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Summary. Randomized response is a misclassification design to estimate the prevalence of
sensitive behaviour.Respondents who do not follow the instructions of the design are considered
to be cheating. A mixture model is proposed to estimate the prevalence of sensitive behaviour
and cheating in the case of a dual sampling scheme with direct questioning and randomized
response. The mixing weight is the probability of cheating, where cheating is modelled sepa-
rately for direct questioning and randomized response. For Bayesian inference, Markov chain
Monte Carlo sampling is applied to sample parameter values from the posterior. The model
makes it possible to analyse dual sample scheme data in a unified way and to assess cheating
for direct questions as well as for randomized response questions. The research is illustrated
with randomized response data concerning violations of regulations for social benefit.
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fraud

1. Introduction

When survey questions are asked about sensitive topics, respondents might be reluctant to pro-
vide a direct honest answer. To deal with this situation, Warner (1965) introduced randomized
response (RR). This is an interview design where the observed answer to a question depends
on the true status with respect to the topic as well as on a specified probability mechanism. The
basic idea of RR is, first, that the probability mechanism protects the privacy of the respondent,
and, second, that statistical inference is possible by incorporating the probability mechanism
in the statistical model. Meta-analysis has shown that RR produces better prevalence estimates
than other survey designs that deal with sensitive topics (Lensvelt-Mulders et al., 2005).

The forced response design that was introduced by Boruch (1971) is an illustrative example
of RR. In this design, a question is asked that requires a yes or a no as an answer. Instead of
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answering the question directly, the respondent throws two dice without revealing the sum of
the dice. Next, the respondent follows a design: if the sum is 2, 3 or 4, the respondent answers
yes. If the sum is 5, 6, 7, 8, 9 or 10, he answers the question truthfully. If the sum is 11 or 12,
he answers no. Since the sum of the dice is hidden, the interviewer does not know whether the
answer was forced by the design or provided truthfully. In this way, the privacy of the individual
respondent is guaranteed.

The forced response design is a misclassification design. If we name the true status with respect
to the question latent, then we can define and deduce conditional misclassification probabilities
such as P.observed no| latent yes/=3=36=1=12, i.e. the probability of answering no in the RR
design conditional on a true yes status. These probabilities are used to define the statistical
model for the RR data.

It may not come as a surprise that some respondents do not follow the design when partici-
pating in an RR survey (Fox and Tracy, 1986; Clark and Desharnais, 1998; Böckenholt and
Van der Heijden, 2007). We define cheating as the act of providing the least stigmatizing answer
irrespectively of the outcome of the RR probability mechanism. In the forced response design,
for example, answering no while the sum of the dice is 2 is cheating. There may be more than one
reason for cheating. If a respondent does not understand the way that privacy is protected, he or
she might be reluctant to co-operate. Likewise, general lack of trust with regard to the institute
that conducts the survey may also induce cheating. Because of the way that RR works, cheaters
cannot be identified. At the same time, it is clear that cheating causes extra perturbation that
has to be taken into account in the model to obtain valid statistical inference.

Clark and Desharnais (1998) discussed cheating in a design with one RR question. They
suggested using two samples where in each sample the same RR question is asked with different
conditional misclassification probabilities. By combining the two samples, an RR model that
takes cheating into account can be estimated. Inspired by the idea of using two samples, we
propose a model to estimate cheating in a dual sampling scheme where a direct questioning
(DQ) design and an RR design are applied to the same set of questions. The combination of the
two designs provides information that is not obtainable by either design alone: we can estimate
cheating simultaneously in both settings.

Our model is different from that in Clark and Desharnais (1998) since the latter is formulated
for two differently specified RR designs with the assumption that the two designs induce the
same level of cheating. Our model allows for different levels of cheating in the two designs.
In addition, we relate the levels of cheating to individual covariates. The result is a general
model that incorporates the model in Clark and Desharnais (1998) as a special case. Cruyff
et al. (2007) investigated cheating by using a restricted log-linear model for RR data (no dual
sampling scheme). The latter model can also been seen as a restricted version of our model.

In what follows, Section 2 describes the motivating data and Section 3 presents the models.
In Section 4 identifiability is discussed and in Section 5 we compare our model with the model
in Clark and Desharnais (1998). Section 6 analyses the data and Section 7 concludes the paper.

2. The data

Employees in the Netherlands are insured against loss of income caused by, for example, redun-
dancy or disability. To receive social benefit, rules and regulations must be followed. The data
that we consider are from the Social Welfare Survey that was conducted by the Dutch Depart-
ment of Social Affairs in 2002. In this survey, individuals throughout the country were recruited
for the sample if they had received disability benefit for at least 12 months before the study. We
consider three related questions about possible rule violation. Question 1: have you recently
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done any small jobs for or via friends or acquaintances, for instance, in the past year or done
any work for payments of any size without reporting it? (This pertains only to monetary pay-
ments.) Question 2: have you ever in the past 12 months had a job or worked for an employment
agency in addition to your disability benefit without reporting it? Question 3: have you worked
off the books in the past 12 months in addition to your disability benefit?

In the survey, 1760 individuals were asked these questions by using RR, and 467 individuals
were asked these questions by using DQ. This choice of sample sizes yields similar efficiency
regarding point estimates in the case of one RR question. In the RR sample, the same binary
RR design was used across the three questions. The design is an adapted forced response design
parameterized by P.observed yes | latent yes/ = 0:933 and P.observed no | latent no/ = 0:813;
see Van den Hout and Lensvelt-Mulders (2005) for details. Denoting answers yes and no by
1 and 2 respectively, observed frequencies in the RR sample for the profile order 111, 112, 121,
122, 211, 212, 221 and 222 are given by 60, 48, 116, 269, 41, 144, 174 and 908. So, in the sample
of 1760 individuals, 60 answered yes to all three questions, 48 answered yes to the first two ques-
tions, but no to the third, etc. For the DQ sample, these frequencies are 1, 1, 13, 24, 2, 2, 4 and 420.

In addition to the questions on rule compliance, information was collected on gender and
age, and on attitude towards the rules of social benefit. We consider in this paper the attitude
towards statement 1, ‘The rules are very reasonable’, and statement 2, ‘Not following the rules
can be advantageous for me’. Answer categories are completely agree, agree, neither agree nor
disagree or do not know, disagree and completely disagree.

3. Methods

This section starts with the standard RR model and the self-protective (SP) no model as intro-
duced by Böckenholt and Van der Heijden (2007). Section 3.3 presents the model for the dual
sample scheme.

3.1. Standard randomized response model
Let latent answers be denoted by X and observed answers by XÅ. The sample space for both
stochastic variables is {1, . . . , K}. The general form of the RR designs in this paper is

πÅ =Pπ,

where πÅ = .πÅ
1 , . . . , πÅ

K/T is a vector denoting the probabilities of observed answers, π =
.π1, . . . , πK/T is the vector of the probabilities of true (latent) answers and P is a specified
non-singular K ×K matrix of conditional misclassification probabilities pij =P.XÅ = i|X= j/.
Matrix P will be called the RR matrix. Estimating π, i.e. the prevalence of the sensitive behaviour,
is the aim of RR.

The RR matrix is 2 × 2 when the sensitive question is dichotomous. When questions are
asked with more than two possible answers, we have K > 2. It is also possible to combine RR
questions which will result in K> 2. For example, combining three binary RR questions yields
K = 8 answer profiles. The RR matrix for these eight profiles is P = P1 ⊗ P2 ⊗ P3, where ‘⊗’
is the Kronecker product and P1, P2 and P3 are the RR matrices of the three questions. This
definition of P is based on the conditional independence assumption

P.XÅ
1 =k1, XÅ

2 =k2, XÅ
3 =k3|X1 = l1, X2 = l2, X3 = l3/

=P.XÅ
1 =k1|X1 = l1/P.XÅ

2 =k2|X2 = l2/P.XÅ
3 =k3|X3 = l3/,

where k1, k2, k3, l1, l2, l3 ∈{1, 2}.
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Assume that the sampling distribution is multinomial with parameters π and n. The vector
with the observed frequencies is denoted nÅ = .nÅ

1 , . . . , nÅ
K/. The likelihood function is given

proportionally by

l.π|nÅ, P/∝
K∏

j=1
πÅ

j
nÅ

j =
K∏

j=1

(
K∑

k=1
pjkπk

)nÅ
j

, .1/

where πk �0 for k ∈{1, . . . , K}, and ΣK
k=1πk =1.

For Bayesian analysis, we must specify a prior density. Given a multinomial sampling dis-
tribution, a possible choice of the prior density of π is the conjugate Dirichlet density with
parameter α= .α1, . . . , αK/, i.e.

f.π|α/= Γ.α0/

K∏
m=1

Γ.αm/

K∏
m=1

παm−1
m , .2/

where αm >0, for m=1, 2, . . . , K, α0 =ΣK
m=1αm and Γ.·/ denotes the gamma function (Gelman

et al., 2004). Parameters αm can be interpreted as prior sample sizes for the K answer categories.
A vague prior is defined as αm →0, for all m.

Combining expressions (2) and (1), the posterior density is given by

p.π|nÅ, P/∝f.π|α/ l.π|nÅ, P/∝
K∏

m=1
παm−1

m

K∏
j=1

πÅ
j

nÅ
j ,

where πk �0 for k ∈{1, . . . , K}, and ΣK
k=1πk =1 (Unnikrishnan and Kunte, 1999; Van den Hout

and Klugkist, 2009).

3.2. Self-protective no model
Böckenholt and Van der Heijden (2007) presented an extended RR model that allows for the
modelling of cheating. The assumption is that, if a respondent cheats, he or she always answers
the least stigmatizing category. Typically, if the categories are yes and no, the cheater will always
answer no. This behaviour is called SP no saying. By formulating the RR model in such a way
that the least stigmatizing category is category K , the SP no RR model is given by

πÅ = .1− τ /Pπ+ τv .3/

where v is the K × 1 vector with the K th entry equal to 1 and 0 elsewhere. Mixing weight τ is
the cheating parameter and its interpretation is the percentage of the sample that cheats.

Identification can be an issue in the SP no model. We shall call an identifiability problem
intrinsic when there are more parameters to estimate than there are independent observations.
This is a special case of the more general problem of identifiability where two sets of parameter
values correspond to the same probability density function (Casella and Berger, 2002). Without
restriction on the parameters, model (3) has an intrinsic identifiability problem. Identifiability
will be discussed in Section 4.

Define

E =

⎛
⎜⎜⎝

0 0 . . . 0
:::

:::
: : :

:::

0 0 . . . 0
1 1 . . . 1

⎞
⎟⎟⎠,
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with dimension K ×K. Let Pτ = .1 − τ /P + τE. The SP no model can be formulated as a mis-
classification model by πÅ =Pτπ.

3.3. Model for dual sampling scheme
We specify an extended RR model that encompasses the above models, deals with the dual
sampling scheme and relates individual covariates to the probability of cheating. The mixture
model for respondent i in sample s=1, 2 is given by

πÅ
is = .1− τis/Psπ+ τisv, .4/

where the RR design in sample s is given by Ps. A logistic regression model is used to relate the
probability of cheating to covariates, i.e.

logit.τis/= logit.τis|βs, xis/=βT
s xis, .5/

where βs = .βs:0, βs:1, . . . , βs:p/T and xis = .1, xis:1, . . . , xis:p/T. A log-linear model is specified for
the latent distribution π, i.e.

log.π/= log.π|λ/=λ0 +Zλ,

where Z is the model matrix. Parameter λ0 is not a free parameter but is derived from Z and λ
to ensure that π is a valid probability vector with elements summing to 1. This will be illustrated
in the application. Using a log-linear model makes it possible to test for association patterns in
case π is defined with respect to a cross-classification. Cruyff et al. (2007) also used a log-linear
model to analyse RR data while accounting for SP no. Their log-linear model was a restricted
model to prevent an intrinsic identifiability problem. An advantage of the log-linear model
is that maximization over possible values of λ is unrestricted whereas maximization over the
independent elements in π is restricted to .0, 1/K−1.

Assuming independence between the samples, the overall likelihood is the product of the like-
lihood for sample 1 and the likelihood for sample 2. Data consist of individual covariate values
and indicators nÅ

isk ∈ {0, 1}, i = 1, . . . , ns, where s = 1, 2 denotes the sample, ns is the number
of respondents in sample s and k = 1, . . . , K is the category. Suppressing the conditioning on
P1 and P2, the posterior density is given by

p.β1, β2, λ|data/∝h1.β1/ h2.β2/ h3.λ/
2∏

s=1

ns∏
i=1

K∏
k=1

.πÅ
is/k

nÅ
isk ,

where .πÅ
is/k denotes the kth entry of vector πÅ

is and h1.β1/, h2.β2/ and h3.λ/ are the prior
densities for β1, β2 and λ respectively.

Regarding computation, we follow the recommended procedure for mixture models and use
unobserved indicators (Gelman et al. (2004), chapter 18). The mixture model (4) with mixing
weight τis is viewed hierarchically; the observed nÅ

isk are modelled conditionally on unobserved
indicators cis for cheating, where cis = 0 means that respondent i in sample s followed the RR
instructions and cis = 1 denotes cheating. The unobserved cis are viewed as missing data and
the parameter βs is thought of as a hyperparameter determining the distribution of cis. The
posterior density is thus given by

p.β1, β2, λ|data/∝∑
C

p.data|C, β1, β2, λ/p.C|β1, β2/p.β1, β2, λ/

=h1.β1/h2.β2/h3.λ/
∑
C

2∏
s=1

ns∏
i=1

K∏
k=1

{.1− cis/Psπ+ cisv}nÅ
isk

k p.cis|βs/,
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where the summation is over C = {cis|i = 1, . . . , nj, s = 1, 2} denoting the set with all possible
realizations of the indicator variables. Note that p.cis|βs/ is the logistic regression model that
is defined by equation (5).

Sampling from the posterior can be undertaken by using the automatic Markov chain Monte
Carlo functionality of WinBUGS (Lunn et al., 2000). In the MCMC sampling, indicators are
sampled from their distribution and model parameters are estimated conditionally on sampled
indicators.

To show that the extended model can still be seen as a misclassification model, define for the
dual sample scheme

Ti =
(

diag.τi1/ 0
0 diag.τi2/

)
,

where diag.τi1/ is a K × K diagonal matrix with τi1 on the diagonal and diag.τi2/ is defined
likewise. Next define

Pτ i = .IK −Ti/

(
P1 0
0 P2

)
+Ti

(
E 0
0 E

)
,

where τ i = .τi1, τi2/T, IK is the 2K × 2K identity matrix and E is defined as above. For π̄Å =
{.πÅ

1 /T, .πÅ
2 /T}T and π̄ = .πT, πT/T, the dual sample SP no model for respondent i can be

formulated as π̄Å =Pτ iπ̄.
Note that by specifying model (4) for only one sample, i.e. s=1, and using the intercept-only

model for τi1 and a log-linear model for π we obtain the SP no model in Cruyff et al. (2007). By
further assuming that τi1 = 0 and using the saturated log-linear model for g.π/ we obtain the
standard RR model.

4. Identification

Identification can be a problem in the SP no model as was discussed and illustrated in Van
den Hout and Klugkist (2009), section 4.3. Given proper prior distributions, sampling from the
posterior is possible with an unidentified model, but inference may be hampered or impossible
owing to impractically wide credible intervals. For the situation where three binary RR questions
were combined and K = 8, Cruyff et al. (2007) dealt with the intrinsic identifiability problem
in the SP no model (3) by specifying a log-linear model for π and restricting the three-way
interaction to 0. In model (4) there is no intrinsic identification problem. Consider the situation
in a dual sample scheme where three binary RR questions are combined and K = 8. If we do
not use individually observed covariate values and we refrain from further modelling of π, then
the model is given by

πÅ
s = .1− τs/Psπ+ τsv for s=1, 2: .6/

14 independent frequencies are observed: K −1=7 in the sample with the direct questions and
seven in the RR sample. We must estimate nine independent parameters: π1, . . . , π7, τ1 and τ2.
There is also no intrinsic identification problem when model (6) is defined for two binary RR
questions (six independent frequencies; five independent parameters).

Even if there is no intrinsic identification problem, parameters might still be difficult to iden-
tify. Typically this will lead to high posterior correlation between the parameters and associated
slow convergence of Markov chain Monte Carlo algorithms (Carlin and Louis (2009), page
153).
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5. Comparison with the model of Clark and Desharnais (1998)

The model in Clark and Desharnais (1998) will be called the CD model. It can be seen as a dual
sample SP no model. In this section, we briefly discuss this relationship.

Let us change the original parameterization π, β and γ in the CD model into α, β and γ
respectively. Then α+β +γ =1. Parameter α is the proportion of honest yes respondents in the
population, β is the proportion of honest no respondents and γ is the proportion of cheaters.
The RR matrix in sample s for s=1, 2 is given by

Ps =
(

1 ps

0 1−ps

)
,

where ps = P.forced yes|latent no, sample s/. In this design, a latent yes always results in an
observed yes. Privacy protection is induced by generating forced yes answers. There are no
forced no answers.

The SP no formulation of the CD model in sample s for s=1, 2 is given by(
πÅ

1−πÅ

)
= .1− τ /Ps

(
π

1−π

)
+ τ

(
0
1

)
,

where πÅ =P.observed yes/, π =P.latent yes/ and τ is the cheating parameter.
The connection between the SP no and the CD model is given by α= .1− τ /π, β = .1− τ /×

.1−π/ and γ = τ . This shows that the CD model is a restricted version of model (4). There are
no covariates and, more importantly, in the CD model the probability of cheating is assumed
to be the same in both samples.

The SP no formulation of the CD model illustrates possible ways of reporting results. When
estimated α, β and γ in the CD model are reported, the estimated prevalence is given for the
proportions in the population of honest yes respondents, honest no respondents and cheaters,
without further assumptions regarding the group of cheaters. Another possibility is to report the
estimated π as the prevalence of the sensitive category in the population. This implies, however,
assuming that the cheaters are a random sample from that population (with prevalence given
by the estimated τ ).

6. Data analysis

Let sample 1 denote the RR questions and sample 2 the direct questions. This dual sample
scheme has three binary sensitive questions. The prevalence for the 23 = 8 profiles is given by
π = .π1, π2, . . . , π8/T which we shall write as π = .π111, π112, . . . π222/T to represent the eight
profiles 111, 112, . . . , 222 better. The model with all the covariates is given by

logit.τis/=β0:s +βag:s Agei +βse:s Sexi +βad:s Advantagei +βre:s Reasoni,

log.π/=λ0 +Zλ,

Z=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1
1 1 −1 1 −1 −1 −1
1 −1 1 −1 1 −1 −1
1 −1 −1 −1 −1 1 1

−1 1 1 −1 −1 1 −1
−1 1 −1 −1 1 −1 1
−1 −1 1 1 −1 −1 1
−1 −1 −1 1 1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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Table 1. Distribution of the answers to the two statements in the RR design and
in the DQ design

Design Results for statement 1: Reason Results for statement 2: Advantage

−2 −1 0 1 2 −2 −1 0 1 2

RR 0.18 0.46 0.25 0.08 0.03 0.18 0.35 0.25 0.16 0.06
DQ 0.12 0.44 0.24 0.15 0.05 0.16 0.36 0.31 0.12 0.05

where λ= .λ1, . . . , λ7/T and λ0 =− log[Σ8
k=1 exp{.Zλ/k}], with .Zλ/k being the k entry of vector

Zλ.
In the logistic regression models we used centred age by using Age = observed age −50 years.

Covariate Sex is coded 0 for women and 1 for men. The scale for the attitude towards statement
1 and statement 2 is centred by using zero as an understandable reference point. The coding
reflects an assumed scale on compliance. For Advantage, categories are from −2 for completely
disagree up to 2 for completely agree. For Reason, categories are from −2 for completely agree
up to 2 for completely disagree. In this way, higher scores on these covariates may be related to
increased non-compliance with the rules. Table 1 shows the distribution of the answers to the
statements. Overall the distributions are similar across the designs. The largest difference is for
Reason for category 1 (disagree).

6.1. Inference
We did a preliminary analysis by maximum likelihood estimation. First, we estimated the model
without covariates (model I; nine parameters) given by equation (6) and used the prevalence
estimates as starting values in the maximization for the model with all the covariates (model
III; 17 parameters) as given above. Next, we selected those covariates in model III that were
significant regarding the univariate Wald test with significance level 10%: Sex and Advantage
for sample 1; Advantage for sample 2. This restricted version of model III is called model II and
it has 12 parameters. Model I can be fitted to observed frequencies. Owing to the sample-specific
SP no parameters τ1 and τ2, model I induces a perfect fit for the frequencies for category K =8
(the 222-category) in both the RR sample and the DQ sample.

To compare the models, we use the Bayesian information criterion (BIC) that provides a
rough approximation to the Bayes factor that is independent of the priors (Carlin and Louis
(2009), page 53). Information criteria are given in Table 2. In accordance with the theory, minus

Table 2. Information criteria for the maxi-
mum likelihood estimation: minus two times
the log-likelihood �2LL and the BIC

Model Number of −2LL BIC
parameters

I 9 5872.2 5941.6
II 12 5824.8 5917.3
III 17 5810.0 5941.1
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twice the log-likelihood decreases when the number of parameter increases. The BIC takes the
increase of parameters into account and shows a clear preference for model II. Following the
BIC, we shall discuss Bayesian inference for model I and model II.

For the priors we choose vague uniform priors, i.e. for the individual λs and βs we specify
a uniform distribution on the interval .−10, 10/. For example, for βse:1 a value 10 would mean
that the odds on cheating increase multiplicatively by exp.10/ when men are compared with
women. This is rather unlikely. We call the prior that is specified by the interval .−10, 10/ vague
because the interval is sufficiently wide to include all realistically possible values of the param-
eters without favouring specific values. The same reasoning applies to parameter λ7 which is
the three-factor interaction and describes how the odds ratio between two variables changes
across categories of the third. For example, define ϑ11:c as the odds ratio for questions 1 and 2
given category c of question 3; we have ϑ11:1=ϑ11:2 = exp.8λ7/ and a value of ±10 for λ7 is quite
extreme.

The models are mixture models and long Markov chain Monte Carlo chains are recom-
mended. We used a burn-in of 50000 simulations and 50000 updates. Convergence was checked
by assessing the chain visually, by looking at the auto-correlation, and by Geweke’s convergence
diagnostic (Geweke, 1992) as implemented in the R package coda (Plummer et al., 2006). Given
the Bayesian framework, transformations from λs to πs or from βs to τs are direct and credible
intervals (CIs) are readily derived. Results for model I and model II are presented in Table 3.

First we discuss model I. This is the model without the covariates and it can be assessed
on the level of the frequencies. As a consequence, it is easy to investigate the goodness of fit
by posterior predictive checking (Gelman et al. (2004), section 6.2). Denote the 16 observed
frequencies (eight in sample 1; eight in sample 2) generically by nÅ, and the model parameter
vector by θ. The Pearson χ2-statistic for observed frequencies nÅ and estimated frequencies
derived from θ yields a posterior predictive p-value that is equal to 0.085. This shows that
the model fits the data though the evidence is not overwhelming and further modelling seems
worthwhile.

Table 3. Bayesian inference for models without covariates (model I) and with
covariates (model II)

Parameter Results for model I Results for model II

Posterior mean (95% CI) Posterior mean (95% CI)

π111 0.017 (0.006, 0.029) 0.017 (0.006, 0.029)
π112 0.002 (0.0001, 0.008) 0.002 (0.0001, 0.008)
π121 0.058 (0.040, 0.078) 0.059 (0.040, 0.079)
π122 0.115 (0.079, 0.157) 0.120 (0.086, 0.158)
π211 0.006 (0.001, 0.015) 0.006 (0.001, 0.019)
π212 0.006 (0.001, 0.018) 0.007 (0.001, 0.019)
π221 0.019 (0.005, 0.043) 0.021 (0.006, 0.044)
π222 0.776 (0.710, 0.831) 0.768 (0.707, 0.819)
τ1 0.157 (0.097, 0.218)
τ2 0.536 (0.330, 0.694)
β0:1 (intercept) −1.899 .−2:787, −1:271/
βse:1, Sex −0.968 .−1:976, −0:276/
βad:1, Advantage −0.845 .−1:358, −0:469/
β0:2 (intercept) −0.292 .−1:480, 0:531/
βad:2, Advantage −1.370 .−2:220, −0:727/
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For the estimated model I, note that the posterior mean of τ1 is smaller than the posterior
mean of τ2 and that the CIs do not overlap. This means that the probability of cheating in
sample 1 with RR is smaller than the cheating in sample 2 with DQ. This is in accordance with
the basic idea of RR. When sensitive questions are asked, a technique that protects the privacy
of respondents leads to improved compliance with the design of the survey.

Next we discuss model II, which we consider to be the final model. Monitoring the mean of
the individually estimated cheating probabilities yields posterior means 0.155 for sample 1 and
0.568 for sample 2, which are close to the posterior means of the cheating parameters for model
I given by 0.157 and 0.536 respectively. Furthermore, according to the estimation of βad:1 and
βad:2, when an individual states that it is not advantageous to violate a benefit rule, he or she is
more likely to cheat in the survey (the posterior means of βad:1 and βad:2 are negative and the
CIs do not include zero). The posterior distribution of βse:1 shows that men are less likely to
cheat in the RR sample than women.

Given that often not following the rules can indeed be advantageous, we think that the atti-
tude question is a sensitive question. Individuals who do not follow the RR rules also do not
honestly answer the attitude question. In other words, denying that violating the benefit rules
can be advantageous is a proxy for cheating in the RR design.

The prevalence estimates are also given in Table 3. Comparing the posterior means for π=
.π111, . . . , π222/T the results show that the prevalence estimates are robust regarding model
selection. The probability of complying with all the benefit regulations is 0.768 with 95% CI
(0.707, 0.819), whereas the probability of violating all the regulations is 0.017 (0.006, 0.029). It
is interesting to see that there is a relatively large probability that individuals violate the first
regulation but follow the second and the third: 0.120 (95% CI (0.086, 0.158)). Fig. 1 brings out
the strength of the Bayesian framework: the asymmetrical distributions of some of the preva-
lence parameters is nicely captured by the MCMC results. Distributions that are not close to
the boundary of the parameter space (for instance, those of π111 and π121) resemble the shape
of normal distributions.

6.2. Sensitivity analysis
We investigated the sensitivity of the results with respect to the specification of the prior. When
changing the specification of the prior for the individual λs and βs to a uniform distribution on
the interval .−100, 100/, inference is very similar to the values that are reported in Table 3—
except for βse:1. For this parameter the median of the simulated values is still close to the value
that is reported in Table 3, but the mean is −5:660, which is caused by simulating some large
negative values. This means that βse:1 is only weakly identified in the model. Changing the
specification of the prior to a uniform distribution on the interval .−5, 5/ gives results that
are very close to those in Table 3. For βse:1 we obtain a posterior mean −0:9285 and 95% CI
.−1:84, −0:2787/. Overall we conclude that the inference is robust regarding the specification
of the vague priors. The exception is inference for βse:1—which is a parameter which is only
weakly identified. It is still reasonable to state that men are less likely to cheat in the RR sample
than women, i.e. βse:1 < 0, but better to refrain from further quantification of this effect.

Model II can also be formulated regarding the combination of two questions. This specifies
three models: one for questions 1 and 2, one for questions 1 and 3, and one for questions 2 and 3.
For these three models, the parameters are π11, π12, π21, π22, β0:1, βse:1, βad:1, β0:2 and βad:2. Of
course, the interpretation of these parameters varies according to the model at hand. We think
that combining all the three questions provides the best information regarding prevalence and
cheating behaviour, but assessing the models for the combination of just two questions provides
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some insight into the sensitivity regarding the estimation of cheating. Consider the mean of
the individually estimated probabilities of cheating for sample 1 and 2. As already mentioned,
for the combination of all three questions, the posterior means and 95% CIs of the mean of
the individual cheating parameters are given by 0.155 (0.077, 0.218) and 0.568 (0.400, 0.670).
For questions 1 and 2, we obtain 0.194 (0.098, 0.294) and 0.608 (0.431, 0.747), for questions
1 and 3, 0.198 (0.114, 0.301) and 0.635 (0.481, 0.765), and, for questions 2 and 3, 0.190 (0.097,
0.294) and 0.5825 (0.329, 0.789). Although there are some deviations, overall, estimating cheat-
ing seems quite robust across the different models. Note also that not one of the CIs overlaps
when comparing cheating in the RR design with cheating in the DQ design. As was to be
expected, the bivariate models are less accurate than the model for the three questions taken
together—this was of course the main reason for choosing the latter for investigating prevalence
and cheating.

7. Discussion

To estimate prevalence and cheating, we have used a model for a dual sample scheme with
questions about compliance with social benefit rules. The questions were asked by using RR in
one sample and the same questions were asked directly (DQ) in the second sample. The com-
bination of DQ and RR provides information that is not obtainable by either method alone:
we can estimate cheating for DQ, and—because the model is identified—we can avoid making
assumptions about higher order interaction effects in the RR model. The model can also be
used in surveys with two different RR designs, where the cheating is allowed to vary across the
designs. This is important as it is often not realistic to assume that two different RR designs
induce similar cheating behaviour.

Cruyff et al. (2007) used maximum likelihood estimation to analyse data from a series of
RR questions. Cheating was investigated by using a model for SP no saying, where the iden-
tifiability problem was dealt with by restricting a log-linear model for latent probabilities. The
SP no model was estimated with one parameter. Clark and Desharnais (1998) also used maxi-
mum likelihood for data that were obtained with two RR designs for the same question. Their
model can be seen as a dual model with SP no, but cheating in both designs is assumed to
be the same and is estimated with one parameter. Assuming different cheating behaviour
within this model would lead to an identifiability problem. Van den Hout and Klugkist (2009)
used Bayesian inference for data that were obtained from a series of RR questions. Ways of
cheating (among which is SP no) were investigated without posing restrictions on latent proba-
bilities. Instead, the identifiability problem was dealt with by a stepwise procedure with regard to
the minimum level of cheating that induces model fit. The SP no model was estimated with one
parameter. The dual model that is presented in the current paper extends previous RR models
and makes new and important inference possible. By formulating a model for RR and DQ,
and by using data from a series of questions, the model allows us to distinguish and investigate
cheating behaviour in DQ and RR.

The reason for cheating is often complex and will vary across RR surveys. Many factors may
be involved, e.g. the sensitivity of the question, potential repercussions if the true status is dis-
closed, the understanding of the protection of privacy, the people who administer the questions
and the number of questions. If the dual design consists of two RR designs (instead of an RR
design and a DQ design), the detection of cheating may be related to the difference in param-
eterization of the designs. A bigger difference makes the estimation of cheating more efficient.
However, a bigger difference also means that one design may protect significantly less than the
other, in which case the two designs may induce different cheating behaviour.
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It is possible to formulate a model for a dual sample scheme in the case with one RR
question, but such a model will often be difficult to estimate. To give an example, assume
that we want to estimate cheating parameters τ1 = P.cheating in RR sample/ and τ2 =
P.cheating in DQ sample/. To identify the model, we split each sample according to gender.
To justify the split, we must assume that gender does not interact with the probability of cheat-
ing. (This assumption, however, is not supported by the inference in this paper.) The model
for rule violation is now defined by logit.πwomen/=θ0 and logit.πmen/=θ0 +θ1. In this way we
estimate the four parameters τ1, τ2, θ0 and θ1 given four independently observed frequencies:
yes answers for men and yes answers for women in sample 1, and yes answers for men and yes
answers for women in sample 2. For the data at hand, this model for one RR question could
not be estimated as the simulated values from the posterior were not identified on the support
that is specified by vague priors.

It is advantageous to investigate cheating in an RR design with more than one question.
For that reason, we analysed our data with regard to the cross-classification of three questions
and used the cross-classifications of only two questions for a sensitivity analysis. When there is
more than one RR question, there is more information on cheating, which—when taken into
account—will lead to a better estimation of the prevalence of the behaviour of interest.

A Bayesian framework was used (for other Bayesian RR analyses, see, for example Win-
kler and Franklin (1979), Unnikrishnan and Kunte (1999), Fox (2005) and Van den Hout and
Klugkist (2009)). A frequentist approach would work as well as illustrated by the preliminary
maximum likelihood analyses in the application (see also the frequentist log-linear RR models
analysis in Cruyff et al. (2007)). However, there are a few advantages of the Bayesian framework.
Bayesian CIs are more appropriate than frequentist asymptotic confidence intervals in the case
of parameter estimates near the boundary of the parameter space. The importance of this was
illustrated in the application. In general, boundary solutions are very common in the analysis
of RR data as the sensitive issues that are investigated are often linked to behaviour that has a
low prevalence in the population. With the freely available software WinBUGS, the Bayesian
framework has gained another advantage: it is now relatively easy to implement and investigate
RR models. As an example of possible prior information, assume that a standard RR design
for a binary variable is applied every year with the same question. If in all the previous years
the estimated prevalence was below 5%, Bayesian inference with an informative prior seems
reasonable. We might for instance choose α= .α1, α2/ with α1 =1 and α2 > 1 for the Dirichlet
density.

Although specific RR data motivated this research, the paper presents a general approach
that allows for various choices of RR designs. We have noted quite a number of references where
RR is compared with DQ; see, for example, the surveys that were discussed in the meta-analysis
by Lensvelt-Mulders et al. (2005). If there is some suspicion of cheating, then the data from
those comparisons can be reanalysed by using our model.

As mentioned above, cheating in RR designs is complex and we do not want to pretend that
our model for the dual sample scheme captures all that is at stake. Further research is needed and
it would be interesting to see how the model (or variants thereof) would work with other data
sets. That being said, we think that our model is the best description of the data that is currently
available. The difference in estimated cheating behaviour concurs with research showing that
RR induces more co-operation from respondents than DQ. By combining the two samples, we
gain efficiency with respect to the estimation of both the prevalence and the cheating. Relating
the probability of cheating to covariate values seems reasonable. The sensitivity analysis that
considers two questions at a time shows the robustness of the analysis: when analysing the
variables two by two, we obtain similar results.
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