE
71030031000). Results of antibody responses from a cohort
of healthy staff members from a nursing home, partici-
pating in the PICOV-VAC trial (EUDRA-CT: 2021-000401-24)
following the same sampling and vaccination schedule,
were used as healthy controls.

Antibody responses were assessed on serum samples with
an enzyme-linked immunosorbent assay (ELISA) for quanti-
tative detection of immunoglobulin G (IgG) antibody levels to
SARS-CoV-2 receptor-binding domain (RBD) antigen (see
Supplementary Appendix, available at https://doi.org/10.
1016/j.esmoop.2021.100274). Quantitative anti-RBD IgG re-
sults were converted to international units per ml (IU/ml).
Lower limit of quantification (LLQ) was 5 IU/ml. Using an
independent exploratory study population of 268 patients
participating in ongoing seroprevalence studies or hospital-
ized due to COVID-19 at the beginning of the SARS-CoV-2
pandemic, we showed that a threshold for anti-RBD IgG of
200 IU/ml predicts a neutralization response required for 50%
protection against symptomatic SARS-CoV-2 infection (99%-
100% specificity at a sensitivity of 94.94%; see Supplementary
Appendix, available at https://doi.org/10.1016/j.esmoop.
2021.100274). As such, this threshold was used to define
high and low responders. Moreover, we performed quanti-
tative detection of IgG antibody levels to the SARS-CoV-2 S1
antigen using the Siemens SARS-CoV-2 spike IgG assay
(sCOVG) as described before.18 Individual neutralization ca-
pacity at 28 days after the booster was assessed using an
in vitro SARS-CoV-2 neutralization test toward the Wuhan
(wild type) strain (see Supplementary Appendix, available at
https://doi.org/10.1016/j.esmoop.2021.100274).

Safety and vaccine effectiveness

Patient-reported outcomes (PROs) of local and systemic
adverse events (AEs) were assessed via RemeCare Oncology,
a web-based electronic platform for home toxicity moni-
toring.19,20 Patients were educated for and equipped with
this PRO application and registered local and systemic re-
actions during 7 days after each vaccine administration.
Local reactogenicity was graded as mild, moderate or se-
vere. Systemic AEs were recorded according to the Common
Terminology Criteria for Adverse Events version 5.0 (CTCAE
5.0). To map vaccine effectiveness, PCR-confirmed SARS-
CoV-2 infections of all participants were actively assessed at
baseline and at day 7 after the booster, with a questionnaire
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Figure 1. Trial profile.
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offered via the RemeCare app. In addition, all patients
attending the oncology day care unit were screened for
SARS-CoV-2 using PCR on mouth and oropharyngeal rinse
samples before their treatment and in Belgium testing is
required for people returning from travel abroad, persons
that were in close contact with an infected person or with
suggestive symptoms such as fever or acute respiratory
illness. For all patients, these data were monitored up to 3
months after the booster dose.
Volume 6 - Issue 5 - 2021
Outcomes
The primary endpoint was IgG antibody level to SARS-CoV-2
RBD antigen at 28 days after the booster BNT162b2 vacci-
nation. Secondary endpoints included level of neutralizing
antibodies 28 days after the booster, evolution of IgG an-
tibodies across time points and cohorts, the efficacy of the
immune response based on the incidence of PCR-confirmed
SARS-CoV-2 infection and PRO-based local and systemic
AEs.
https://doi.org/10.1016/j.esmoop.2021.100274 3
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Statistical analysis

All analyses were performed with the use of an intention-to-
treat principle. As prespecified in the statistical analysis plan,
geometric means of the SARS-CoV-2 RBD-IgG titer at 28 days
after the booster vaccination was compared using an analysis
of variance between treatment cohorts with pairwise com-
parison using Tukey’s honestly significant difference (HSD)
post hoc test. Robustness of results was confirmed using
nonparametric testing with Kruskal-Wallis test between
treatment cohorts with pairwise comparison using Dunn’s
post hoc test. As an exploratory analysis, a linear regression
mode for outcome at day 28 after the booster vaccination
and a linear mixed-effects model over time were fitted to
log-transformed IgG measurements. Proportions of high-
responding and low-responding patients at day 28 after
the booster were compared by Fisher’s exact test. In addi-
tion, high-responding and low-responding cancer patients
were compared using a logistic model for outcome at day 28.
Exploratory analysis in treatment subcohorts was performed
using similar statistical techniques. A two-sided P value of
<0.05 after Holm-Bonferroni correction for multiple testing
was considered statistically significant (for further details,
see Supplementary Appendix and protocol, available at
https://doi.org/10.1016/j.esmoop.2021.100274). Spearman’s
correlation was calculated between IgG antibody level to
SARS-CoV-2 RBD and S1 antigen per timepoint for all cancer
patients and between IgG antibody level to SARS-CoV-2 RBD
at 28 days after the booster and 50% neutralization titers
(NT50) titers at this timepoint.

RESULTS

Patient characteristics

Between 15 February and 2 March 2021, 159 patients with
a solid tumor and 41 patients with hematological malig-
nancy were enrolled in this study (demographic details for
patients and healthy controls presented in Table 1 and
Supplementary Tables S1 and S2, available at https://doi.
org/10.1016/j.esmoop.2021.100274). While all the healthy
controls were SARS-CoV-2 naïve, seven cancer patients (4%)
had a PCR-confirmed SARS-CoV-2 infection at least 14 days
before the start of the study.

All 200 patients received a priming dose of the BTN162b2
vaccine, and 197 (98.5%) received a booster dose. A total of
188 patients (95.4%) received the booster dose after 21
(�2) days; nine patients (4.6%) received a delayed booster
dose due to active infection or cancer treatment-related
complications (Figure 1). All patients in the healthy con-
trol cohort received both priming and booster doses exactly
21 days apart.
Safety and tolerability

The most frequently reported local AE was mild-to-moderate
pain at the injection site. Severe reactogenicity occurred in
1% of the patients following the priming dose and in 3% of
the patients following the booster dose (Figure 2A). The
percentage of patients reporting localized pain and redness
4 https://doi.org/10.1016/j.esmoop.2021.100274
was higher following the booster dose (21.5% versus 9%;
10.2% versus 3% respectively; Figure 2A). For patients
receiving targeted/hormonal therapy, the proportion
reporting a local AEs was higher after the booster than after
the priming dose (32.5% versus 516.3%, Figure 2B), while no
significant differences were observed in other cohorts. All
local AEs resolved within 3-5 days.

The reported systemic AEs were similar after each dose,
with fatigue (13% after the priming dose, 17.5% after the
booster dose) and muscle/joint pain (15.5% after the priming
dose and 17% after the booster dose) being the most
common (Figure 2C). Severe systemic AEs were reported in
<2% after either dose (fatigue in 0.5% and muscle/joint pain
in 1%; Figure 2C). The proportion of patients suffering from
systemic AEs after either of the vaccine administrations was
similar across all study cohorts (Figure 2D).

Seven serious AEs were reported. One patient with stage
IV breast cancer under oral capecitabine treatment had a
nonfatal pulmonary embolism. As it is well-known that the
risk of thromboembolic events is higher among cancer pa-
tients,21 this was considered as cancer related and not
vaccine related by the investigators. Two patients had
transient mild neurological complaints (5-6 days after vac-
cine administration) which disappeared within 48 h, with
normal brain magnetic resonance imaging and no evidence
for thrombotic or immunologic etiology. Four patients died
during the study period. Three cancer-related deaths were
considered unrelated to the BNT162b2 vaccine. One patient
died due to myocardial infarction. This patient had a history
of atrial fibrillation (under treatment with bisoprolol) which
in combination with the presence of an infection provoked
the myocardial infarction. However, we cannot complete
rule out that this event was vaccine related.
Vaccine-induced antibody response and efficacy of the
immune response

The geometric mean titer (GMT) of SARS-CoV-2 RBD-IgG
antibodies 28 days after the booster in patients with solid
tumors receiving chemotherapy was significantly lower than
the healthy controls {GMT 2955.04 IU/ml [95% confidence
interval (CI) 2280.17-3829.65] and 234.05 IU/ml (95% CI
122.10-448.66), respectively}. Hematologic cancer patients
mount significantly lower SARS-CoV-2 RBD-IgG titers [GMT
17.61 IU/ml (95% CI 7.17-43.24)] than healthy controls
and also than all other cancer cohorts (Figure 3A,
Supplementary Figures S1 and S2, available at https://doi.
org/10.1016/j.esmoop.2021.100274). All differences
remained after correction for age at inclusion, sex, body
mass index and PCR-confirmed COVID-19 infection before
or during the study period (Supplementary Table S3, avail-
able at https://doi.org/10.1016/j.esmoop.2021.100274). No
difference could be demonstrated in the SARS-CoV-2 RBD-
IgG antibody levels 28 days after the booster between
vaccinated cancer patients with solid tumors receiving tar-
geted/hormonal therapy [GMT 1844.93 IU/ml (95% CI
1383.57-2460.14)] and healthy controls, and both cohorts
could be categorized as high responding, when considering
Volume 6 - Issue 5 - 2021
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Table 1. Demographics.

Demographics Target/hormone
therapy (N [ 80)

Immunotherapy
(N [ 16)

Chemotherapy
(N [ 63)

Hematology
(N [ 41)

Overall
(N [ 200)

Sex, n (%)
Female 71 (88.8) 4 (25.0) 43 (68.3) 17 (41.5) 135 (67.5)
Male 9 (11.2) 12 (75.0) 20 (31.7) 24 (58.5) 65 (32.5)

Age, years
Mean (SD) 59.8 (12.2) 68.3 (8.09) 60.0 (13.2) 61.2 (11.5) 60.8 (12.3)
Median (range) 60.0 (31.0-86.0) 69.5 (56.0-84.0) 61.0 (26.0-88.0) 63.0 (25.0-79.0) 62.0 (25.0-88.0)

BMI
Mean (SD) 25.7 (4.72) 27.0 (4.13) 25.5 (5.19) 25.2 (3.88) 25.6 (4.66)
Median (range) 25.3 (17.8-40.0) 26.9 (19.7-34.5) 24 (18.9-44.8) 24.4 (17.1-35.5) 25.0 (17.1-44.8)
Missing, n (%) 0 (0) 0 (0) 3 (4.8) 2 (4.9) 5 (2)

ECOG score, n (%)
0 74 (92.5) 11 (68.8) 48 (76.2) 38 (92.7) 171 (85.5)
1 6 (7.5) 5 (31.2) 13 (20.6) 3 (7.3) 27 (13.5)
2 0 (0) 0 (0) 1 (1.6) 0 (0) 1 (0.5)
Missing 0 (0) 0 (0) 1 (1.6) 0 (0) 1 (0.5)

Autoimmune disease, n (%) 4 (5.0) 0 (0) 1 (1.6) 3 (7.3) 8 (4.0)
Kidney disease, n (%) 2 (2.5) 1 (6.2) 5 (7.9) 1 (2.4) 9 (4.5)
Hypertension, n (%) 20 (25.0) 4 (25.0) 22 (34.9) 8 (19.5) 54 (27.0)
Diabetes, n (%) 3 (3.8) 2 (12.5) 10 (15.9) 5 (12.2) 20 (10.0)
Coronary disease, n (%) 5 (6.2) 2 (12.5) 10 (15.9) 7 (17.1) 24 (12.0)
Smoking status, n (%)
Current smoker (all tobacco) 5 (6.2) 1 (6.2) 5 (7.9) 2 (4.9) 13 (6.5)
Former smoker (all tobacco) 21 (26.2) 11 (68.8) 21 (33.3) 18 (43.9) 71 (35.5)
Nonsmoker 51 (63.8) 3 (18.8) 29 (46.0) 21 (51.2) 104 (52.0)
Missing 3 (3.8) 1 (6.2) 8 (12.7) 0 (0) 12 (6.0)

Stage, n (%)
I 20 (25.0) 0 (0) 6 (9.5) NA 26 (16.4)a

II 17 (21.2) 2 (12.5) 6 (9.5) NA 25 (15.7)a

II 2 (2.5) 0 (0) 0 (0) NA 2 (1.2)a

III 6 (7.5) 2 (12.5) 6 (9.5) NA 14 (8.8)a

IV 33 (41.2) 12 (75.0) 42 (66.7) NA 87 (54.7)a

Missing 2 (2.5) 0 (0) 3 (4.8) NA 46 (28.9)a

BMI, body mass index; ECOG, Eastern Cooperative Oncology Group; NA, not applicable; SD, standard deviation.
a Percentage of total of patient with solid tumor.
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the predefined cut-off of 200 IU/ml (100% control cohort;
95% targeted/hormonal therapy cohort). The proportion of
high responders among the immunotherapy cohort was
80%, similar to healthy controls. Moreover, no difference
could be seen between patients receiving immunotherapy
with or without chemotherapy. However, the percentage of
high responders in the chemotherapy and hematology
cohort (respectively 55% and 29%) was significantly lower
compared with the high-responders in the healthy control
group (Figure 3A, Supplementary Figures S1 and S2, avail-
able at https://doi.org/10.1016/j.esmoop.2021.100274).
Within the chemotherapy cohort, no difference between
the ‘off-cycle’ subcohort and the ‘on-cycle’ subcohort was
seen (Figure 3B). Among the hematology cohort, SARS-CoV-
2 RBD-IgG levels in the rituximab cohort [GMT 4.12 IU/ml
(95% CI 2.25-7.52)] were lower compared with patients
with prior allogeneic HSCT [GMT 610.67 IU/ml (95% CI
148.77-2506.63)]. In addition, significantly less high re-
sponders were seen in patients receiving the CD20 antibody
rituximab (7%) compared with patients with prior allogeneic
HSCT (82%; Figure 3B).

Exploratory analysis of log-transformed IgG titers over
time showed that the evolution over time of the treatment
cohorts was significantly different from healthy controls,
mainly between baseline and 21 days after the priming
Volume 6 - Issue 5 - 2021
dose, suggesting a delayed antibody response in cancer
patients undergoing treatment (see Supplementary
Appendix, available at https://doi.org/10.1016/j.esmoop.
2021.100274).

Fifteen cancer patients (7.5%) and six healthy controls
(15%) already had SARS-CoV-2 RBD-IgG titers above LLQ
before priming doses, indicating a previous SARS-CoV-2
infection, but only four cancer patients and none of the
healthy controls reported PCR-confirmed COVID-19 before
the start of the study. Excluding patients with baseline IgG
titers above LLQ yielded comparable results for primary
outcome (see Supplementary Table S4, available at https://
doi.org/10.1016/j.esmoop.2021.100274).

The vaccine-induced humoral immune response was
assessed more in-depth by analyzing the anti-S1 antibody
response and the in vitro NT50 toward the wild-type Wuhan
SARS-CoV-2 strain. Results on the anti-S1 antibody response
highly correlated with the results on the RBD-specific
response (see Supplementary Figure S3, available at
https://doi.org/10.1016/j.esmoop.2021.100274). Moreover,
although we could identify a subgroup of individuals
showing high SARS-CoV-2 RBD-IgG titers and low NT50, in
general the SARS-CoV-2 RBD-IgG also correlated with NT50
28 days after the booster (Figure 4B). Hence, the significant
differences in SARS-CoV-2 RBD-IgG titers that could be
https://doi.org/10.1016/j.esmoop.2021.100274 5
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detected between the different cohorts persist when look-
ing at the NT50 values (Figure 4A). The NT50 of healthy
controls [GMT 122.63 (95% CI 76.85-195.67)] and patients
receiving targeted/hormonal therapy [GMT 188.69 (95% CI
83.22-169.30)] were comparable, while the NT50 of
patients receiving immunotherapy, chemotherapy as well as
6 https://doi.org/10.1016/j.esmoop.2021.100274
hematologic cancer patients was significantly lower [GMT:
34.55 (95% CI 11.67-102.23), 24.54 (95% CI 14.50-41.52)
and 8.68 (95% CI 5.55-13.57) respectively] (Figure 4A).
Moreover, neutralization capacity in the rituximab cohort
was extremely low with only one of these patients having a
NT50 above the limit of detection.
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Of all patients that received a second dose, 52% under-
went PCR testing for SARS-CoV-2 infection at least once
between the priming and booster dose, among which only
two patients (both receiving targeted/hormonal therapy)
tested positive. One patient was asymptomatic and one
showed moderate COVID-19. In the 3 months following the
booster dose, patients were actively screened for SARS-CoV-
2 infection upon symptoms or hospital admission for
treatment, resulting in 62% of patients receiving at least
one SARS-CoV-2 PCR test over the entire 3-month follow-up
period. Three cancer patients (two receiving targeted/hor-
monal therapy and one suffering from a hematological
malignancy) tested positive for SARS-CoV-2 after the
booster dose (17, 38 and 39 days after). The patient
receiving hormonal therapy showed a proper immune
response 28 days after the booster (anti-RBD IgG titer 1825
IU/ml), explaining the asymptomatic disease. The patient
under poly (ADP-ribose) polymerase inhibitor, which is
known to have immunosuppressive capacities, was
Volume 6 - Issue 5 - 2021
categorized as low responder 28 days after the booster
(anti-RBD IgG titer: 151 IU/ml) and experienced mild
symptoms. The patient under rituximab treatment did not
show any sign of a humoral immune response 28 days after
the booster, explaining the severe form of COVID-19 with a
2-week hospital admission.
DISCUSSION

Cancer patients under antineoplastic treatment have an
increased risk for severe COVID-19.10-13 In addition, low or
even absent antibody response after SARS-CoV-2 infection
has been reported, particularly in patients with advanced
cancer and B-cell hematological malignancies.7,8 Emerging
evidence shows that SARS-CoV-2 vaccination efficacy might
be lower in elderly and immunocompromised.22,23 Our
prospective interventional trial demonstrated an acceptable
safety profile of the BNT162b2 mRNA COVID-19 vaccine
with a reduced and delayed antibody response in both solid
https://doi.org/10.1016/j.esmoop.2021.100274 7
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and hematological cancer patients receiving antineoplastic
treatment.

The lowest antibody response after complete BNT162b2
vaccination could be observed in the hematology cohort.
This observation is in line with previous studies showing
blunted antibody responses after BNT162b2 vaccination in
patients with hematological malignicies,24 an effect that is
more pronounced compared with patients with a solid tu-
mor.25,26 Among all hematology patients, those that are
actively treated at the time of vaccination show a lower
antibody response compared with untreated patients or
stem cell transplantation patients (both autologous and
allogenic),24 which is fully in line with our observations. In
addition, our study focuses on patients under rituximab, a
CD20-antibody inducing B-cell aplasia, which compromises
the antibody formation.25 Unsurprisingly, almost all the
hematological high-responders are patients with prior
allogeneic HSCT, with only two receiving rituximab. One of
these rituximab high responders had detectable SARS-CoV-2
RBD-IgG titers before priming, possibly leading to increased
vaccine efficacy. A recent study showed decreased IgG titers
5 weeks after full BNT162b2 vaccination in multiple
myeloma patients and myeloproliferative malignancy pa-
tients on active antineoplastic treatment, supporting our
findings.27 Moreover, higher antibody response rates were
seen in chronic lymphatic leukemia patients in clinical
remission or in treatment-naïve patients.28 In addition,
patients with multiple myeloma show a lower antibody
response after the first dose of BNT162b2 compared with
postallogeneic HSCT patients.29

Solid tumor patients, who were vaccinated while under-
going targeted/hormonal therapy, had antibody responses
close to healthy controls, which is in line with the known
better response after influenza vaccination in comparison to
patients under cytotoxic treatment.30 Among this cancer
cohort, the majority of the patients received hormonal
therapy having little myelosuppressive effect,31 so an
adequate immune response could be expected.
8 https://doi.org/10.1016/j.esmoop.2021.100274
By contrast, solid tumor patients who were vaccinated
while undergoing chemotherapy had decreased anti-RBD
antibody levels as well as decreased neutralizing capacity
28 days after the booster. This corresponds to the lower
antibody response in patients receiving cytotoxic chemo-
therapy in a study which made the comparison with cancer
patients on clinical surveillance, 3-4 weeks after being fully
vaccinated with either BNT162b2 or mRNA-1273.26 As seen
in the latter study, in our study some of these patients
mount no or very low levels (e.g. below the lower limit of
detection) of (neutralizing) antibodies. In our study, adapt-
ing the timing of vaccination relative to the chemotherapy
administration did not affect the vaccine-induced immune
response. Although in contradiction with recommendations
for vaccine administration between chemotherapy
cycles,32 this is in line with non-mRNA vaccines such as
influenza33 and pneumococcal vaccines.34 As a beneficial
effect of booster vaccination against influenza has been
demonstrated,30 this supports further studies to investigate
the role of additional booster vaccination (BNT162b2) in
improving vaccine efficacy.

Indeed, two of our patients got infected between priming
and booster dose administration, and three [one receiving
hormonal therapy, one poly (ADP-ribose) polymerase in-
hibitor therapy, one rituximab] patients still got infected
with SARS-CoV-2 after being fully vaccinated, with two of
them categorized as low responder. While poly (ADP-ribose)
polymerase inhibitor therapy and rituximab are known to
be immunosuppressive,35,36 the immune system of the
patients under hormonal therapy was most probably not
fully recovered after four cycles of doxorubicin and cyclo-
phosphamide, which has highly immunodepressing activ-
ities including suppression of B-cell functions.37,38 Despite
these breakthrough infections, only one of these patients
developed severe symptoms and needed hospital admis-
sion, in line with the idea that vaccination is more effective
against COVID-19 compared with asymptomatic infection.39

It has indeed been demonstrated that while the
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effectiveness toward hospitalization after the priming dose
is almost as high as after the booster dose (74% and 87%),
for the protection against symptomatic disease, the effec-
tiveness increases steeply after the booster dose (57%
compared with 94%).40 It should be noted that the patient
showing severe symptoms did not show seroconversion 28
days after the booster dose, most probably due to the rit-
uximab treatment at the moment of vaccination, which is
known to affect antibody production.

While patients under immunotherapy showed a clearly
delayed anti-RBD antibody response, the 28-day postbooster
response rate was similar to the control cohort, in line with
previous literature on influenza vaccination.41 However, a
recent meta-analysis indicates an increased rate of sero-
conversion after vaccination for patients under immuno-
therapy, together with an increased occurrence of immune-
related AEs such as fever.42 As such, concerns were raised
regarding enhanced immune-related side-effects after
vaccination of patients under immunotherapy. In our study
population, the vaccine was well-tolerated. Local side-effects
were more frequent after the booster vaccination, confirm-
ing the phase III trial in healthy volunteers.14 Systemic side-
effects occurred in patients of all cohorts and were similar
after the first and second vaccination, in line with the gen-
eral population.14 Our results, together with the findings of a
recent study showing the safe use of the BNT162b2 vaccine
in cancer patients treated with immune checkpoint in-
hibitors,43 demonstrate the safety of the BNT162b2 vaccine
in cancer patients, including those under immunotherapy.

In this study, the immune response after a COVID-19
vaccine in a cancer population under treatment is moni-
tored. In contrast to preliminary findings in cancer patients,
where the main difference between healthy controls and
patients was the failure to produce any response, rather
than the magnitude of the response,25 a substantial pro-
portion of our patients has seroconversion (e.g. an IgG level
above the LLQ) without reaching levels necessary for 50%
protection against symptomatic SARS-CoV-2 infection
(<200 IU/ml). Moreover, even though it is widely accepted
that SARS-CoV-2 RBD-IgG antibodies correlate with
neutralizing antibody capacity14 and this is indeed the case
for the overall study population, we here identified a sub-
group of participants showing seroconversion without
neutralization capacity against the wild-type strain. This
phenomenon was seen in patients from all subgroups,
including the healthy controls, and already described in a
small cohort of donors of convalescent plasma, where do-
nors with similar NT50 values of 240 had different IgG ELISA
titers of 5400 and 16200.44 Speculation on this subject
points toward the presence of epitopes on RBD that do not
result in in vitro receptor binding or the presence of the
‘original antigenic sin’ phenomenon in which previous
exposure to common coronaviruses might lead to an
early and high-titer immune response after SARS-CoV-2
infectiondor in this case vaccinationdthat uses memory,
instead of naïve B cells, as such producing IgG that are
typical for common coronaviruses and thus may not be
neutralizing against SARS-CoV-2.45 However, as we see here,
Volume 6 - Issue 5 - 2021
this phenomenon occurs more frequently in cancer pa-
tients, including over half of the patients receiving
chemotherapy or immunotherapy and those with a hema-
tological malignancy (24/49, 7/15 and 8/14 respectively);
therefore, it is tempting to speculate that antineoplastic
treatment during vaccination might lead to the formation of
dysfunctional antibodies. As this is fully speculative at the
moment, further research in this context is needed.

The strength of this study is that we specifically investi-
gate RBD antibodies rather than spike protein antibodies, as
cross-reactivity with other coronavirus subtypes has been
reported.46 Moreover, in contrast to the previous studies in
this context, we combine both anti-RBD IgG levels with
in vitro neutralizing capacity to have a more in-depth rep-
resentation of the humoral immune response. Furthermore,
we report a long-term follow-up of the antibody response
up to 28 days (4 weeks) after the booster dose. Despite all
this, we acknowledge the lack of data on cellular immunity
for these patients, which is needed to be able to fully study
the vaccine induced immune response.

This study demonstrates that although the BNT162b2
COVID-19 vaccine is well-tolerated in cancer patients under
active treatment, including patients under immunotherapy,
some cancer patients lack the capacity to mount an efficient
immune response, especially those receiving chemotherapy
or rituximab treatment and irrespective of the timing of
vaccine administration. As such, group immunity and self-
protection are of paramount importance in these cases
and caregivers, household members and/or close contacts
of these patients (adults regardless of age) should be
vaccinated as early as possible.47 In addition, this study
raises the question for the third dose vaccination to boost
immunity in cancer patients, as this has recently been
shown to significantly improve the immunogenicity of the
BNT162b2 vaccine.48
CONCLUSIONS

In conclusion, BNT162b2 vaccine administration is safe in
cancer patients under antineoplastic treatment, but the
reduced SARS-CoV-2 RBD-IgG antibody levels indicate a
reduced efficacy, having important public health implica-
tions given the increased risk of severe COVID-19 in cancer
patients.
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