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� Abstract
Identification and quantification of maturing hematopoietic cell populations in flow
cytometry data sets is a complex and sometimes irreproducible step in data analysis.
Supervised machine learning algorithms present promise to automatically classify cells
into populations, reducing subjective bias in data analysis. We describe the use of sup-
port vector machines (SVMs), a supervised algorithm, to reproducibly identify two dis-
tinctly different populations of normal hematopoietic cells, mature lymphocytes and
uncommitted progenitor cells, in the challenging setting of pediatric bone marrow
specimens obtained 1 month after chemotherapy. Four-color flow cytometry data were
collected on a FACS Calibur for 77 randomly selected postchemotherapy pediatric
patients enrolled on the Children’s Oncology Group clinical trial AAML1031. These
patients demonstrated no evidence of detectable residual disease and were divided into
training (n 5 27) and testing (n 5 50) cohorts. SVMs were trained to identify mature
lymphocytes and uncommitted progenitor cells in the training cohort before indepen-
dent evaluation of prediction efficiency in the testing cohort. Both SVMs demonstrated
high predictive performance (lymphocyte SVM: sensitivity >0.99, specificity >0.99;
uncommitted progenitor cell SVM: sensitivity 5 0.94, specificity >0.99) and closely
mirrored manual cell classifications by two expert-analysts. SVMs present an efficient,
automated methodology for identifying normal cell populations even in stressed bone
marrows, replicating the performance of an expert while reducing the intrinsic bias of
gating procedures between multiple analysts. VC 2016 The Authors. Cytometry Part A published

by Wiley Periodicals, Inc. on behalf of ISAC.
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INTRODUCTION

DURING the process of monitoring response to acute myeloid leukemia (AML)

therapy using flow cytometry, it was noted that patterns of antigen expression of the

normal, regenerating hematopoietic cells were remarkably similar from patient to

patient, even early postchemotherapeutic treatment. For three separate Children’s

Oncology Group AML trials over a period of 13 years, standardized four-color panels

were used to pattern early stages of hematopoiesis (1,2). Using the “difference from

normal” flow cytometric approach, low levels of neoplastic leukemia were distin-

guished from normal regenerating myeloid cells based on the detection of small pop-

ulations of viable cells exhibiting aberrant antigen expression. These studies

comprised the analysis of over 10,000 specimens obtained from >2,300 patients

monitored throughout the course of treatment.
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Quantifying the variance of gene product (antigen)

expression within and between individuals on these recovering

bone marrows is complicated by the heterogenous composi-

tion of the specimens. There are 11 different lineages of cells

that must be identified within the bone marrow, in addition to

all stages of maturation from the hematopoietic stem cell to

the mature blood cells. As a result, cell populations are not dis-

crete and the proportions of different cell types vary depending

upon the rate of hematopoietic reconstitution following thera-

py. However, the positions of all cell populations in the six-

dimensional data space appeared to remain constant.

To quantify the variance of gene product expression with-

out subjective gating bias, the supervised algorithms support

vector machines (SVMs) were selected to identify key refer-

ence cell populations. This technique defines a multi-

dimensional plane based on a teaching set created by an

expert. This plane is then used to identify corresponding cell

populations in new, independent patient data sets that com-

bine the exact same parameters based on constancy of posi-

tion in N-dimensional space. This article describes the efficacy

of the SVMs to reproduce the expert-detection of two of the

reference populations, mature lymphocytes and uncommitted

progenitor cells. Two companion papers then use this

approach to determine the variability of gene product expres-

sion among normal cells in postchemotherapy regenerating

bone marrow specimens.

MATERIALS AND METHODS

Patient Data Set

Patients younger than 21 years with newly diagnosed de

novo AML who were enrolled on Children’s Oncology Group

(COG) AAML1031 were eligible for this study. The trial was

conducted in accordance with the Declaration of Helsinki and

registered at www.clinicaltrials.gov as NCT01371981. A total of

77 randomly selected, pediatric AML patients obtained approx-

imately 1 month postchemotherapy were identified as having

no evidence of residual disease (3). Patients were randomly

assigned to training (n 5 27) and testing (n 5 50) cohorts.

Specimen Collection

Bone marrow aspirates were collected in heparin (the

preferred anticoagulant) or EDTA. The data were obtained

over a period of 3 years and 6 months using three separate

flow cytometers, multiple reagent lots, and processed by mul-

tiple technicians.

Flow Cytometry

Specimens were processed as routine clinical bone mar-

rows as previously described (1). Briefly, 100 lL of bone mar-

row was added to cocktails of pretittered antibodies at room

temperature in the dark. Red blood cells were lysed using

3.5 mL of buffered NH4Cl (0.83%) at 378C for 5 min before

centrifugation at 300G. Cells were then washed with 3 mL of

phosphate buffered saline containing 2% fetal calf serum and

resuspended to 0.5 mL in 1% paraformaldehyde for analysis

on one of three FACS Calibur instruments (Becton Dickinson

Biosciences, San Jose, CA). 200,000 events were collected for

each tube. The flow cytometers were cross standardized and

calibrated using RCP-30A and RFP-30A beads (Spherotech,

Lake Forest, IL) with spectral compensation performed using

peripheral blood cells labeled with CD4 (SK3, BD) conjugated

to fluorescein (FITC), phycoerythrin (PE), peridinin chloro-

phyll protein (PerCP), or allophycocyanin (APC). Eight com-

binations of antibodies are presented in Table 1. The eighth

tube was added after the beginning of the study to identify

immature B lymphoid precursors/plasmacytic dendritic cells

and basophils, so this reagent combination was only imple-

mented in 45 of the 50 patients in the testing cohort.

Support Vector Machines

An expert-analyst (MRL) classified mature lymphocyte

and uncommitted progenitor cell populations using Winlist

(Verity Software House, Topsham, ME) for all patients in

both the training and testing cohorts. All flow-cytometry data

Table 1. Monoclonal antibody combinations

TUBE NO. FITC PE PERCP APC

1 HLA-DR CD11b CD45 CD34

Clone L243 (BD) D12 (BD) 2D1 (BD) 8G12 (BD)

2 CD36 CD38 CD45 CD34

Clone FA6.152 (BC) HB7 (BD)

3 CD16 CD13 CD45 CD34

Clone 3G8 (BD) L138 (BD)

4 CD14 CD33 CD45 CD34

Clone M//P9 (BD) P67.6 (BD)

5 CD7 CD56 CD45 CD34

Clone 4H9 (BD) MY31 (BD)

6 CD38 CD117 CD45 CD34

Clone HIT2 (Invitro) 104D2 (BD)

7 CD36 CD64 CD45 CD34

Clone FA6.152 (BC) 22 (T)

8 CD19 CD123 CD45 CD34

Clone 4G7 (BD) 9F5 (BD)
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were analyzed in log space, with the exception of forward light

scatter (FSC).

Expert-classified cell populations from the cohorts were

exported from Winlist into R software (4). For both lympho-

cytes and uncommitted progenitor cells, all data from the

training cohort patients were merged to create one file that

differentiated cells within the population of interest (11)

from the remainder of cells (21). Log base-10 transforma-

tions were computed for right-angle side scatter (SSC), FITC,

PE, PerCP, and APC parameters prior to SVM training. The

linear range of FSC was scaled to emulate a zero-to-four log

scale. An SVM was trained to identify each target population

with a radial kernel using the e1071 library (5). A basic over-

view of an SVM algorithm is provided in the supplementary

data (Supplementary Fig. 1). To manage the computational

intensity of training the lymphocyte SVM, 1000 random

manually classified lymphocytes (11) and 1,500 random

manually classified nonlymphocytes (21) from each patient

were merged to form the lymphocyte training data set.

Because only support vectors influence the SVM decision

boundary, the 1,500 nonlymphocytes in each patient were

selected to enrich the training cohort with potential support

vectors. Therefore, the nonlymphocytes were selected based

on similar properties to the lymphocytes: a SSC of <2 log

units and a CD45 intensity >2 log units. Similar exclusion

procedures have been utilized to enrich datasets for support

vectors and reduce the training time of SVMs (6,7). To man-

age the computational intensity of the uncommitted progeni-

tor cell SVM training, manually classified uncommitted

progenitor cells (11) and similar nonuncommitted progeni-

tor cells (21) with a CD34 intensity >2 log units from each

patient were merged to form the uncommitted progenitor

cell training set. Because 27 patients comprised each training

data set, a ninefold leave-three-out cross validation was

applied on the training data to determine optimal C and c
parameters for both SVMs (8).

Figure 1. Expert cellular classifications for SVM training: (A) Lymphocytes (purple) were identified by an expert analyst as a discrete clus-

ter of events with high CD45 intensity and low SSC. (B) The high relative frequency of the lymphocyte population is depicted on a 3D plot

of CD45, SSC, and frequency. (C) Uncommitted progenitor cells (purple) were identified by an expert analyst as the cells with the brightest

CD34 intensity before a gain or loss of CD33. Maturational pathways as these cells commit to monocyte, neutrophil, dendritic, basophil,

and lymphocyte lineages are shown with arrows. (D) The low relative frequency of the uncommitted progenitor cell population is depicted

on a 3D plot of CD33, CD34, and frequency.
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Statistics

Sensitivity and specificity were used to evaluate predic-

tion efficiency, and were calculated according to the standard

definitions, where the manual classifications of the expert ana-

lyst (MRL) were regarded as the true classifications.

Because predicted cell populations were often small when

compared to the total number of collected events, prediction effi-

ciency was also evaluated with the Matthews correlation coeffi-

cient (MCC) (9). The MCC is a balanced measure of the quality

of a binary prediction algorithm even when classes are of different

sizes. The MCC returns a value between 21 and 1, where 1 repre-

sents a perfect prediction, 0 represents a random prediction, and

21 represents complete disagreement between the prediction and

observation, and is calculated by the following definition:

MCC5
TP 3 TN 2 FP 3 FN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TP 1 FPð Þ TP 1 FNð Þ TN 1 FPð Þ TN 1 FNð Þ

p

where TP 5 # True Positives, TN 5 # True Negatives, FP 5 #

False Positives, FN 5 # False Negatives.

RESULTS

SVM Training

Two different cell types were selected to test the perfor-

mance of SVMs in a complex data set of normal regenerating

bone marrow cells following chemotherapy. The first group of

cells, mature lymphocytes, is relatively straightforward for an

expert analyst to identify, and is presented to demonstrate the

efficacy of classifying a homogenous, discrete, relatively fre-

quent cell population with SVMs. The second group of cells,

uncommitted progenitor cells, is challenging to identify as this

population is a heterogeneous, nonlinearly separable popula-

tion of infrequent cells.

SVMs were initially trained to identify each target popu-

lation in regenerating bone marrow using the combination of

Figure 2. Qualitative evaluation of SVM predictions for a test cohort patient. (A, B) Each SVM prediction was compared to an independent

manual classification of lymphocytes (A) and uncommitted progenitor cells (B). Cells colored in red were classified by both the expert ana-

lyst and the SVM. Discrepant classifications of events colored in green were identified only by the expert analyst, while events colored in

purple were classified only by the SVM. The discrepant classifications occur at the outer boundaries of the target population. (C) A fre-

quency curve of CD45 intensities for all cells (black) reveals a uniform subpopulation of cells with high-intensity of CD45, which is com-

prised almost entirely of SVM-classified lymphocytes (red). The majority of nonlymphocytes have a lower CD45 intensity (blue), with the

remainder of bright CD45 cells classified as monocytes. (D) A frequency curve of CD34 intensities for all cells with a CD34 intensity greater

than two log units (black) reveals a heterogeneous distribution of CD34 intensities. SVM-classification reveals a homogenous, high inten-

sity CD34 peak for the uncommitted progenitor cells (red) compared to the lineage committed progenitor cells (blue).
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parameters found in Tube 4 of the antibody panel (Table 1):

linear FSC, log SSC, log CD14 (FITC), log CD33 (PE), log

CD45 (PerCP), and log CD34 (APC). Lymphocyte cell popu-

lations are identified as a distinct, homogenous cluster of

events with high CD45 intensity and low SSC (Fig. 1A). This

population of cells is of relatively high frequency, typically

comprising 5–20% of cells in the bone marrow (Fig. 1B). An

expert-analyst manually identified this discrete lymphocyte

population by CD45 versus log SSC gating in combination

with FSC in the training cohort patients, and these manual

classifications were used to train and cross-validate the lym-

phocyte SVM. The inclusion of CD14 (FITC) and CD33 (PE)

parameters did not further improve predictive performance in

SVM training (data not shown). Consequently, mature lym-

phocyte SVM training was only performed with FSC, SSC,

CD45, and CD34 parameters.

In contrast, uncommitted progenitor cells are not dis-

crete but a continuous population. These cells include the

hematopoietic stem cells and multipotent progenitor cells

that have not yet expressed any lineage-associated surface

gene products (10,11). Uncommitted progenitor cells are

defined by a homogenous high expression of the key anti-

gen, CD34, and coexpression of CD33 (Fig. 1C). CD33

changes in intensity once the uncommitted progenitors

decide a maturational path, increasing in CD33 expression

for monocytes and neutrophils, decreasing in CD33

expression for plasmacytic dendritic cells, or rapidly losing

CD33 for lymphoid progenitor cells. An expert analyst

manually identified the uncommitted progenitor popula-

tion by gating the brightest intensity CD34 cells before the

gain or loss of CD33 (Fig. 1C). This population is of

noticeably lower frequency than the lymphocyte popula-

tion, typically comprising 0.5–2% of all cells in the bone

marrow (Fig. 1D). This manual classification was complet-

ed for all training cohort patients and used to train and

cross-validate the uncommitted progenitor cell SVM. All

six parameters were necessary to train this SVM with

maximal prediction performance (data not shown).

Figure 3. Intensity and frequency correlations between the lymphocyte SVM and expert. (A–C) The average intensities of FSC, SSC, and

CD45 were computed for expert-identified lymphocytes (x-axis) and the SVM-identified lymphocytes (y-axis) for the test cohort. Each plot

is scaled to display the range of intensity values in a manual analysis, and the lower-right quadrant of each plot provides a magnified

view of the correlation. (D) The frequency of expert-identified lymphocytes (x-axis) versus the SVM-identified lymphocytes (y-axis) for the

test cohort. R2 correlations were calculated according to the linear model SVM 5 Expert.
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Qualitative Evaluation of SVM Population Predictions

After training, the two SVMs were applied to identify

lymphocytes and uncommitted progenitor cells in the inde-

pendent test cohort. Algorithmic predictions were first quali-

tatively evaluated. The SVM-predicted populations were

compared to the expert analyst’s test cohort classifications in

each test patient for the lymphocytes (Fig. 2A) and uncom-

mitted progenitor cells (Fig. 2B). The population predictions

agreed with the corresponding expert-classifications, and the

majority of cells were correctly identified in each target popu-

lation. However as expected, some misclassifications occurred,

and these discrepant predictions were located at the edges,

rather than the center, of the SVM decision boundary. Addi-

tionally, histograms of key antigens were compared between

SVM-predictions and all other events in each test patient. In

the display of CD45 intensities of all cells, a uniform, bright

CD45 population can be readily visualized (Fig. 2C). This

population is comprised almost entirely of SVM-classified

lymphocytes (with the remainder of bright CD45 positive cells

identified as predominantly monocytes). In contrast, initial

analysis of all CD34 positive cells (with an intensity greater

than two log units) revealed a heterogeneous distribution of

CD34 intensities (Fig. 2D). The SVM-classified uncommitted

progenitor cells can be identified as a homogenous high inten-

sity CD34 peak clearly distinguishable within this heteroge-

neous population.

Quantitative Evaluation of SVM Population

Predictions

Classification performance of each SVM was quantita-

tively evaluated. Each SVM prediction was compared to the

independent expert classification for all patients in the testing

cohort. The average sensitivity, specificity, and MCC of the

lymphocyte SVM and the uncommitted progenitor cell SVM

demonstrated remarkably high predictive performance by all

three metrics (Table 2). A similar comparison was made to a

second expert (LP) who analyzed the same data set with

instructions to identify the lymphocytes and uncommitted

progenitor cells, without disclosing the details of how bound-

aries were established. The average sensitivity, specificity, and

MCC of the classifications of the second expert were comput-

ed in comparison to the first expert (Table 2). The SVMs and

second expert (LP) demonstrated similar performance repli-

cating the gates of the first expert (MRL).

Figure 4. Intensity and frequency correlations between uncommitted progenitor cell SVM and expert. (A–D) The average intensities of

FSC, SSC, CD45, and CD34 were computed for expert-identified uncommitted progenitor cells (x-axis) and the SVM-identified uncommit-

ted progenitor cells (y-axis) for the test cohort. Each plot is scaled to display the range of intensity values in a manual analysis, and the

lower-right quadrant of each plot provides a magnified view of the correlation. (E) The frequency of expert-identified uncommitted pro-

genitor cells (x-axis) versus the SVM-identified uncommitted progenitor cells (y-axis) for the test cohort. R2 correlations were calculated

according to the linear model SVM 5 Expert.
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Classification performance was additionally evaluated by

correlating population frequency and average surface gene

product intensities between each SVM-predicted cell popula-

tion and the expert-identified cell population in the test

cohort. R2 values were calculated to evaluate how well the

data fit a hypothesized linear model (SVM 5 Expert) (Figs.

(3) and (4)). On a four-decade scale, the relationship between

the SVM and the expert analyst are essentially indistinguish-

able. Within the intensity and frequency regions of interest,

small discrepancies between the SVM and expert can be iden-

tified. However, 97% of lymphocyte SVM intensities and 92%

of uncommitted progenitor cell SVM intensities were within

0.05 log units of the expert-characterized intensity, demon-

strating the high-functional agreement between the SVM and

the expert. A similar high correlation between the two experts

analyzing the same dataset was observed (Supplemental Figs.

2 and 3), suggesting that the SVM and second expert were

comparable in replicating the classifications of the first expert.

Replicate Identification of Lymphocytes and

Uncommitted Progenitor Cells

In addition to the initial panel of CD14/CD33/CD45/

CD34 (Table 1, Tube 4), seven other combinations of FITC

and PE conjugated antibodies were used to study cell surface

gene product relationships in each regenerating bone marrow

specimen. Collectively, these unique reagent combinations

provided eight replicate analyses in each patient to identify

the lymphocytes and uncommitted progenitor cells with

SVMs.

The initial lymphocyte SVM was trained using only FSC,

SSC, CD45, and CD34 parameters, characteristics which were

conserved between the eight reagent combinations. Therefore,

the original lymphocyte SVM was applied to classify this cel-

lular population in each of the additional combinations of

FITC and PE conjugated-antibodies. In contrast, the initial

uncommitted progenitor cell SVM training required both

CD14 FITC and CD33 PE parameters to achieve optimal pre-

dictive performance. Therefore, this specific SVM could not

be applied to any of the other combinations of reagents. Con-

sequently, eight unique SVMs were trained (one for each

regent combination) to identify uncommitted progenitor

cells. These independently trained SVMs were then applied to

identify the uncommitted progenitor cells in each of the eight

tubes with different FITC and PE conjugated-antibodies,

providing replicate analyses identifying the same cell popula-

tion but with different SVMs.

For both lymphocytes and uncommitted progenitor cells,

replicate intensities of FSC, SSC, and CD45 and replicate cell

frequency measurements between the eight SVM-predictions

were analyzed in the test cohort. Replicate CD34 intensities

were additionally analyzed for uncommitted progenitor cells

but not lymphocytes, as the lymphocytes do not express this

gene product. The variability in average intensity and frequen-

cy between the eight predictions was computed for each

patient, and averaged for the test cohort (Table 3). The lym-

phocytes, identified by the same SVM in all eight combina-

tions of antibodies, demonstrated minimal variation of FSC,

SSC, and CD45 between the eight populations identified in

each patient. In addition, the replicate lymphocyte frequency

variation is low, suggesting that a similar proportion of cells

were identified in each of the eight replicates. Collectively, this

data demonstrates that the lymphocyte-SVM trained using

Tube 4 of the reagent panel identified a similar population of

cells in each combination of reagents studied.

Table 2. Prediction efficiency of each SVM

LYMPHOCYTE

SVM

UNCOMMITTED

PROGENITOR CELL

SVM

LYMPHOCYTE

EXPERT 2

UNCOMMITTED

PROGENITOR

CELL EXPERT 2

Sensitivity 0.994 0.944 0.934 0.974

Specificity 0.991 0.998 0.996 0.998

MCC 0.948 0.904 0.940 0.921

Average sensitivity, specificity, and MCC values were computed by calculating the mean of all sensitivity, specificity, and MCC

measurements for the 50 test predictions for both the SVM and expert 2 (LP). Classifications from expert 1 (MRL) were designated as the

true classifications.

Table 3. Target population variability between replicate analyses

LYMPHOCYTES

UNCOMMITTED

PROGENITOR CELLS

Replicate FSC SD

(linear units)

3.28 25.6

Replicate SSC SD

(log units)

0.022 0.053

Replicate CD45 SD

(log units)

0.017 0.032

Replicate CD34 SD

(log units)

N.A. 0.031

Replicate frequency SD 0.0053 0.0019

In each test patient, the average FSC, SSC, and CD45 inten-

sities were calculated for the eight lymphocyte and uncommitted

progenitor cell predictions. Replicate CD34 intensities were addi-

tionally computed for uncommitted progenitor cells but not lym-

phocytes, as the lymphocytes do not express this gene product.

The variation (standard deviation) between these eight measure-

ments was calculated for each test patient and averaged for the

test patient cohort. Additionally, the predicted population fre-

quency (predicted events/total events) was calculated for each of

the eight predictions. The variation (standard deviation) of the

predicted population frequency between the eight predictions

was calculated for each patient and averaged for the test patient

cohort.
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In spite of the independent algorithm-training utilizing

different combinations of reagents, each of the eight uncom-

mitted progenitor cell SVMs identified a population of cells

with similar low variation of FSC, SSC, CD45, and CD34

within each patient. Although the uncommitted progenitor

cells are infrequent, on average comprising 1.2% of cells in the

marrow in the test cohort, the variation in frequency between

the eight replicate predictions was only 0.2%. Again, this pro-

vides strong evidence that a similar proportion of cells were

identified in each of the eight replicate tests. Collectively, these

data suggests that despite independent SVM training, a

remarkably similar population of uncommitted progenitor

cells were identified in each tube of the reagent panel, further

validating the high efficacy of SVM-identification of this

population.

Discussion

To quantify the variance of gene product expression of

hematopoietic cell populations in the bone marrow, reference

populations must be identified with limited analytical bias. In

this manuscript, we show that SVMs present an automated

methodology to identify such reference populations with high

agreement to the expert. By testing SVMs on pediatric bone

marrows postchemotherapy, we studied the efficacy of SVMs

in a challenging analytical setting, comprised of stressed, het-

erogeneous, maturing, multilineage populations of cells. This

challenging setting replicates the difficulties of performing

clinical flow cytometry analysis for the detection of residual

disease based on “difference from normal” (1). The location

of the normal cells in n-dimensional data space is crucial in

this approach to detect low levels of cells expressing pheno-

typic aberrancies (12–14).

Each metric of predictive performance evaluated in this

manuscript indicates that SVMs closely mirror expert gating

designations. First, high sensitivity, specificity, and MCC

measurements demonstrated strong agreement between SVM

and expert classifications. Second, frequency and mean fluo-

rescent intensity measurements were remarkably correlated

between expert- and SVM-identified populations. Third, the

low variation of frequency and mean fluorescent intensity

measurements for replicate analysis within each individual

patient indicates that SVMs reproducibly characterize the

same cell population studied with different combinations of

reagents, illustrating the power of this algorithm in a stable

analytical system. Fourth, the comparison between two

experts analyzing the same data set illustrates that the SVM

replicates expert-trained classifications as well as a second,

independent expert. Collectively, this data shows that SVMs

can effectively replicate the expert identification of lympho-

cytes and uncommitted progenitor cells while reducing ana-

lytical bias inherent to manual gating procedures.

The success of population classification using SVMs is

dependent on two assumptions. First, quality control of the

system must be rigorous to maintain identical data collection

on multiple instruments with multiple lots of reagents over an

extended period of time, such as the length of a clinical trial.

In the data presented here, three separate, cross standardized

flow cytometers were used in data collection spanning three

and a half years, employing multiple lots of titered reagents.

Second, the variability of cellular characteristics between

patients must be minimal. As SVMs are trained using only

fluorescent and light scattering intensity measurements, each

population’s collective surface gene product expression must

reside in a unique and constant region within the six-

dimensional space to be efficiently identified by the SVM. In

this test system, the location of the mature lymphocytes and

the normal uncommitted progenitor cells were sufficiently sta-

ble to identify the target populations even in stressed regener-

ating bone marrow specimens after chemotherapeutic

treatment. Although, the cellular frequency of these popula-

tions varied significantly, the location of these populations

with regard to their assayed cellular characteristics remained

stable enough for the trained SVM to replicate the expert

analysis for each test patient.

There are limitations associated with SVM analysis of

flow cytometry data. SVMs by definition only perform predic-

tions in the two-class setting, distinguishing between the tar-

get population and all other events. Hence, identifying

multiple cell populations within the same patient requires the

training of multiple unique SVMs. In addition, several unique

SVMs are sometimes needed to identify the same population

of cells in different combinations of reagents, as demonstrated

by the identification of the uncommitted progenitor cells. The

training of multiple SVMs can be a time-consuming process

for the expert analyst and computationally intensive. Further,

the selection of kernel and cost parameters can affect the per-

formance of an SVM. Cross-validation of training data can be

used to estimate predictive performance for numerous combi-

nations of input variables, allowing for the identification of

kernel and cost parameters that lead to better performance.

Yet cross-validation can likewise be computationally intensive

for multiple SVMs in a large training cohort. Because only

support vectors influence the SVM-decision boundary, com-

putational time can be reduced by training the algorithm on a

subset of the data with characteristics similar to the popula-

tion of interest (6,7). For example, the uncommitted progeni-

tor cell SVM was trained only on cells with CD34 intensities

>2 log units. In the testing cohort, SVM-identification of

both the lymphocytes and uncommitted progenitor cells aver-

aged 42 sec on a machine with 16GB of RAM in patients with

200,000 collected events.

The field of automated flow cytometry analysis contains

numerous supervised, semisupervised, and unsupervised algo-

rithms to identify populations of hematopoetic cells (15–21).

However, the majority of existing algorithms include unsuper-

vised or clustering components to assemble high-density

groups of data points into populations (22–25). SVMs cannot

reproducibly identify cell populations in which gene product

expression varies substantially between patients. In such a set-

ting, unsupervised algorithms may better identify clusters of

cells independent of consistent fluorescent intensity measure-

ments. Instead, SVMs are predicated on identifying constant

quantitative surface gene product expression patterns found

on biological cell populations independent of cell frequency.

SVMs have shown success in classifying cell populations in
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peripheral blood (26) and murine bone marrow (27), and

even at identifying acute lymphoblastic leukemia with repro-

ducible phenotypes (28). In this manuscript, we extend this

approach to identify crucial reference populations in postche-

motherapy pediatric bone marrow specimens with reagent

combinations used to study over 10,000 patients in three large

clinical trials.

SVMs present an automated methodology to identify ref-

erence populations with high expert agreement. This expert-

trained algorithm exhibits high predictive performance in the

challenging specimen type of pediatric bone marrow after che-

motherapy. Hence, SVMs present a powerful tool to precisely

quantify the variation of gene product expression with limited

analytic bias.
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