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Abstract: Regular consumption of adequate quantities of lipids rich in omega-3 fatty acids is claimed
to provide a broad spectrum of health benefits, such as inhibiting inflammation, cardiovascular
diseases, diabetes, arthritis, and ulcerative colitis. Lipids isolated from many marine sources are
a rich source of long-chain polyunsaturated fatty acids (PUFAs) in the omega-3 form which are
claimed to have particularly high biological activities. Functional food products designed to enhance
human health and wellbeing are increasingly being fortified with these omega-3 PUFAs because
of their potential nutritional and health benefits. However, food fortification with PUFAs is chal-
lenging because of their low water-solubility, their tendency to rapidly oxidize, and their variable
bioavailability. These challenges can be addressed using advanced encapsulation technologies, which
typically involve incorporating the omega-3 oils into well-designed colloidal particles fabricated
from food-grade ingredients, such as liposomes, emulsion droplets, nanostructured lipid carriers,
or microgels. These omega-3-enriched colloidal dispersions can be used in a fluid form or they
can be converted into a powdered form using spray-drying, which facilitates their handling and
storage, as well as prolonging their shelf life. In this review, we provide an overview of marine-based
omega-3 fatty acid sources, discuss their health benefits, highlight the challenges involved with their
utilization in functional foods, and present the different encapsulation technologies that can be used
to improve their performance.

Keywords: marine lipids; polyunsaturated fatty acids; nanoencapsulation; microencapsulation;
spray drying

1. Introduction

Regular intake of sufficiently high quantities of polyunsaturated fatty acids (PUFAs)
has been needed to reduce the incidences of innumerable types of ailments and chronic
diseases, including psoriasis, bowel diseases, mental illnesses, cancer, rheumatoid arthritis,
cardiovascular diseases, diabetes, pulmonary disorders, coordination disorders, movement
illnesses, obesity, and weak bones [1–4]. As a result, the consumption of foods rich in PUFAs
is strongly encouraged by health agencies around the globe. Fish oil is one of the major
dietary sources of PUFAs, especially eicosapentaenoic acid (EPA) and docosahexaenoic
acid (DHA), which are believed to have particularly potent biological activities and health
effects [5]. The overall PUFA profile of fish oils depends on fish species, sex, maturity, diet,
and environment, which may impact their potential health benefits.
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Incorporation of health-promoting omega-3 PUFAs into supplements, pharmaceu-
ticals, and functional foods is limited. These unsaturated fatty acids are susceptible to
oxidative degradation, therefore there is a chance of generation of undesirable aromas
(“rancidity”), reducing consumer acceptance [6]. Moreover, some of the reaction products
of lipid oxidation exhibit toxicity, which may lead to chronic health problems if they are
regularly consumed over long periods [7]. As an example of the potential seriousness of
this problem, scientists reviewing the nutritional value of fish oil supplements in New
Zealand reported that most of them were highly oxidized [8]. This study indicated the
importance of investigating the oxidation state of commercial fish oil supplements to ensure
they are safe to consume. Another challenge for the development of omega-3-enriched
food and beverage products is the very low solubility of fish oils in water. Finally, the
bioavailability of omega-3 PUFAs may be relatively low and variable depending on the
form they are delivered in. For instance, bulk forms have been shown to be adsorbed more
slowly and to a lower extent than emulsified forms [9].

These challenges can often be overcome using advanced encapsulation technologies,
which involve converting the omega-3 PUFAs into colloidal forms, like liposomes, lipid
droplets, or biopolymer particles, which are then incorporated into foods or beverages [10].
In some applications, these colloid materials can be converted into a powdered form to
facilitate their handling, storage, and utilization, as well as to increase their resistance to ox-
idation [11]. This can be achieved using a variety of processing operations including spray,
freeze, and fluidized bed drying [12]. The selection of an appropriate encapsulation tech-
nology can lead to significant improvements in the chemical stability, water-dispersibility,
and bioavailability of omega-3 oils.

In this article, we begin by reviewing the possible health benefits and biological
mechanisms of action of omega-3 PUFAs. We then highlight methods of extracting omega-3
oils from marine sources, and the main challenges connected with incorporating them into
foodstuffs. The different kinds of encapsulation technologies available to create fluid and
powdered forms of omega-3 oils are then reviewed. Finally, methods of characterizing the
properties of encapsulated omega-3 oils are highlighted.

2. Marine Lipids—Physiological Significance and Potential Health Benefits

The potential health benefits of marine oils, especially fish oils rich in eicosapentaenoic
acid (EPA) and docosahexaenoic acid (DHA), have been widely studied. Omega-3 fatty
acids are long-chain PUFAs containing methylene-separated double bonds starting from
the third carbon atom counted from the methyl-terminus (Figure 1). Physiologically, these
fatty acids are reported to play an important role in a number of important biochemical
processes. Research has also shown that adequate intake of these omega-3 fatty acids may
help prevent the onset of a variety of chronic diseases. However, these fatty acids cannot be
synthesized by humans and hence need to be obtained from the diet. A number of potential
health benefits of omega-3 PUFAs from marine sources are highlighted in this section.

2.1. Inflammation

Inflammation, which is the body’s response to infection and cellular injuries, is mainly
manifested by the production of inflammatory mediators like cytokines and reactive
oxygen species (ROS), as well as the expression of adhesion molecules and arachidonic-
acid-derived eicosanoids [13]. Intake of PUFAs competitively inhibits the metabolism of
arachidonic acid [14], thereby increasing the production of omega-3-derived eicosanoids
with anti-inflammatory effects. Studies have reported that EPA and DHA consump-
tion also has anti-inflammatory effects by decreasing the expression of genes involved
in inflammatory- and atherogenic-related pathways [15,16]. A recent meta-analysis of
31 randomized clinical trials reported that omega-3 PUFA supplementation reduced serum
inflammation markers [17].
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2.2. Oxidation

Reactive oxygen species such as hydroxyl radicals (•OH), superoxide anions (O2
−•),

and hydrogen peroxide (H2O2) are produced as an effect of aerobic respiration and sub-
strate oxidation processes. Low levels of ROS are important for the normal functioning
of cells, as they aid in critical biochemical processes such as intracellular messaging [18],
immune responses [19], and defending against microorganisms [20]. However, high levels
of ROS promote oxidative stress and induce metabolic malfunction and macromolecular
damage [21]. Natural antioxidants can protect cells from the adverse effects caused by high
levels of ROS [22]. Studies have shown that administration of natural antioxidants to mice
reduced the activity of metabolic and antioxidant enzymes [23].
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2.3. Lipid Profile

Clinical trials have shown that intake of omega-3 PUFAs significantly changes serum
lipid profiles. For instance, consumption of omega-3 PUFAs was reported to decrease circu-
lating plasma triacylglycerol (TG) levels [24]. When administered at pharmaceutical doses
(3.4 g/day) for one month, there was around a 25–50% reduction in plasma triacylglycerols,
as well as a decrease in hepatic very low density lipoprotein (VLDL) production and
increase in VLDL clearance. A meta-analysis of 45 RCTs involving 2674 people with Type 2
diabetes reported that omega-3 PUFA supplementation had a favorable hypolipidemic
effect being associated with significant reductions in blood low density lipoprotein (LDL),
Very low density lipoprotein (VLDL), and triglyceride levels [25].

2.4. Cardiovascular Diseases

Several studies have reported an association between fish oil consumption and a
reduced risk of cardiovascular diseases. For instance, a high intake of fish was reported
to cause a reduction in risk factors associated with cardiovascular disease such as obesity,
hypertension, and glycohemoglobin [26]. Similarly, an improvement in patients who had
suffered a recent myocardial infarction was reported after their diet was supplemented
with fish oil [27]. Based on the evidence of the potential cardioprotective effects of fish oil,
the American Heart Association has recommended adults should eat fish at least twice
per week [28]. A summary of the impacts of omega-3 PUFAs on cardiovascular diseases is
shown in Figure 2. A meta-analysis of 13 randomized controlled trials found that omega-3
supplementation lowered the risk of myocardial infarction, coronary heart disease (CHD)
death, and total CHD [29].
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2.5. Thrombosis

The antithrombotic effects of fish oil have been known for many years [30] and
demonstrated in a number of clinical trials [31]. Indeed, a meta-analysis of 15 randomized
controlled trials in humans reported that omega-3 polyunsaturated fatty acids (PUFA)
inhibit platelet aggregation [32].

2.6. Diabetes

Type 2 diabetes mellitus (T2DM) is a chronic lifestyle disorder where blood glucose
levels are too high because of insulin deficiency or malfunction, which effects hundreds
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of millions of people worldwide [33]. Consumption of adequate quantities of omega-3
PUFAs has been reported to exhibit hypoglycemic and antidiabetic effects [34,35]. A
meta-analysis of 12 randomized controlled trials reported that fish oil supplementation
led to a more favorable blood lipids profile for patients with T2DM, but did not directly
improve glucose control [36]. Despite there being no direct antihyperglycemic effects, fish
oil supplementation did enhance lipid metabolism and suppress inflammation, thereby
ameliorating insulin resistance.

2.7. Rheumatoid Arthritis

Fish oil supplementation has also been reported to have beneficial effects on rheuma-
toid arthritis by reducing various biomarkers for this disease [37]. Indeed, daily dietary
consumption of fish oil allowed some patients to discontinue the use of non-steroidal
anti-inflammatory drugs (NSAIDs) to treat their arthritis. Other studies have shown that
consumption of a combination of fish oil and paracetamol have an anti-inflammatory effect
in patients with rheumatoid arthritis [38]. A meta-analysis of 20 randomized controlled
trials found that intake ofω-3 polyunsaturated-fatty-acid-rich fish oils played a major role
in reducing the effects of rheumatoid arthritis [39].

2.8. Ulcerative Colitis

Ulcerative colitis is a chronic disease characterized by the influx and accumulation of
neutrophils in the colonic mucosa [40]. Diets rich in omega-3 PUFAs have been shown to
improve biomarkers associated with this disease [41,42]. A meta-analysis of 12 randomized
controlled trials found that there was a significant relationship between dietary long-chain
n-3 PUFAs and the risk of ulcerative colitis [43].

3. Recommended Intake of DHA and EPA

The potential health benefits associated with consumption of omega-3 fatty acids
have led to a substantial increase in the number of fish oil supplements and fortified
food products available on the market [44]. Based on the evidence from clinical trials and
epidemiology studies, many governments and scientific organizations have set dietary
guidelines that specify the recommended daily intake of EPA and DHA. For instance, the
Institute of Medicine at the National Institute of Health (NIH) in the USA recommends an
adequate intake of 1.1 to 1.6 g per day of omega-3 oils for adults. The European Academy
of Nutritional Sciences (EANS) recommends an average intake of 0.2 g of omega-3 oil per
day [45]. The International Society for the Study of Fatty Acids and Lipids (ISSFAL) and the
American Heart Association recommends consumption of adequate fatty fishes through
daily diet [28].

According to Rimm et al. [28] there should be a suitable balance between the omega-6
to omega-3 fatty acids in the food. They recommended that the ratio of omega-6 to
omega-3 PUFAs should not exceed 4:1 for enhancing their bioavailability and metabolism.
However, this ratio has risen to about 10:1 because of the elevated consumption of vegetable
fats and oils rich in omega-6 PUFAs [46]. The joint FAO/WHO (Food and Agriculture
Organization/World health Organization) Expert Consultation on Fats and Oils in Human
Nutrition suggested that individuals with linoleic to linolenic acid ratios in excess of 10:1
should consume more foods rich in omega-3 PUFAs, mainly sea foods [14].

4. Extraction and Characterization of Fish Oil Lipids
4.1. Extraction Methods
4.1.1. Traditional Methods

Extraction of fish oils can be achieved from whole fish, specific lipid-rich organs, or
fish waste. Traditionally, fish oil extraction is carried out using conventional solvent-based
methods with a combination of chloroform and methanol used as organic solvent [47].
Both polar and non-polar lipids can be isolated using this method. Initially, the fish tissue
is ground with a combination of chloroform and methanol (2:1 ratio). Water can be added
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for making two separate layers. The bottom chloroform layer contains both polar and
nonpolar lipids and the top methanolic and water layer contains all the other materials.
After collection of the chloroform layer, solvent can be evaporated leaving the lipids. This
method has been applied to both fish muscle and liver to extract omega-3 PUFAs [47]. For
some fatty fish species, the majority of oil can be removed using physical methods, such
as hydraulic pressing or heat extraction, but then the remainder of the oil may still be
removed using organic solvent extraction.

4.1.2. Green Methods

The isolation of fish oils using organic solvents has a number of drawbacks: (i) high
temperatures degrade heat-sensitive omega-3 PUFAs, (ii) toxic organic solvent residues
may remain within the final product, and (iii) organic solvents cause environmental pollu-
tion [48]. For this reason, more gentle, safer, and environmentally friendly green chemistry
approaches are being developed to extract them, such as supercritical fluid-, enzyme-,
microwave-, and ultrasound-assisted extraction methods [48,49]. At present, however,
supercritical fluid extraction (SFE) is the most widely used of these green methods for the
extraction of omega-3 marine oils because it can economically produce oils of high purity
and yield without the need for high temperatures or organic solvents.

4.2. Characterization Methods

The nutrition, safety, and physicochemical properties of fish oils depend on their
chemical composition and so it is important to have appropriate analytical methods to
measure their composition. Gas chromatography (GC), often in combination with mass
spectrometry (MS), is widely used for the analysis of non-polar lipids in fish oil samples [50].
Initially, the oils are chemically treated so that the triacylglycerols are converted into free
fatty acid methyl esters (FAMEs) that are volatile and can be separated using appropriate
GC columns. This leads to a chromatogram containing a series of peaks that correspond to
fatty acids of different chain lengths and degrees of unsaturation. Traditionally, the fatty
acids are quantified by measuring the areas under the peaks and identified by comparison
with known standards. More detailed analysis can be performed by coupling the gas
chromatography instrument with a mass spectrometer (GC-MS) [50]. In addition, important
information about the types of lipids present in fish oils can be obtained using advanced
high-resolution nuclear magnetic resonance (NMR) methods [51]. Information about the
type of lipids present, such as triacylglycerols, diacylglycerols, monoacylglycerols, free
fatty acids, and phospholipids can be obtained using thin layer chromatography (TLC)
analysis [52]. These analytical methods are widely used in the emerging field of lipidomics,
whose aim is to elucidate the structure and function of the many different kinds of lipid
molecules present in biological samples [53].

5. Challenges to Fish Oil Incorporation into Foods

As mentioned earlier, there are numerous challenges that have to be overcome before
fish oils can successfully be introduced into commercially functional foods and supple-
ments. Fish oil consists of long-chain triacylglycerols that have an extremely low solubility
in water because of the hydrophobic effect. Consequently, they cannot simply be mixed
with water and usually have to be converted into a colloidal form before they can be
incorporated into aqueous-based food and beverage products.

Fish oil is highly prone to rapid lipid oxidation because of the multiple double bonds
(-C=C-) in omega-3 PUFAs [54]. The rate and extent of lipid oxidation is accelerated by
certain environmental factors, such as light, heat, oxygen, transition metals, and some
enzymes [55]. The oxidation of fish oils produces reaction products that have undesirable
aromas (rancidity) that makes them unacceptable to consumers [56]. The rate at which fish
oils oxidize during storage therefore has a major impact on their shelf-life. In addition,
some of the reaction products of lipid oxidation have been shown to be toxic [57], which
may lead to undesirable health outcomes if oxidized fish oils are consumed regularly.
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Consequently, effective strategies need to be employed to inhibit the oxidation of fish oils
in food and supplement products [58]. A wide range of approaches have been developed
to achieve this goal including controlling storage conditions, utilizing packaging, or adding
antioxidants and chelating agents [59]. In addition, advanced encapsulation technologies
can also be utilized as described in Section 6.

Another potential challenge for some fish oil formulations is their highly variable oral
bioavailability, which depends on the molecular form of the omega-3 fatty acids and the
nature of the surrounding food matrix [60]. The main cause of this effect is the relatively
low solubility of omega-3 oils in the aqueous gastrointestinal fluids inside the human
gut, as well as their susceptibility to chemical degradation during passage through the
gut. After ingestion, fish oils pass through the mouth, esophagus, stomach, and small
intestine where they may be absorbed. They are therefore exposed to a variety of digestive
enzymes, pH conditions, mechanical forces, flow profiles, mineral ions, bile salts, and other
gastrointestinal constituents. Bulk fish oils are converted into coarse oil-in-water emulsions
in the mouth and stomach, whereas emulsified oils are already in a colloidal state prior to
ingestion. Gastric and pancreatic lipases then adsorb to the surfaces of the lipid droplets
and initiate lipid digestion, which involves converting triacylglycerols (TAGs) into free
fatty acids (FFAs) and monoacylglycerols (MAGs). The resulting digestion products (FFAs
and MAGs) then interact with endogenous bile salts and phospholipids to form mixed
micelles that carry the lipids through the mucus layer to the surfaces of the epithelium
cells where they can be absorbed. Studies have shown that the bioavailability of omega-3
oils is higher when they are ingested in an emulsified form than in a bulk form [61], which
can be attributed to the greater surface area available for lipases to adsorb in emulsions.
Consequently, controlling the initial colloidal state of fish oils, such as the composition,
size, and surface characteristics of the particles they are encapsulated within, can have a
major impact on their bioavailability profiles. In addition, the bioavailability of omega-3
oils can be enhanced by incorporating absorption enhancers into supplement formations,
which increase the permeability of the epithelium cells [62].

The challenges associated with the low water-solubility, poor chemical stability, and
low/variable bioavailability of omega-3 PUFAs can often be overcome using advanced
encapsulation technologies.

6. Encapsulation

In this section, we examine some of the approaches that have been developed to
encapsulate fish oils into colloidal particles that can improve the dispersibility, stability,
and bioavailability of omega-3 PUFAs. The major techniques were compiled in Table 1.

6.1. Encapsulation Technologies
6.1.1. Liposomes

Liposomes are typically comprised of phospholipids organized into bilayer struc-
tures [63]. Commonly, they contain one or more bilayers that are organized into concentric
rings (Figure 3). They therefore contain both non-polar and polar regions and so can
be used to encapsulate hydrophilic and hydrophobic substances. A variety of different
preparation methods are available to assemble liposomes, including solvent evaporation,
injection, and microfluidization methods, which vary in their commercial potential [64].
Fish oil can be incorporated between the non-polar tails of the phospholipids. Alternatively,
omega-3-rich phospholipids can be used to assemble the liposomes. Some studies have
shown that encapsulation of oils within liposomes improves their oxidative stability during
storage [73]. One of the disadvantages of this technology is that the phospholipids are
relatively expensive, liposomes are often difficult to produce on a large scale, and they
have low physical stability in complex food matrices.
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Table 1. Different kinds of delivery systems that have been used to encapsulate omega-3 fish oils.

Sl.No Encapsulation Type Details Reference

1. Liposomes
Commonly, they contain either one or more bilayers. They

therefore contain both non-polar and polar regions and so can be
used to encapsulate hydrophilic and hydrophobic substances.

[63,64]

2. Solid lipid nanoparticles and
nanostructured lipid carriers

Nanoemulsions are the widely acceptable methods for
encapsulating the fish oils.

These experiments consist of small emulsifier-coated oil droplets
dispersed within water. The mean droplet diameter is below 100

nm for nanoemulsions but above this value for emulsions.

[65,66]

3. Solid lipid nanoparticles and
nanostructured lipid carriers

Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers
(NLCs) are structurally similar to nanoemulsions but the lipid

phase is either fully or partially crystallized.
The crystallization of the lipid phase can improve the stability of

encapsulated substances by slowing down diffusion of
pro-oxidants, thereby retarding their ability to interact with the

omega-3 oils.

[67,68]

4. Multiple emulsions

Multiple emulsions have a more complex structure than
conventional emulsions.

They mainly fall into two categories depending on the relative
spatial location of the different phases—water-oil-water (W/O/W)

and oil-water-oil (O/W/O) emulsions.
The W/O/W type is the most appropriate for the encapsulation of

fish oils.

[69]

5. Microgels

Edible microgels are normally made up of small particles that are
developed from food-grade proteins and/or polysaccharides.
These particles contain a network of physically or chemically

cross-linked biopolymer molecules.
Typically, omega-3 oils would be emulsified first and then the small

oil droplets would be incorporated into the microgels.

[70]

6. Nanofibers

Nanofibers consist of long thin fibrous materials that are typically
assembled from food-grade biopolymers, like proteins or

polysaccharides.
These anofibers can sometimes be used to encapsulate and control

the release of hydrophobic substances.

[71]

7. Inclusion complexes

This approach involves trapping bioactive molecules into a cyclic
oligosaccharide, such as cyclodextrin, to form a molecular inclusion

complex.
In the case of fish oil, the non-polar tails of the fatty acids are

trapped within the hydrophobic cavity formed by the cyclodextrin.

[72]
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Some studies highlighted that adding nano-encapsulated fish oil into some food
products gave better stability and sensory characteristics than food fortified with free fish
oil [74]. Rasti et al. [75] investigated liposome formulations with omega-3-rich fish oils
and their oxidative stability. This study showed that PUFAs encapsulated in nanolipo-
somes (d = 50–200 nm) were more oxidatively stable than those encapsulated in liposomes
(d > 200 nm), which was attributed to differences in the composition, size, and charge of
the colloidal particles [75]. In particular, it was reported that producing liposomes without
using organic solvents helped to protect them from oxidation. In the recent studies shrimp
oil was also encapsulated using nanoliposomes using innovative methods such as microflu-
idization and ultrasonication. Developed nanoliposomes exhibited high encapsulation
efficiency and oxidative stability [73].

6.1.2. Emulsions and Nanoemulsions

Oil-in-water emulsions or nanoemulsions are widely acceptable methods for encap-
sulating fish oils [65]. These experiments consist of small emulsifier-coated oil droplets
dispersed within water (Figure 3). The mean droplet diameter is below 100 nm for na-
noemulsions but above this value for emulsions [66]. The smaller size of the droplets in
nanoemulsions can lead to appreciable improvements in the bioavailability and physical
stability of omega-3 oil formulations. Emulsions and nanoemulsions are usually formed by
homogenizing an oil and water phase together in the presence of an emulsifier. A number
of different homogenization devices are available including high shear mixers, colloid
mills, high pressure valve homogenizers, microfluidizers, and sonicators. These devices
vary in their operating principles, costs, throughput, and versatility. Recently, there has
been interest in extending the functionality of conventional emulsions by using high oil
contents (high-internal-phase emulsions) or by using particles as emulsifiers (Pickering
emulsions) rather than surface-active molecules [76]. Many researchers have attempted
various delivery systems for omega-3-rich fish oils. Walker et al. [77] reviewed studies of
the efficacy of nanoemulsions-based delivery systems for adding omega-3 polyunsaturated
lipids into food stuffs. Adding the PUFAs into small lipid droplets was found to enhance
their water-dispersibility, physical stability, and bioavailability.

6.1.3. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers

Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) are struc-
turally similar to nanoemulsions but the lipid phase is either fully or partially crystallized
(Figure 3) [67]. The crystallization of the lipid phase can improve the stability of encapsu-
lated substances by slowing down the diffusion of pro-oxidants, thereby retarding their
ability to interact with the omega-3 oils [68]. SLNs and NLCs can be formed using similar
methods to those used for creating emulsions or nanoemulsions but homogenization is
carried out above the melting point of the lipid phase. The preparation is then chilled
below the crystallization temperature to stimulate a liquid-to-solid transition in the lipid
phase. These systems must be judiciously formulated to avoid exclusion of the bioactives
or accumulation during droplet crystallization [78].

6.1.4. Multiple Emulsions

Multiple emulsions, which are also referred to as double emulsions, have a more
complex structure than conventional emulsions (Figure 3). They mainly fall into two
categories depending on the relative spatial location of the different phases—water-oil-
water (W/O/W) and oil-water-oil (O/W/O) emulsions [69]. The W/O/W type is the most
appropriate for the encapsulation of fish oils. This type of multiple layer emulsion consists
of small water droplets (W1) dispersed inside larger oil droplets (O), which are themselves
dispersed within a continuous water phase (W2). Multiple emulsions have a number of
potentially useful applications in the food industry, such as calorie reduction, fat reduction,
flavor masking, controlled release, and protecting sensitive ingredients [79]. Double
emulsions are usually formed using a two-step procedure: (i) a W/O emulsion is formed
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by homogenizing a water phase with an oil phase containing an oil-soluble emulsifier and
(ii) this W/O emulsion is further homogenized with a water phase containing a water-
soluble emulsifier. Typically, the intensity of the second homogenization step should be less
than that of the first to avoid breakup of the system. In this case, fish oils would form an oil
phase that is separated by two aqueous phases. This may be advantageous if hydrophilic
antioxidants can be incorporated into the internal water phase.

6.1.5. Microgels

Edible microgels are normally made up of small particles from food-grade proteins
and/or polysaccharides (Figure 3) [70]. These particles contain a network of physically or
chemically crosslinked biopolymer molecules. Typically, omega-3 oils would be emulsified
first and then the small oil droplets would be incorporated into the microgels. Micro-
gels can be made using a variety of methods, including injection, phase separation, and
molding methods [80]. For instance, in the injection method the oil droplets and a gelling
biopolymer (like alginate) are injected into a gelling solution (like calcium), which leads
to the formation of microgels with oil droplets embedded inside. In the coacervation
approach, which is an example of a phase separation method, the oil droplets are mixed
with a solution that contains two oppositely charged biopolymers (like a cationic protein
and anionic polysaccharide), which again leads to microgels with oil droplets inside [81].
After preparation, microcapsules can be collected by either centrifugation or filtration and
then used in a wet form or converted into a powder [82]. Researchers have encapsulated
fish oil within coacervates assembled from various combinations of biopolymers, including
hydroxypropyl methylcellulose–maltodextrin and whey protein–gum arabic [83,84].

6.1.6. Nanofibers

Nanofibers consist of long thin fibrous materials that are typically assembled from
food-grade biopolymers, like proteins or polysaccharides (Figure 3). These nanofibers can
sometimes be used to encapsulate and control the release of hydrophobic substances. For
instance, researchers have used an electro-spraying method to encapsulate DHA in zein
nanofibers, which improves its oxidative stability [71].

6.1.7. Inclusion Complexes

This approach involves trapping bioactive molecules into a cyclic oligosaccharide,
such as cyclodextrin, to form a molecular inclusion complex. In the case of fish oil, the
non-polar tails of the fatty acids are trapped within the hydrophobic cavity formed by the
cyclodextrin. Studies have shown that encapsulation of fish oil in these complexes improves
its oxidative stability [72]. Choi et al. [85] showed that fish oil could be encapsulated within
cyclodextrin inclusion complexes at a high encapsulation efficiency.

7. Microencapsulation

In many applications, it is advantageous to convert a fluid fish oil formulation into
a powdered form to improve its handling, storage, or stability, which is often referred
to a microencapsulation [86,87]. Typically, the fish oil is emulsified and then mixed with
an aqueous solution containing dissolved wall materials (Tables 2 and 3). The resulting
mixture is then dehydrated using an appropriate technology (Section 7.2). The powders
resulting from these processes consist of microcapsules that contain numerous fish oil
droplets embedded within a wall material [88].
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Table 2. Common materials used to encapsulate omega-3 PUFAs in food applications.

Encapsulant Materials

Carbohydrates Proteins Lipids and Waxes

Native starches
Modified starches
Resistant starches

Maltodextrins
Gum acacia
Alginates

Pectins
Carrageenan

Chitosan

Sodium caseinate
Whey proteins

Isolated whey proteins
Soy proteins

Gelatins
Zein

Albumin

Vegetable fats and oils
Hydrogenated fats

Palm stearin
Camauba wax

Bees wax
Shellac

Polyethylene glycol

7.1. Wall Materials

Wall material selection is very important. It plays a major role in the functional
performance of the powder formed (flowability, packing, encapsulation efficiency, and
chemical stability). Many factors influence the selection of an appropriate wall material
for a particular application. The wall materials should be soluble in water and form a low
viscosity fluid that can be pumped if required, e.g., in spray drying or electro-spraying.
The wall materials should also lead to the formation of a powder that has the required
flowability, stickiness, dispersibility, and solubility characteristics, as well as the ability to
inhibit the diffusion of gasses and undesirable chemical reactions. Many of these physical
attributes are determined by the glass transition temperature of the substances used to form
the wall materials. The wall materials are hard and brittle below this temperature (glassy
state), but soft and pliable above this temperature (rubbery state). Other additives may
also be required to ensure the proper performance of the powdered materials produced
by microencapsulation technologies, including emulsifiers, plasticizers, and defoaming
agents [89]. Some of the most commonly used wall materials in the food industry are
highlighted here and summarized in Tables 2 and 3:

• Carbohydrates: maltodextrin, sucrose, corn syrup solids, modified starch, gum arabic,
agar, alginates, carrageenan, pectin, and chitosan.

• Proteins: skimmed milk powder, gelatin, sodium caseinate, and whey protein.

Table 3. Examples of materials that have been used as wall materials for microencapsulation of
fish oil. WPI, whey protein isolate; CS, chitosan; MD, maltodextrin; GA, gum arabic; SPI, soy
protein isolate.

Wall Materials Percentage of Wall
Materials

Encapsulation
Efficiency Reference

WPI + CS+ MD
for tuna oil

CS (0.5, 1, 1.5% w/w) MD
(1% w/w), WPI (10% w/w) 80–86% [90]

WPI for fish oil WPI (1:2), SPI (3:1) WPI—97%
SPI—93% [91]

CS + lecithin for tuna oil CS (0.2% w/w)
Lecithin (1% w/w) 87% [92]

WPI + MD 90:10, 50:50, 10:90 45–65% [93]

GA
WPI

GA + WPI for cardamom oil

100 g
100 g

GA + WPI(1:1)
GA + WPI ( 3:1)

92%
69.2%
83.3%
74.3%

[94]

7.2. Microencapsulation Technologies

Several technologies have been developed to convert fluid forms of fish oils into
powdered forms, which differ in their commercial viability. At present, spray drying is
typically the most commonly used because it is economical and can be carried out on an
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industrial scale. Nevertheless, some of the other approaches may have advantages for
niche applications.

7.2.1. Spray Drying

The spray drying of fish oil consists of several steps [95]: (i) formation of an oil-in-
water emulsion by homogenization; (ii) mixing of emulsion with wall materials, which can
be carried out before, during, or after homogenization; (iii) pumping the emulsion through
a fine nozzle into a hot chamber leading to the formation of small droplets that are rapidly
dried; and (iv) collection of the powder. In some cases, an additional agglomeration step
may be included to improve the dispersibility of the resulting powders. The nature of the
powders formed depends on the type of ingredients and processing conditions used and
must be optimized depending on the application.

Spray drying has been used to encapsulate fish oils using numerous types of wall
materials, including casein, lactose, dextrose, Maltodextrin, modified starch, glucose syrup,
gum arabic, sugar beet pectin, and gelatin [96,97].

7.2.2. Freeze Drying

Freeze drying can also be used to convert fluid omega-3 oil products into a powdered
form [98]. This method involves two main processing steps: (i) the sample is first frozen
to a temperature around −90 to −40 ◦C; (ii) the frozen sample is then dehydrated under
vacuum leading to the production of a powder. In practice, freeze drying is not as widely
used as spray drying in industry because it is more expensive, time consuming, and has
a lower throughput [99]. Nevertheless, it does have some advantages over spray drying
that may be beneficial for fish oil applications. In particular, there is no need for high
temperatures, which reduces the susceptibility of the omega-3 oils to become oxidized
during the microencapsulation process [100].

7.2.3. Extrusion

Fluid forms of omega-3 oils can also be converted into a solid form using extrusion.
This technology involves mixing molten wall materials with emulsified oil under high
pressure, and then forcing them through a fine nozzle to produce solidified microcap-
sules [101]. This method is capable of large scale commercial production of microcapsules
but it does have some disadvantages for fish oil microencapsulation. In particular, the high
temperatures used may promote the oxidation of the fish oil during the manufacturing
process and it involves high capital and energy costs [101]. There are a number of different
extrusion approaches that can be used for microencapsulation purposes, including cen-
trifugal extrusion, melt-injection, and melt-extrusion [102], which vary in their operating
principles and the nature of the microcapsules produced.

7.2.4. Electro-Spraying and Electro-Spinning

Fluid materials can be converted into powders using electro-spraying or electrospin-
ning technologies [103]. In the food industry, these methods typically involve placing
a solution of biopolymers into a syringe, then applying a strong electrical field, which
pulls out the biopolymer solution. As the stream of solution moves from the syringe to a
charged collector plate, the water is rapidly evaporated, leading to the formation of parti-
cles (electro-spraying) or fibers (electro-spinning) depending on the operating conditions
used. Fish oil is first converted into an emulsified form, which is then mixed with the
biopolymer solution prior to the electro-spraying or electro-spinning process [84].

8. Characterization of Encapsulated Microparticles

After microparticle preparation, it is essential to distinguish the properties of the
microcapsules produced. The main factors that need to be characterized are the microstruc-
ture, encapsulation efficiency, percentage yield, particle size, loading capacity, bulk density,
moisture content, tapped density, hygroscopicity, and oxidative stability. A variety of
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analytical techniques are employed to characterize the structure of the powders produced
by microencapsulation [104,105]. Their microstructure can be evaluated using optical
microscopy, scanning electron microscopy (SEM), or transmission electron microscopy
(TEM). The physical state of the wall materials within the powders, such as whether they
are crystalline or amorphous, can be established using X-ray powder diffraction or differ-
ential scanning calorimetry (DSC). DSC can also be used to measure the glass transition
temperature (Tg) of the wall materials, which is an important parameter determining
their functional performance. Information about the chemical composition and molecu-
lar interactions in powders can be obtained using Fourier transform infrared (FTIR) or
Raman spectroscopy.

The encapsulation efficiency (EE) is the ratio of oil trapped inside the wall material
to the total initial concentration used. For practical applications, it is often important to
ensure that the content of surface oil, which is the oil that is not trapped inside the wall
material, should be as low as possible. This is because the surface oil is directly exposed
to air so can easily undergo oxidation. Ideally, the surface oil content should be less than
0.1% (w/w) in a high quality powder produced by microencapsulation. The encapsulation
efficiency can be calculated using the following relationship, Equation (1) is as follows:

EE = (mTO − mSO/mTO) × 100 (1)

where mTO is the total mass of oil and mSO is the mass of the surface oil in the powder. The
loading capacity (LC) provides a measure of the amount of oil encapsulated per unit mass
of powder, Equation (2) is as follows:

LC = (mE/mT) × 100 (2)

where mE is the mass of the encapsulated oil and mT is the total mass of the powder. The
percentage yield (PY) is a measure of the efficiency of powder production and collection
during the microencapsulation process, Equation (3) is as follows:

PY = (mT/mI) × 100 (3)

where mI is the initial mass of the materials (emulsified oil and wall materials) used to
produce the powder.

The size of the microcapsules in the powder impacts the oxidative stability of the
final product since it determines the surface area exposed to the surrounding air. Typically,
the smaller the size, the larger the surface area, and the greater the exposure to air, which
should lead to faster oxidation. However, the size of the microcapsules also impacts their
other properties, such as their tendency to aggregate and their dispersibility in water.
Consequently, it is important to establish the optimum size of the microcapsules for a
particular application. The size of the microcapsules can be measured using static light
scattering or microscopy methods, such as TEM (transmission electron microscopy), SEM
(scanning electron microscopy) or confocal laser scanning microscopy (CSLM). CSLM is
particularly useful for identifying the location of the oil in the powder since oil-soluble
fluorescence dyes can be added.

The bulk density and tapped density are two vital parameters for the packaging,
storage, and transport of powdered products and is calculated by determining the volume
occupied by a known mass of powder before and after tapping. The bulk density of a
powder sample is the ratio of the mass to the volume of an untapped powder sample.
The tapped density is obtained by mechanically tapping a graduated cylinder containing
the sample until little further volume change is observed [104]. Based on the results, the
flowability and cohesiveness of the microparticle can be determined. Flowability and
cohesiveness of powders can be termed by the Carr index (CI) and Hausner ratio (HR),
respectively [106], Equations (4) and (5) are as follows:

CI (%) = TD − BD/TD × 100 (4)
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HR (%) = TD/BD × 100 (5)

where, TD is the tapped density and BD is the bulk density.
The moisture content of the encapsulated powder plays an important role in determin-

ing the flowability, stickiness, cohesiveness, hygroscopicity, and storage life. This can be
simply determined using oven drying methods, chemical methods (Karl Fisher titration),
or spectroscopy methods (FTIR). The maximum moisture content of powders for food
industry application should be around 3 to 4%. Hygroscopicity is the capacity of a powder
to absorb water from the environment, which depends on its composition and structure. It
also plays an important role in the reconstitution of the powder in water since it can lead
to caking, which reduces dispersibility [107]. The hygroscopicity is typically measured by
weighing a sample over time after it is placed in an environment with a known relative
humidity, and can be expressed as grams of adsorbed moisture per 100 g of dry solids [108].

An important goal of encapsulation is to protect the bioactive material against oxida-
tion by providing an oxygen barrier in the form of wall materials. The oxidative stability
of fish oils encapsulated within powders is usually measured by storing them under con-
trolled temperature and relative humidity conditions and periodically measuring markers
of lipid oxidation, such as primary or secondary reaction products. For instance, conjugated
dienes and peroxide value measurements can be used as indicators of primary reaction
products, whereas thiobarbituric acid reactive substances (TBARS) and propanal can be
used as indicators of secondary reaction products.

The dispersibility of the powders in water can be monitored by measuring how quickly
the emulsified lipids are released after rehydration. This can be achieved by dispersing the
powders in the measurement chamber of a light scattering instrument and measuring the
change in the light scattering pattern over time [109]

9. Digestibility of Encapsulated Fish Oil

Encapsulation is regularly used to increase the stability, handling, and application
of fish oils, but it is significant that it does not unfavorably affect their bioavailability.
For instance, inserting emulsified fish oil within dietary fiber particles could reduce its
digestion and absorption within the gastrointestinal tract. Conversely, a well-designed
encapsulation system could actually increase the bioavailability of fish oils. Consequently,
it is important to establish the impact of encapsulation on the digestibility of fish oils. This
is usually achieved using standardized in vitro digestion models [110].

A number of studies have examined the impact of different encapsulation technologies
on the digestibility of omega-3 oils. For instance, Klinkesorn and McClements [111] showed
that coating fish oil droplets with chitosan did not inhibit their digestion and release under
simulated gastrointestinal conditions. Chang et al. [112] showed that a chitosan coating can
also impact the gastrointestinal fate of emulsified fish oils by protecting it from degradation
by gastric enzymes, thereby leading to a more sustained release under intestinal conditions.
Xu et al. [113] found that two anionic polysaccharides (pectin and xanthan gum) could
increase the digestion of protein-coated fish oil droplets, which was attributed to their
ability to inhibit droplet flocculation, thereby increasing the surface area for the lipase to
adsorb. Chang and McClements [114] reported that a marine polysaccharide (fuicodan)
impacted lipid digestion in fish oil-in-water emulsions stabilized by different emulsifiers
(whey protein, casein, or Tween). This anionic polysaccharide also increased the rate of
lipid digestion in the emulsions containing the protein-coated droplets for a similar reason.
Gumus et al. [115] examined the impact of protein emulsifier type (lentil, pea, or fava bean
protein) on the digestibility of fish oil-in-water emulsions using a simulated gastrointestinal
tract and found that all of the lipid droplets were digestible. Finally, Qiu et al. [116] also
examined the impact of protein emulsifier type (gliadin, caseinate, and whey protein) on
the digestion of fish oil droplets and found that gliadin gave the slowest digestion rate.
These results show that the digestibility of fish oil, and therefore its bioavailability, depend
on designing colloidal delivery systems carefully.
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10. Conclusions

Fish oil is an excellent dietary source of polyunsaturated fatty acids such as EPA
and DHA, which have been shown to exhibit a diverse range of health benefits. For
this reason, there has been growing interest in fortifying foods and beverages with these
marine-derived omega-3 fatty acids. However, this is typically challenging because of the
poor water solubility, chemical stability, and bioavailability characteristics of these oils. In
this article, we have described a number of different encapsulation technologies that can
be used to overcome these problems. We have also described the methods available to
convert fluid forms of fish oil formulations into powders, which can be used to enhance the
handling, storage, stability, and application. As mentioned earlier, a number of different
colloidal delivery systems have been successfully used to encapsulate and protect omega-3-
rich marine oils. However, from a practical point of view, emulsions and nanoemulsions are
usually the most suitable for this purpose since they can easily be formulated using food-
grade ingredients and existing processing operations, such as mixing and homogenization.
Moreover, they can be formulated from a wide range of food-grade emulsifiers, such as
proteins, polysaccharides, phospholipids, and surfactants, which provides considerable
flexibility in designing their properties In future studies, it will be important to identify
the optimum encapsulation technologies for specific food products. In addition, the
economic viability and scalability of these processes must be elucidated before they can
find widespread commercial adoption.

Highlights

• Fish oil is rich in health-promoting omega-3 polyunsaturated fatty acids (PUFAs)
• PUFAs are difficult to incorporate into foods due to low water-solubility and chemi-

cal stability
• Encapsulation technologies can be used to overcome dispersibility and stability issues
• Novel and conventional encapsulation technologies are reviewed.
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