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Since its emergence at the end of 2019, SARS-CoV-2 has spread worldwide at a very
rapid pace. While most infected individuals have an asymptomatic or mild disease, a
minority, mainly the elderly, develop a severe disease that may lead to a fatal acute
respiratory distress syndrome (ARDS). ARDS results from a highly inflammatory
immunopathology process that includes systemic manifestations and massive alveolar
damages that impair gas exchange. The present review summarizes our current
knowledge in the rapidly evolving field of SARS-CoV-2 immunopathology, emphasizing
the role of specific T cell responses. Indeed, accumulating evidence suggest that while T-
cell response directed against SARS-CoV-2 likely plays a crucial role in virus clearance, it
may also participate in the immunopathology process that leads to ARDS.
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1 INTRODUCTION

Coronaviruses are a family of single-strand positive RNA enveloped viruses that infect a wide range
of hosts. To date, seven viruses are known to infect humans. They include four common human
coronaviruses: 229E and NL63 (alpha coronavirus) and OC43 and HKU1 (beta coronavirus). Those
endemic viruses cause, in most cases, mild to moderate upper-respiratory tract illnesses (common
cold). Human coronaviruses also include three highly pathogenic epidemic beta coronaviruses:

1. Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) (1), the epidemy of which
emerged in China in 2002 and ended in 2003.

2. Middle East Respiratory Syndrome Coronavirus (MERS-CoV), that appeared in the Middle East
in 2012 (2).

3. The highly contagious SARS-CoV-2, which outbreak started in the province of Wuhan in China
at the end of 2019, and which spread worldwide at a very rapid pace.

Those three highly pathogenic coronaviruses predominantly infect the lower respiratory tract,
mainly alveolar epithelial cells. They may cause fatal pneumonia associated with increased
production of pro-inflammatory cytokines and chemokines, lung infiltration by mononuclear
inflammatory cells, acute lung injury with massive diffuse alveolar damage, leading to an acute
respiratory distress syndrome (ARDS) (1, 2) (see Figure 1).
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Infection with the new coronavirus SARS-CoV-2 can be
divided into three stages: 1) an asymptomatic incubation
period with or without detectable virus, 2) a non-severe
symptomatic period with a detectable virus, and 3) a severe
symptomatic period with the predominance of respiratory
symptoms and variable viral loads in nasopharyngeal samples
(3, 4). In some patients worsening may occur despite a decrease
in viral load in nasopharyngeal samples (5), while in others, it is
associated with high viral loads (3–5). Not all patients progress to
the severe phase of the disease. The proportion of patients from
the general population, regardless of age, who advance to the
critical stage, ranges from 8 to 15% (6, 7). However, there is a
higher risk of progression for patients over 65 years old (6).
There is also a high prevalence of obesity and hypertension in
SARS-CoV-2-infected patients who require invasive mechanical
ventilation (8). The risk of progression to severe respiratory
complications and death is also higher in patients with cancer
(7, 9), including hematological malignancies (10).

While clinical worsening with severe respiratory complications
is related to exacerbated immunopathology, it is not necessarily
associated with high viral loads. Virus replication in alveolar
epithelial cells may trigger in some patients an uncontrolled
immunopathology process that continues to exacerbate while
viral burden reduces. In SARS-CoV-2 infected patients, ARDS
occurs approximately between day 9 and day 12 following the
Frontiers in Immunology | www.frontiersin.org 2
onset of symptoms (11). It is associated with biological hallmarks
of intense inflammation (e.g., increase of serum ferritin and CRP),
coagulation activation (e.g., increase of d-dimers), and heart
damage (e.g., increase of Troponin). The incidence of
thrombotic complications appears particularly high in intensive
care unit patients with SARS-CoV-2, with pulmonary embolism
being the most frequent, ranging from 20.6 to 31% (12, 13).
2 IMMUNOPATHOLOGY OF ACUTE
SARS-COV-2 INFECTION

2.1 Interactions Between SARS-CoV-2
Infection and ACE2
The first contact of SARS-CoV-2 with its human target cell is
through the interaction of the spike protein (S Protein), a
primary site of neutralization (14), and the SARS-CoV
receptor angiotensin-converting enzyme (ACE) 2 (14, 15).
ACE2 is also the entry receptor of SARS-CoV but not that of
MERS-CoV, the functional entry receptor of which is DPP4
(dipeptylpeptidase 4), also known as CD26 (16).

Biophysical and structural evidence suggest that SARS-CoV-2
S protein binds ACE2 with higher affinity than SARS-CoV S
protein (17). Several SARS-CoV-2 major variants with mutations
FIGURE 1 | Immunopathology of ARDS. Cytopathic SARS-CoV-2 infection of pulmonary epithelial cells and endothelial cells is the starting point of a series of cascading
pro-inflammatory events leading to ARDS eventually. Viral replication, via activation of the innate immune response components such as TLR, triggers the production
of interferons, inflammatory cytokines, and chemokines. This inflammation induces infiltration into the alveoli and activation of neutrophils, macrophages, and lymphocytes.
Activated immune cells produce large amounts of pro-inflammatory cytokines such as IL-6, IL-1b, TNF-a, and IL-8 that exacerbate local cell recruitment and activation,
leading to a “cytokine storm” through this amplification loop. The increase of capillary permeability causes pulmonary edema. Thrombosis occurs via several mechanisms,
including injury of endothelial cells by the virus and subsequent activation of the coagulation cascade, activation of neutrophils that secrete procoagulant factors, and
activation of complement that leads to activation of platelet and coagulation. Regeneration of the lung epithelia is impaired. This cascade of events ends in a severe
impairment of Gas exchanges between alveoli and lung capillaries, causing hypoxemia. Created with BioRender.com.
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within the amino-terminal domain (NTD) and the receptor-
binding domain (RBD) of the S protein that increase affinity for
ACE 2 have emerged since the beginning of the outbreak (18).
For both SARS-CoV and SARS-CoV-2, the S protein is cleaved
by the host cell serine protease TMPRSS2 (14), allowing its
conformational change and exposition of the fusion peptide
required for virus delivery into the cell. Also, neutralizing
antibodies against the SARS-CoV S protein may provide some
protection against SARS-CoV-2 (14), although limited (17).
ACE2 has a remarkable abundance at the cell surface of lung
alveolar epithelial cells (pneumocytes type 1 and 2) and
enterocytes of the small intestine, two cell types in contact with
the external environment (19). It is also broadly present on
arterial and venous endothelial cells and arterial smooth muscle
cells in numerous organs, including lung, heart, liver, gut, kidney,
and brain (14). TMPRSS2 has a wide distribution in epithelia,
including lung, gut, pancreas, kidney, prostate, testis, and is
regulated by androgen, which may account for a higher incidence
of severe SARS-CoV-2 infection in adult males (20, 21).

ACE2 is a major negative regulator of the renin-angiotensin-
aldosterone system (RAAS), a cascade of vasoactive peptides.
ACE2 degrades angiotensin II (AngII) to angiotensin (1–7),
reducing its action on vasoconstriction, sodium retention, and
fibrosis. Previous works in vitro on human cells and in vivo on
experimental mouse models have shown that SARS-CoV
interaction with the S protein leads to ACE2 downregulation
(22, 23). ACE2 is a critical negative regulatory factor for the
severity of lung edema and acute lung failure (22, 23).
Recombinant ACE2 can protect mice from severe acute lung
injury (22). AngII acts as a vasoconstrictor and pro-
inflammatory factor after binding to angiotensin receptor type
I (AT1R), mainly on non-immune cells (24). The possible
downregulation of ACE2 after interaction with the S protein of
SARS-CoV-2 (25) may increase the pro-inflammatory action of
AngII. The AngII-AT1R axis in the respiratory system can
activate both NF-kB and STAT3 that act synergistically and
trigger an interleukin-6 (IL-6) signaling amplification loop in
non-immune cells known as IL-6-mediated inflammation
amplifier or IL-6 amplifier for short (26). IL-6 amplifier leads
to the production of numerous pro-inflammatory cytokines and
chemokines, including IL-6, and the recruitment of immune cells
that exacerbate inflammation (26). The age-dependent increase
of COVID-19 mortality may be related to the age-dependent
enhancement of the IL-6 amplifier (27).

2.2 Interferon Response and Cytokine
Release During Acute SARS-CoV-2
Infection
The onset of symptoms following the incubation period to SARS-
CoV-2 is associated with intense virus replication (28). At that
time, viral proteins and RNA had activated the innate
components of the immune response, including toll-like
receptors (TLRs) and RIG-I-like receptors (RLRs), with the
production of interferons (IFN), inflammatory cytokines, and
chemokines. Viral RNA internalized into endosomes may
activate TLRs and promote the secretion of pro-inflammatory
Frontiers in Immunology | www.frontiersin.org 3
cytokines, such as tumor necrosis factor-a and IL-6 (29, 30).
IFNs are critical components of the innate immune response that
install an antiviral state in uninfected cells, impair viral
replication in infected cells, and activate various innate and
adaptative immune cells (30). Type I IFN and inflammatory
cytokines and chemokines may also have a role in the rapid and
transient lymphopenia that accompanies many acute viral
infections by favoring lymphocyte redistribution (31). It has
been reported a suppression of type I IFN signatures in
peripheral blood of SARS-CoV-2-infected patients with severe
disease, along with decreased plasma IFN-a concentrations,
compared to patients with mild to moderate disease (32). By
contrast, severe and critical patients had enhanced pro-
inflammatory IL-6 and TNF-a–responses (32). SARS-CoV-2
may inhibit IFN-a production via the inhibitory effects of
non-structural proteins 6 and 13 (nsp6 and nsp13) and open
reading frame 6 (ORF6) on IRF3, a key transcriptional factor
involved in the IFN-a activation (33). Moreover, several SARS-
CoV-2 proteins, including nsp6 and nsp13, inhibit IFN-a
signaling by blocking (STAT1)/STAT2 phosphorylation and/or
its nuclear translocation (33). Those results suggested that
systemic type I IFN response may have a positive effect on
SARS-CoV-2 infection. However, the effects of IFNs appear
much more complex (34). Indeed, contrasting with the benefit
of this systemic type I IFN response, a correlation has been
shown between the high levels of type I and type III IFNs, in
particular IFN-l mRNA, in naso-oropharyngeal and
bronchoalveolar lavage fluid samples and disease morbidity in
SARS-CoV-2–infected patients (35). While type I IFNs are
widely expressed, IFN-l responses, in terms of cytokine
production and receptor expression, appear restricted to a
limited number of cell types that include epithelial cells (34).
The signaling pathway of IFN-l in epithelial leads to the
induction of a group of IFN-stimulated genes (ISGs), and the
tumor suppressor p53, the latter limiting viral replication by
enhancing IFN signaling and inducing cell cycle arrest of infected
cells (34, 36). In mice infected with influenza virus, IFN-l may
impair proliferation of lung epithelial cells during recovery (35,
37), as well as differentiation of alveolar epithelial progenitor cells
to secretory and multiciliated cell subtypes (37). IFN-l produced
by dendritic cells in the lungs of mice exposed to a synthetic viral
RNA may damage the lung epithelium, favoring bacterial
superinfection (35). Those results suggest that while systemic
type I IFN may help limit virus spreading, IFN-l, which mainly
acts on mucosal surfaces, may disrupt lung epithelial
regeneration during recovery, exacerbating respiratory disease.
One limitation of those results is that they were mainly obtained
in mice infected with influenza virus, and this experimental
model may not necessarily reflect the features of SARS-CoV-2
infection in humans.

The severe phase of SARS-CoV-2 infection is associated with
high blood levels of inflammationmarkers, such as ferritin and CRP
(38–40), and a cytokine release syndrome with the production of a
panel of pro-inflammatory and anti-inflammatory cytokines,
including IL-1b, TNF-a, IL-6, IL-7, IL-8, IL-9, GM-CSF, G-CSF,
MCP-1, IP-10, IFN-a, and IL-10 and TGF-b (3, 40–44).
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Noteworthy, TGF-b may trigger a process of pulmonary fibrosis
(44, 45). The increase of CRP suggests the important secretion of IL-
6. Such observations raised the possibility of the therapeutic use of
anti-IL-6 and anti-IL-1b monoclonal antibodies to treat the severe
phase of SARS-CoV-2 infection. Tocilizumab is a humanized
monoclonal antibody to the IL-6 receptor (IL-6R), used to treat
rheumatoid arthritis and, more recently, severe cytokine release
syndrome caused by treatment with chimeric antigen receptor T cell
(CAR-T) immunotherapy. Initial studies suggested that
Tocilizumab may have some efficacy in patients in the severe
phase of SARS-CoV-2 (46–49). However, subsequent randomized
clinical studies showed disparate results (50). While in some studies,
IL-6R antagonists improved outcomes (51, 52), including survival
(52), others failed to demonstrate significant clinical benefit (53, 54).
2.3 Complement Activation During Acute
SARS-CoV-2 Infection
In four patients with severe SARS-CoV-2, requiring non-invasive
mechanical ventilation, Eculizumab, a C5 blocking monoclonal
therapeutic antibody, led to rapid clinical improvement (55).
This suggested that blocking complement activation could be
beneficial for patients infected with SARS-CoV-2. In patients
with SARS-CoV-2–associated ARDS and purpuric skin rash,
deposits of terminal complement components C5b-9
(membrane attack complex), C4d, and mannose-binding lectin
(MBL)-associated serine protease (MASP)2 were found in both
pulmonary and dermal microvessels, suggesting systemic
activation of the alternative and lectin-based complement
pathways (56). Higher complement activation products in
blood, including soluble C5b-9, correlated with and predicted
increased disease severity (57). Activation of the complement
may be the consequence of the binding of the coronavirus
nucleocapsid protein to the mannose-binding lectin (MBL)-
associated protease-2 (MASP-2), a serine protease of the lectin
pathway of complement activation (58, 59). The nucleocapsid
protein appears highly conserved between SARS-CoV, MERS-
CoV, and SARS-CoV-2 (60–62). Direct activation of the
alternative complement pathway by the SARS-CoV-2 S protein
has also been suggested (63), especially that SARS-CoV-2
infection down-regulates expression of the complement
activation inhibitors CD46, CD55, and CD59 (64, 65). In an
experimental mouse model of MERS-CoV, increased
concentrations of the C5a and C5b-9 complement products
were found in sera and lungs, respectively, and inhibition of
complement activation with anti-C5a reduced lung damage
(41, 64, 66). In another experimental mouse model of SARS-
CoV infection, C3 invalidation was associated with substantial
reductions in tissue lesions and recruitment of inflammatory
cells in the lungs, suggesting that the complement may play a
significant role in the early step of inflammation (67).
Interestingly, in this experimental model, C3 invalidation did
not increase virus replication, suggesting that complement-
dependent opsonization mechanisms are not critical for
controlling virus replication (67). The levels of soluble C5a
were increased in the blood and bronchoalveolar lavage fluid
according to the severity of SARS-CoV-2 infection (68). In
Frontiers in Immunology | www.frontiersin.org 4
parallel, high expression levels of C5a receptor 1 (C5aR1) were
found in blood and pulmonary myeloid cells (68). This suggested
that blocking the C5a–C5aR1 axis may have a therapeutic
interest in preventing excessive lung myeloid cell infiltration
and inflammation (68). Another point of increasing attention is
the effect of complement overactivation on thrombosis. Indeed,
complement activation may favor hypercoagulability and
thrombosis via several mechanisms that include activation and
injury of endothelial cells, platelet aggregation and activation of
platelet prothrombinase, as well as inhibition of fibrinolysis (69–
72). Also, MASP-2, in addition to trigger complement activation,
may cleave prothrombin to form activated thrombin (73). The
potential mechanisms of complement activation during SARS-
CoV-2 and ARDS are summarized in Figure 2.
2.4 Antibody Responses During Acute
SARS-CoV-2 Infection
Initial observations suggested that the median time to detect
specific IgM and IgA in serum is 5 days following symptom
onset, while the median time to detect IgG is 14 days (74). IgA
likely dominate the early SARS-CoV-2 antibody response in
serum, saliva, and broncho-alveolar fluid (75). Within 19 days
following symptoms onset, 100% of patients had detectable
anti-SARS-CoV-2 IgG (76). Among antibodies to SARS-CoV-2,
neutralizing antibodies (NAbs) prevent cell infection by disrupting
the interaction between the S protein and ACE2. NAbs are
directed against either the RBD or the NTD, both being located
on the S1 subunit of the S protein (77, 78). NAbs are detectable
in 85% of patients after recovery from SARS-CoV-2 infection
(79, 80). This proportion was higher among patients with
severe SARS-CoV-2 infection and lower in asymptomatic
infections (80).

In vaccinated individuals or individuals who have recovered
from SARS-CoV-2 infection, NAbs likely play an important role
in the protection from symptomatic infection or re-infection,
respectively (81, 82). NAbs may be produced early during acute
SARS-CoV-2 infection. Neutralizing IgA, directed against the
RBD, were detected in a significant proportion of patients in the
first week after the onset of symptoms (75). Neutralizing IgA
peaked 3 weeks after the onset of symptoms then decreased by
week 4 while anti-RBD IgG reached a plateau (75). However,
anti-RBD IgA may persist for longer periods in saliva (75).

In severe SARS-CoV-2 infection, neutralization potency of
anti-RBD antibodies predicted survival (83). In outpatients with
early SARS-CoV-2 infection (less than one week after the onset
of symptoms), administration of monoclonal IgG directed
against the S protein (Casirivimab/Imdevimab combination or
Bamlanivimab) led to rapid decline of the viral load in the
nasopharynx (84, 85). No added benefit of those therapeutic
antibodies was found in sicker hospitalized patients (86).
Possibly, because in later stages of the disease, inflammation
and thrombotic events play a more significant role in the
patient’s outcome than SARS-CoV-2 replication (86).

In some cases, antibodies to viruses may also promote
inflammation and immunopathology via a process known as
antibody-dependent enhancement (29, 87). Such pathogenic
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antibodies likely mainly include low affinity and non-
neutralizing antibodies (29). Pathogenic antibodies may target
S protein of SARS-CoV on epitopes others than neutralizing
sites such as RBD (29). Immune complexes involving pathogenic
antibodies may exacerbate inflammation and promote tissue injury
by activating TLRs in endosomes following internalization via FcR
in immune myeloid cells (29). Pathogenic antibodies may also
include IgM that activate efficiently the complement classical
pathway (29). In experimental models of SARS-CoV-infected
macaques, anti-S protein IgG promoted production by alveolar
macrophages of monocyte chemoattractant protein (MCP)-1 and
IL-8 in productively infected lungs (88). Lung macrophages also
displayed a loss of TGF-b and high expression of IL-6 (88). In vitro,
sera from patients who died of SARS-CoV infection enhanced
SARS-CoV-induced MCP-1, and IL-8 production by monocytes-
derived macrophages was observed and was reduced upon FcgR
blockade (88). In SARS-CoV infected macaques, the passive transfer
of antibodies against the S protein prevents SARS-CoV entry in
pneumocytes (88). However, passively transferred anti-spike IgG
also increased macrophage infiltration and favored the occurrence
of more severe pneumonia (88). Whether such pro-inflammatory
pathogenic antibodies are present during acute SARS-CoV-2
Frontiers in Immunology | www.frontiersin.org 5
infection in humans and play a significant deleterious role is a
point of interest that deserves detailed investigations. Moreover, the
potential pathogenic role of antibodies against human endemic
« common cold » coronaviruses, that may bind SARS-CoV-2 with
low affinity, remains to be determined.

During acute SARS-CoV-2 infection, in patients with severe
disease, an absence of germinal centers has been shown along
with a reduction of germinal center B cells, but the preservation
of AID-expressing B cells (89, 90). The loss of germinal centers
may be related to a failure of Bcl6+ T follicular help cell (Tfh)
differentiation (90). This impairment in Tfh differentiation
could be secondary to changes in the extra-follicular cytokine
milieu, including high levels of TNF-a induced downstream of
a strong Th1 response. Those defects in B cell differentiation in
patients with severe SARS-CoV-2 infections have also been
associated with increased proportions of SARS-CoV-2-reactive
cytotoxic Tfh cells that may kill B cells and dampen germinal
center responses (91). Loss of germinal centers may not enable
the generation of long-lived memory or high-affinity SARS-
CoV-2 specific B cells (90). Whether such a loss of germinal
centers may also affect patients with a mild disease remains to
be determined.
FIGURE 2 | Complement activation during SARS-CoV-2-related ARDS. SARS-CoV-2 infection of alveolar epithelial cells (type II and type I) and endothelial cells may
trigger complement activation via the three pathways of complement activation. The binding of the SARS-CoV-2 nucleocapsid protein to MASP-2 may activate the lectin
pathway of complement activation. Activation of the alternative pathway could be facilitated by the lack of complement inhibitors (CD46, CD55, and CD59) on infected
alveolar cells and virions. IgM to SARS-CoV-2 may efficiently activate the classical pathway. The three complement activation pathways converge to generate the C3a
and C5a anaphylatoxins and the Membrane Attack Complex (C5b-C9) (MAC). C3a and C5a are potent chemoattractants and inflammatory mediators that recruit and
activate neutrophils and monocytes/macrophages. Deposition of MAC on the membranes of alveolar epithelial cells and endothelial cells leads to cell lysis. Complement
overactivation may promote hypercoagulability and thrombosis via several mechanisms, including activation and injury of endothelial cells, platelet aggregation and platelet
prothrombinase activation, and inhibition of fibrinolysis. Also, MASP-2, in addition to trigger complement activation, may cleave prothrombin to form activated thrombin.
Created with BioRender.com.
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2.5 T Cell Responses During Acute
SARS-CoV-2 Infection
A specific T cell response is required for virus clearance in many
viral infections. The conventional paradigm is that following
viral replication in a specific tissue, such as alveolar epithelial
cells, local dendritic cells that have taken up viral antigens
migrate to the draining lymph nodes and prime naive CD4
and CD8 T cells to generate specific primary effectors and later
highly functional memory cells. Antigen-specific CD8 effector T
cells rapidly expand, acquire the ability to produce cytokines,
such as IFN-g and TNF-a, and cytotoxicity-associated molecules,
such as perforin and granzymes, then migrate to lungs, to exert
cytotoxicity toward infected cells (92).

A central biological hallmark of severe SARS-CoV-2 infection
is lymphopenia, which correlates with poor clinical outcome (93,
94). Although lymphopenia affects particularly T cells (95), B cell
and NK cell counts are also decreased in patients with severe
SARS-CoV-2 infection (96). Following recovery, lymphocyte
counts return to normal values in most cases (95, 96).
Lymphopenia is also a common observation in several acute
viral respiratory infections, including SARS-CoV and MERS-
CoV infections (97, 98). Lymphopenia may be related to
lymphocyte redistribution that involves both retentions in
lymphoid tissues and infiltration into target tissues of virus
replication (31). Retention in lymphoid tissues may favor
antigen priming of naive T cells by dendritic cells to initiate
primary effector expansion and the process of memory
generation. Lymphopenia may exacerbate, in severe forms of
the infection, according to the level of lung inflammation (6).
Divergent observations on lung lymphocyte infiltration during
the severe phase of SARS-CoV-2 infection were reported. Some
authors reported that immune cells infiltrating lungs mostly are
macrophages and neutrophils along with a few lymphocytes;
most of them were CD4 T cells (99). Others authors reported
that lung mononuclear cell infiltrates were dominated by
lymphocytes (45).

Observations on patients with severe SARS-CoV infection
indicated a full restoration of CD8 lymphopenia between the
third and the fifth week after disease onset. By contrast, a full
restoration of CD4+ lymphopenia was slower, as CD4 cell count
remains lower than in controls three months after the onset of
disease, although a rapid and significant recovery was observed
since the third week (31, 100). Such rapid recovery points out
tissue sequestration. However, other mechanisms for
lymphopenia may be involved including T depletion associated
with the lymphoid organ necrosis reported during SARS-CoV-2
infection (99).

Transcriptomic analysis of bronchoalveolar lavage fluid and
peripheral blood mononuclear cells in patients infected with
SARS-CoV-2 suggested that this virus may induce apoptosis and
P53 signaling pathway in lymphocytes (44). The capacity of
SARS-CoV-2 to infect lymphocytes in vivo remains unclear.
There is no significant expression of ACE2 on T and B cells
(62). Observations of T and B cell infection by SARS-CoV have
been reported (101). Other receptors may be possibly involved in
the entry of SARS-CoV-2 into lymphocytes, including CD147 or
Frontiers in Immunology | www.frontiersin.org 6
CD26 (DDP4) (102–104). However, this remains under debate
(105), and to date, ACE2 should be considered as the only entry
receptor for SARS-CoV-2. Therefore, direct viral infection may
not be a significant mechanism of the lymphopenia associated
with SARS-CoV-2. Another potential mechanism for SARS-
CoV-2 infection-induced lymphopenia is apoptosis related to
inflammatory cytokines, such as TNF-a, that may trigger T cell
apoptosis following interaction with TNFR1, the expression of
which is increased on T cells in aged individuals (106, 107). T cell
numbers in blood correlated negatively with the levels of IL-6,
IL-10, and TNF-a (108).

2.5.1 CD4 T Cell Responses
In patients with severe acute SARS-CoV-2 infection, a
diminution of total regulatory T cells (Treg) in blood was
observed (96, 109). A decrease of Treg in patients with severe
disease was also found in the pool of SARS-CoV-2-specific CD4
T cells (91). Conversely, an increase in the proportion of pro-
inflammatory CCR6+ Th17 within the total CD4 T cell pool was
reported in a patient who died from severe SARS-CoV-2
infection with ARDS (45). CCR6 enables the homing of CD4 T
cells to the lung and the gut (110). Activated CD4 T cells reactive
to S protein of SARS-CoV-2 are detectable in most patients with
acute SARS-CoV-2 infection (96, 111). In patients with severe
disease, the frequency of SARS-CoV-2–specific CD4 T cells is
higher than in convalescent individuals (96). Most of those
specific T cells are likely primary effectors or early memory
cells in patients with acute infection, while in convalescent
patients, SARS-CoV-2–specific CD4 T cells likely correspond
to memory cells. S protein dominance was found for anti-SARS-
CoV-2 CD4 T cells in patients with ARDS (112), while SARS-
CoV-2 CD4 memory T cells may exhibit a different pattern of
immunodominance, with codominance of M, spike, and N viral
proteins (113). An intriguing point is that up to 60% of
unexposed healthy donors also showed CD4 T cell reactivity to
S protein of SARS-CoV-2, suggesting a possible cross-reactivity
of memory CD4 T cells directed against the four endemic human
coronaviruses (111, 113–115). This cross-reactivity may be
potentially related to previous contacts with animal beta-
coronaviruses (114). Therefore, CD4 T cell cross-reactivity
between SARS-CoV-2 and endemic human coronavirus or
even coronavirus from animals in contact with humans
appears quite common. The role of these pre-existing cross-
reactive memory T cell responses in the immunopathology of
SARS-CoV-2 infection remains to be clarified.

It has been suggested that progression to the severe phase of
SARS-CoV-2 infection is associated with a reduction in the
polyfunctionality of total CD4 T cells (e.g., the ability for the
same lymphocyte to produce TNF-a, IL-2, and IFN-g) (116).
Those results of apparent functional impairment of CD4 T cells
in severe SARS-CoV-2 infection contrasts with other
observations that functional anti-SARS-CoV-2 CD4 T cells are
detectable in all ARDS patients (112). Those specific CD4 T cells
mainly produce Th1 cytokines, although Th2 and Th17
cytokines were also detected (112). However, an extensive
single-cell transcriptomic analysis of SARS-CoV-2 specific CD4
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T cells in patients with severe SARS-CoV-2 acute infection
showed that polyfunctional Th1 and Th17 cell subsets were
under-represented in the repertoire of SARS-CoV-2-reactive
CD4 T cells as compared to influenza-reactive CD4 T cells
(91). The same study also showed in patients with severe
infection a high frequency of cytotoxic CD4 T cells, that
express perforin and granzyme B (GrB), including cytotoxic
Tfh (91). Cytotoxic CD4 T cells (non-Tfh) may kill infected
type II pneumocytes that can express class II MHC (117).
Cytotoxic Tfh cells can kill B cells and dampen germinal
center responses (91). As reported above, there is an
impairment in Tfh differentiation and Tfh response during
severe SARS-CoV-2 infection (90, 91). This defect may
negatively impact not only the generation of memory B cell
responses but also the generation of CD8 memory, as Tfh may
also be required for the optimal differentiation of highly
functional CD8 memory T cells (118).

2.5.2 CD8 T Cell Responses
CD8 T cells from patients with severe SARS-CoV-2 infection
showed higher activation, including higher IFN-g and GrB
expression, than patients with mild infection (116). Such
strong activation may lead to high expression of exhaustion-
associated receptors, including PD-1, TIGIT, and CTLA-4 (116).
A massive PD-1 upregulation has been shown in patients with
ARDS (108). One concern with the potential conclusions drawn
from those studies is that T cell exhaustion is a process that
affects T cells specific for a particular pathogen and not the whole
blood T cell compartment regardless of the antigen specificity, as
reported in the SARS-CoV-2 studies described above. Therefore,
one cannot rule out that the increase in inhibitory receptors may
be a global adaptation process of T cells to the cytokine storm
rather than an intrinsic defect of the anti-SARS-CoV-2 primary
T cell response. The observations on total T cells may not
necessarily reflect the situation of anti-SARS-CoV-2-specific T
cells, although a substantial part of activated CD8 T cells may be
specific SARS-CoV-2 (119). Also, the expression of inhibitory
receptors such as PD-1 on T cells during acute viral infections
may not necessarily reflect a deleterious exhaustion process such
as seen during chronic viral infections or cancers, but rather may
be part of a physiological tuning process that adjusts T cell
activation and functionality.

In a series of patients with ARDS, anti-SARS-CoV-2 specific
CD8 T cells were detected in all patients admitted to an intensive
care unit (112). Those CD8 T cells for which specificity included
the S glycoprotein mainly have a memory effector or a terminally
differentiated effector phenotype (112).

In SARS-CoV-infected patients, similar functionality,
phenotype, and frequencies of virus-specific T cells were found
between patients who experienced moderate and severe diseases,
with most of the CD8 T cells producing only IFN-g. A minority
of specific CD8 T cells could also produce TNF-a and
degranulate (CD107a+). Their frequency was higher in patients
with the severe form of the disease (120). During the acute phase
of MERS-CoV infection, higher frequencies of specific cytotoxic
CD8 T cells have been shown in patients with moderate/severe
diseases than in patients with mild disease (121). These CD8
Frontiers in Immunology | www.frontiersin.org 7
T cells were directed mainly against the viral S protein (121),
suggesting an association between the level of the specific early
CD8 T cell response and the severity of the infection (121).
Conversely, in experimental mouse models of MERS-CoV, viral
clearance was not possible in T cell-deficient mice. However, it
was possible in mice lacking B cells, indicating the crucial role of
the CD8 T cell response for virus clearance (122). Similarly, 2
cases of patients with X-linked agammaglobulinemia who have
developed and cleared a mild SARS-CoV-2 have been reported,
suggesting that B cells and immunoglobulins are not essential for
the control of virus replication during acute infection (123).

In various experimental models of acute respiratory virus
infections, such as Respiratory Syncytial Virus (RSV), Influenza
A Virus (IAV), Human Metapneumovirus (HMPV) and
Pneumonia Virus of Mice (PVM) infections, expansion of
specific CD8 T cells peaked in airways and lungs between day
8 and up to day 14 following mouse infection, and generally
coincided with virus clearance (124). In antigen-naive
individuals, mainly in children, during infection with
respiratory viruses, including RSV, IAV, rhinovirus, and
endemic coronaviruses, the peak of CD8 T cells in tracheal
aspirates of primary effectors occurs around day 10 (124, 125).
The key role of primary CD8 T cell effectors in mediating viral
clearance during acute respiratory viral infections in children is
well established (124). However, there is also evidence in
experimental mouse models and, to a lesser extent, in children,
of the immunopathological potential of CD8 T cells, following
infection with respiratory viruses such as RSV that also infects
alveolar epithelial cells (124, 126, 127). CD8 T cell-mediated
immunopathology may involve the CD8 cytotoxic pathways
such as perforin/GrB and Fas/Fas ligand (124) as well as the
production of cytokines such as IFN-g and TNF-a that may take
part in a cytokine storm. Similarly, to CD4 T cells, memory CD8
T cells recognizing peptides conserved amongst coronaviruses
are detectable in unexposed individuals. Those cells appear more
abundant in patients with mild disease, suggesting a potential
protective role (128). However, the situation is likely more
complex and likewise their CD4 T cell counterparts, further
studies are required to clarify the exact impact of those cross-
reactive memory CD8 T cells.
3 CONCLUDING REMARKS

The immune response to acute lower respiratory viral infections
must be tightly regulated, enabling pathogen elimination while
maintaining crucial gas exchange. The highly inflammatory
process leading to ARDS results from inappropriate regulation
of the network of innate and adaptive components of the
immune response triggered by SARS-CoV-2 replication in the
pulmonary alveolus (see Figures 1–3). The anti-SARS-CoV-2
primary T cell response, which includes the complex and multi-
faceted CD4 T cell response and the CD8 T cell component,
likely plays an essential role in virus clearance. It may also
participate in the immunopathology process leading to ARDS.
Impaired regulation may affect not only the CD4 and CD8
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primary effectors generated directly by SARS-CoV-2 infection
but possibly also pre-existing memory T cells against endemic
coronaviruses that may react to shared viral peptides. Human
beta-coronaviruses may trigger long-lasting T cell memory.
SARS-CoV-specific memory T cells have been detected more
than 10 years after SARS (129). Anti-viral-memory T cells,
including lung-resident memory T cells, may be highly reactive
and may generate potent secondary responses. For instance, in
mice, pre-existing anti-RSV memory CD8 T cells generated
through a prime-boost vaccine strategy led to IFN-g-mediated
fatal immunopathology following virus challenge (130).
Therefore, although coronavirus cross-reactive memory T cells
could benefit many patients by helping to clear the virus, one
cannot rule out that this pre-existing T cell memory may
exacerbate immunopathology in some subsets of patients by
providing uncontrolled CD4 helping signals to myeloid and
lymphoid immune effectors, and by direct CD8 cytotoxicity.
Patients at risk of ARDS include the elderly and patients with
obesity. There is a loss in Treg functions during aging that may
render aged individuals more susceptible to immunopathology
(131). Obesity leads to accelerated immune senescence (132). It is
also associated with chronic inflammation with dysfunction of
several T cell subsets, including Treg and Th17 (132).
Frontiers in Immunology | www.frontiersin.org 8
A better understanding of the regulatory processes within the
complex network of immune effectors acting in pulmonary
alveoli (see Figures 1–3), including the mix of SARS-CoV-2-
specific primary T cells and beta-coronavirus cross-reactive
memory T cells (Figure 3), is required to prevent and treat
ARDS in patients at risk.
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FIGURE 3 | T cell responses during severe SARS-CoV-2 infection. The complex network of CD4 T cell responses during SARS-CoV-2 infection involves different
CD4 subsets, including Treg, Th1 cells, Th17 cells, and some cytotoxic CD4 subsets. Th17 cells may activate neutrophils, and Th1 may provide helping signals to
macrophages and CD8 effectors. Cytotoxic CD4 T cells that produce multiple chemokines (that may recruit myeloid cells) and direct cytotoxic properties have been
reported in patients with severe disease. Those cytotoxic CD4 subsets could exert cytotoxicity on infected type II pneumocytes that can express MHC class II. The
role of cross-reactive memory CD4 T cells generated following previous infections with endemic coronaviruses remains to be clarified. Those activated cross-reactive
cells may provide help to various immune effectors, including SARS-CoV-2-specific CD8 primary effectors or coronavirus cross-reactive CD8 memory T cells
(secondary effectors). Circulating cytotoxic Tfh that may kill B cells have also been described. The diminution of Treg reported in severe ARDS may exacerbate T cell
mediated immunopathology. Created with BioRender.com.
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