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The field of psychiatry is far from perfect in predicting which individuals will transition to a psychotic disorder. Here, we argue that
visual system assessment can help in this regard. Such assessments have generated medium-to-large group differences with
individuals prior to or near the first psychotic episode or have shown little influence of illness duration in larger samples of more
chronic patients. For example, self-reported visual perceptual distortions—so-called visual basic symptoms—occur in up to 2/3rds
of those with non-affective psychosis and have already longitudinally predicted an impending onset of schizophrenia. Possibly
predictive psychophysical markers include enhanced contrast sensitivity, prolonged backward masking, muted collinear facilitation,
reduced stereoscopic depth perception, impaired contour and shape integration, and spatially restricted exploratory eye
movements. Promising brain-based markers include visual thalamo-cortical hyperconnectivity, decreased occipital gamma band
power during visual detection (MEG), and reduced visually evoked occipital P1 amplitudes (EEG). Potentially predictive retinal
markers include diminished cone a- and b-wave amplitudes and an attenuated photopic flicker response during
electroretinography. The foregoing assessments are often well-described mechanistically, implying that their findings could readily
shed light on the underlying pathophysiological changes that precede or accompany a transition to psychosis. The retinal and
psychophysical assessments in particular are inexpensive, well-tolerated, easy to administer, and brief, with few inclusion/exclusion
criteria. Therefore, across all major levels of analysis—from phenomenology to behavior to brain and retinal functioning—visual
system assessment could complement and improve upon existing methods for predicting which individuals go on to develop a
psychotic disorder.
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INTRODUCTION
Schizophrenia (SZ) cuts lifespan short by 20 years, leaves about
80% unemployed, and costs society over $100 billion annually
[1, 2]. Despite the tremendous burden that the illness places on
patients, family, and society at large, the field of psychiatry is still
far from perfect in predicting who will end up transitioning to a
psychotic disorder. Current practice is to employ instruments such
as the Structured Interview for Psychosis Risk Syndromes (SIPS)
and Comprehensive Assessment of At-Risk Mental States
(CAARMS) to designate help-seeking individuals as being at
clinical high risk for psychosis (CHR). However, because only 20-
25% of those with this designation develop a psychotic disorder
within 3 years from initial assessment, additional predictive
measures are needed [3]. Improving our predictive tools could
have real impact, first, because early intervention can potentially
delay illness onset or improve clinical course [4, 5]; second,
because many individuals designated as CHR will fully remit and
not need long-term treatment [6]; and third, because early
detection can reduce the number of emergency hospital visits
and thereby minimize overall health care expenditures [7]. To
provide more effective, targeted, and lower-cost treatment, what

is needed are additional predictors for discerning who will
ultimately transition to a psychotic disorder. We propose that
visual system assessment can help in this regard.
Why focus on vision? Almost 30% of human cortex is devoted to

visual functioning [8] and schizophrenia is increasingly regarded
as a disorder that afflicts neurons throughout the entire brain
[9, 10]. Thus if any brain system should distinguish the disorder,
the visual system should, and there is already supporting evidence
from large-scale resting-state functional connectivity studies [11].
Visual hallucinations occur in at least a quarter of those in the
psychosis spectrum [12]. Visual disturbances—which often do not
qualify as hallucinatory because they occur too infrequently or
because they merely alter stimulus appearance—are reported by
almost two-thirds of people with non-affective psychosis [13–15],
which rivals the prevalence of more standard illness features such
as auditory hallucinations [16].
We argue that phenomenological, behavioral, brain-based, and

retinal functioning tests may all provide markers for predicting a
transition to a psychotic disorder. We make this argument not by
providing an exhaustive review of all candidate markers but by
describing a small number of promising examples. The visual
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assessments that we highlight have either: (i) distinguished CHR
individuals who convert from those who do not convert to a
psychotic disorder, (ii) distinguished first-episode patients (FEPs)
from well-matched controls, or, at the very least, (iii) distinguished
more chronic schizophrenia patients (“SZs”) independently of
illness duration and relative to a psychiatric control group. As
described below, group differences generated by these selected
assessments cannot be explained by medication or attentional/
motivational impairments; they can be observed in clinically stable
outpatients (hence being suitable for CHR populations); they have
been shown relative to healthy and often mood disorder control
groups (the most common final diagnosis in CHR populations
[17]); and they generate medium-to-large effect sizes (Cohen’s d
ranging from 0.5 to 1.4 corresponding to AUC values of 0.64–0.84
and odds ratios of 2.5–12.8) [18].
Visual system assessments were discovered through our past

reviews [19–21] and more recent PubMed abstract/title literature
searches in English (search date: 7/12/2022). Keywords used in the
search were: (“at risk” OR “high risk” OR prodom* OR “attenuated
psychosis” OR “first episode” OR “recent onset”) AND (vision OR
visual OR occipit* OR retin*) AND (schizophrenia OR psychosis OR
psychotic). Note that we do not report whether CHR populations
as a whole differ from controls since roughly three-quarters of
such individuals never develop a psychotic disorder [3] and
conversion-specific effects would become diluted in such samples
(e.g., d= 0.8→d= 0.2). In a similar vein, it is neither necessary nor
sufficient for visual measures to generate distinctive results in first-
degree relatives or in people with schizotypal features (or
schizotypal personality disorder) compared to controls, since such
individuals rarely develop a psychotic disorder. The candidate
markers that we seek would ideally be akin to the Hopkins Verbal
Learning Test-Revised of the NAPLS psychosis risk calculator [22]:
they would signify a state that encompasses the period up
through the first psychotic episode, but could additionally (and
optionally) reflect trait vulnerability.
The remaining part of this article is structured as follows: first,

we describe potential phenomenological, behavioral, brain-based,
and retinal markers of early psychosis; then we argue that many of
these markers could realistically be assayed in everyday clinical
settings; next, we briefly speculate on how these visual measures
might shed light on the mechanisms undergirding a transition to
psychosis; and we conclude by addressing objections and
limitations.

Self-reported visual perceptual abnormalities: moving beyond
hallucinations
While objective measures are obviously preferred, symptom-
based measures cannot be ignored when they have already
demonstrated their clinical utility. Seventeen non-hallucinatory
changes to everyday visual perceptual experience are probed by
the Bonn Scale for Assessment of Basic Symptoms [23]. The scale
taps into lifetime distortion occurrence with a binary response
format, freeing patients from having to remember the graded
frequency, duration, timeframe, or life impact of the symptoms, all
of which can be clouded by memory impairment or experimenter
demand bias [24]. The subscale can be quickly administered
(~20min), and has good test-retest reliability and inter-rater
reliability [15, 25]. The summed scores are elevated in ~2/3rds of
unmedicated FEPs [15], and can cross-sectionally distinguish
people with SZ and schizoaffective disorder from those with
other psychotic disorders [13, 26]. Most importantly, in a
longitudinal study with a 9.6 year follow-up, visual distortions
could predict which psychiatric help-seeking individuals would go
on to develop SZ (sensitivity= 0.46, specificity= 0.85, positive
predictive value= 0.75, negative predictive value= 0.62) [27].
Unfortunately, instruments that label individuals as being at
clinical high risk (SIPS/CAARMS) only briefly touch upon non-
hallucinatory visual disturbances with 2–3 anchor questions.

Because these disturbances are subtle, infrequent, and phenom-
enologically diverse—that is, because they are easily missed on
routine interviews—asking the full set of visual questions from the
Bonn Scale may be needed to optimize clinical prediction.

From neuropsychology to visual psychophysics: broadening
the scope of “cognition”
“Cognitive” deficits traditionally include those in the domain of
working memory, executive functioning, knowledge acquisition,
processing speed, and logical reasoning [28]. Neurocognitive tests
can detect deficits nearly a decade before illness onset [29] and
can improve predictions as to which CHR individuals will go on to
develop a psychotic disorder [22]. Can these tests be improved
upon? If so, how? Here, we make a simple recommendation,
namely, to expand the definition of “cognition” to encompass
aspects of visual perceptual functioning. We propose that a vision-
science-based test battery, when combined with other clinical and
neurocognitive tools, can boost the likelihood of detecting a
psychotic disorder in addition to clarifying aspects of pathophy-
siology. This is so because methods of behavioral psychophysics
have matured considerably over the last 150 years, and can
precisely and efficiently reveal group differences in a way that can
often be linked to underlying mechanisms [30]. A visual battery, if
implemented, would be inexpensive, (mostly) objective, and
strongly justified by past psychosis research.
But which tasks might be included? Here, we describe seven

candidates (see Fig. 1). In a contrast sensitivity task, participants
attempt to detect a briefly presented (≤300ms), low-contrast
target on a constant luminance background. Never-medicated
FEPs express superior sensitivity (d= 1.19, p < 0.001, n= 20/
group), especially for lower spatial frequency elements (≤5
cycles/deg) [31]. The perceptual advantage has been reported in
a separate sample of unmedicated FEPs [32] and in unmedicated
older patients using drifting gratings [33].
In a Titmus test (also referred to as the Wirt circles or graded

circles test), participants wear polarized glasses and serially
examine 9 arrays of four circles, indicating which one hovers in
depth (Stereo Optical Company Inc, Chicago, IL). SZ patients and
drug-naïve FEPs have shown a similarly reduced ability to identify
the target across a broad range of stereo-disparities [34–36]
(d ≥ 0.67).
When attempting to identify a briefly presented target,

medicated and unmedicated schizophrenia patients are more
adversely affected by a spatially overlapping distractor that
appears within ~100 ms of target onset; this exaggerated
“masking” happens relative to healthy controls and first-degree
biological relatives [37, 38]. Such masking differences have also
been observed in first-episode schizophrenia patients compared
to healthy controls (179 HCs, 86 patients; d= 1.1, p < 0.001) and
two groups at risk for psychosis (both d > 0.85; both n > 38, both
p < 0.001) [39]. A limitation in this study was that masking was
operationalized as raw accuracy in target detection, introducing
the possibility of motivational/attentional confounds [39]. In a
more recent “shine-through” version of the masking task, subjects
determine the relative alignment of two line segments (vernier
discrimination) that are then followed by a grid of segments (with
small or large masks, Fig. 2) [40]. Shine-through studies have
mitigated attentional confounds by excluding subjects who fail to
achieve some minimal level of discrimination performance with
briefly flashed unmasked stimuli. Schizophrenia patients have
shown more shine-through masking than major depression
patients [41] (34 depressed, 90 SZs, d > 0.8, p < 0.001) and FEPs
have shown more shine-through masking than healthy controls
(20 HCs, 21 FEP; d= 0.52, p= 0.02 without statistical correction)
[42].
In a collinear facilitation task, a faint target becomes more

detectable when flanked by collinear high-contrast elements [43].
Whereas healthy controls and people with bipolar I disorder
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benefit normally from collinear flankers, the same is not true for
clinically stable SZ outpatients [44]. The facilitation impairment
arises among SZ patients with intact attention, intact contrast
sensitivity, and 12-week medication washout periods [45, 46]. In a
sample of 38 SZ patients (including 6 FEPs), the deficit did not vary
with illness duration [47]. A caveat is that the effect may be most
apparent for elements that have a smaller Gaussian window
(width) or higher spatial frequency, perhaps because such stimuli
bias processing toward unmyelinated long-range horizontal
connections in early visual cortex [47].
In a shape completion task, four pac-men form a fat or thin

shape or are individually rotated leftward or rightward (illusory
and fragmented condition, respectively). SZ patients show more
deficits in the illusory than fragmented condition (134 non-
affective psychosis patients, 66 HCs; d= 0.67, p < 10–4) [48]. These
impairments are larger in schizophrenia than in bipolar disorder
[49] and emerge maximally by the first psychotic episode (23 FEPs,
48 HCs; p < 0.01, d= 0.74) [48]. Note that because the shape
completion impairment is defined as a within-subject difference
(fragmented – illusory threshold), the group difference cannot be
blamed on inadequate attention, motivation, visual acuity, or
orientation discrimination.
FEPs are also impaired at locating chains of co-aligned edge

elements embedded within varying amounts of randomly
oriented “noise” elements [50]. This contour integration deficit,

which becomes apparent for spatially-scaled down (smaller)
displays (d= 0.72, p < 0.05), cannot be explained by inattentive-
ness since the same patients perform near ceiling on catch trials
(where the target was shown by itself) [50].
Eye movement differences also hold promise. Using a dot

fixation and free-viewing task, a probabilistic neural network
classifier could distinguish healthy controls (n= 148) and clinically
stable SZ patients (n= 150) with 94% accuracy. The group
differences did not depend on illness duration, anxiety, symptom
severity, caffeine/nicotine use, or medication [51]. The group
differences were stable over a 9 month period, generalizable to
new subjects, and were equally apparent in meaningful, social
stimuli as in non-semantic pattern (fractal) images, indicating that
lower-level features may be driving the effect [51, 52]. One of the
most diagnostic features was the patients’ spatially restricted
fixation patterns (Hedges g= 1.4, p < 10–31). This same pattern has
been shown to occur to a lesser extent in bipolar disorder [52] and
unaffected siblings [53]. In a more recent longitudinal study with a
three year follow-up, unmedicated clinical high-risk subjects who
went on to convert to a psychotic disorder (n= 21) had smaller
saccade amplitudes during free viewing at baseline than those
who did not convert (n= 87; d= 0.70) [54]. In that study, a logistic
regression model could jointly distinguish the two groups of
patients with high accuracy (AUC= 0.80, specificity= 0.84, sensi-
tivity= 0.67). However, the study did not quantify fixation

Fig. 1 Visual tasks that may elicit behavioral markers of early psychosis. A Never-medicated first-episode psychosis patients (FEPs) have
superior contrast sensitivity at lower spatial frequencies compared to healthy controls (HCs) [32]. B Never-medicated FEPs have a diminished ability
to identify the circle that floats in stereo [35]. C FEPs need more of a temporal interval (SOA) between the target and a subsequent grid-like mask
to achieve 75% accuracy on a Vernier discrimination task [42]. D Schizophrenia patients of varying illness durations benefit less from high-contrast
collinear flankers when attempting to detect a central low-contrast target relative to healthy and clinical controls [45, 47]. E For FEPs, discriminating
fat and thin illusory shapes is harder than discriminating left and right rotated pac-men; for HCs, the opposite is true [48]. F Compared to healthy
controls, FEPs can tolerate fewer background “noise” elements when attempting to detect a circular chain of elements [50]. G Independently of
illness duration, SZ patients exhibit spatially restricted eye movement patterns when freely viewing complex images [51].
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dispersion or overall scan path length, and thus may have
underestimated the potential predictive utility of free viewing.
An advantage to a battery of visual tests is that the components

will be only weakly correlated even when the tasks are highly
similar [55]. Therefore, finding a group difference with one task
will very often pick up variance different than that picked up by
others; and combining such tasks will yield a more powerful
diagnostic tool. In other words, even if no specific visual task
generates clinically useful group differences on its own, a battery
of such tasks could potentially do so. This contrasts with cognitive
tasks, which are highly intercorrelated as captured by the “g”
construct of general intelligence [56].

Brain markers of abnormal vision in early psychosis
Resting-state functional hyperconnectivity between the thalamus
and parts of occipital cortex (Fig. 2A–C) has been demonstrated in
larger samples (163 HCs, 151 SZs) independently of illness
duration; the group difference could not be explained by

antipsychotic medication dose or scanner motion [57]. Such
hyperconnectivity has been also shown by other investigators (90
HCs, 90 SZs) [58] and may be partly explained by weaker
anatomical connections between these same areas [59]. Thalamo-
cortical visual functional hyperconnectivity has also been docu-
mented in affective and non-affective psychosis patients within 5
years of their first psychotic episode, when compared to healthy
controls (n= 32, 81, 52, respectively) [60]. Finally, CHR patients
who converted to a psychotic disorder (n= 21) displayed more
visual thalamo-cortical connectivity at baseline than those who
did not convert (n= 222) (Fig. 2B) [61]. This group difference was
prior to cluster-wise type I error correction but it did appear to
overlap with the hyperconnected regions of the more chronic
patients (Fig. 2A).
In scalp recorded visual evoked potential (VEP) studies, brief

achromatic checker patterns have elicited a reduced P1 waveform
amplitude in schizophrenia patients compared to healthy controls
and major depression patients [62, 63]. The group differences

Fig. 2 Visually oriented brain-based markers of early psychosis. A Visual thalamo-cortical hyperconnectivity occurs in schizophrenia
patients relative to HCs (Figure panel shows the thalamic seed; adapted with permission from [58]). B Similar hyperconnectivity patterns have
been observed in CHR patients who convert versus those who do not convert to a psychotic disorder (Adapated with permission from [61]).
C Different investigators have found comparable patterns (after FDR correction) in early-stage non-affective psychosis patients relative to HCs,
with one-third of the visual nodes being hyperconnected to the thalamic node (Adapted with permission from [60]). D Briefly flashed
checkered images have elicited a muted P1 amplitude in FEPs relative to HCs (Adapted with permission from [65]). E, F During a change-in-
motion detection task, gamma band activity within ten occipital regions was smallest in FEP subjects, intermediate in CHR patients, and
greatest in psychiatric patients not meeting CHR criteria (non-CHR) (Adapted with permission from [68]).
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were typically large (d ≥ 0.7) and independent of medication dose
and illness duration [64]. The alterations could not be explained by
poor attention since patients could often perform normally on an
accompanying rapid object recognition task [65, 66] and since the
group difference could emerge even when an eye-tracker ensured
proper fixation [62]. Critically, P1 amplitude reductions have also
been documented over occipital electrodes in FEPs (Fig. 2D) [65].
When the waveforms were measured from electrodes outside of
the occipital cortex, group differences would diminish or
disappear entirely, attesting to the visual nature of the effect
[63, 67].
In the realm of oscillations, a simple visual change detection

task during MEG has revealed high gamma power reductions
(57–67 Hz) in FEPs (n= 26) relative to healthy controls (n= 49,
d= 1.14, p < 0.01; Fig. 2E, F) [68]. Unmedicated FEPs (n= 15) have
also exhibited reduced high gamma-band power (>60 Hz;
d= 0.7–1.0) when attempting to recognize vague black-and-
white pictures (so-called “Mooney faces”) [69], similar to what has
been found in more chronic patients [70].
Structural MRI variables can be difficult to interpret [71].

Nevertheless, multiple small studies have reported reduced white
matter volume or fractional anisotropy in the calcarine cortex (V1)
and the frontal-occipital fasciculus during the transition to
psychosis [72]. Fractional anisotropy of the latter structure is
reduced in drug-naïve FEPs (25 patients, 51 HCs, d > 1.1 for each
hemisphere) [73] and has been shown to correlate with backward
masking severity in psychosis [74].
Other brain-based differences are worth briefly mentioning;

these include more numerous interconnected (“hub”) visual
regions in early-stage psychosis [75], more weakly interconnected
visual areas across different illness durations [57, 68], and a more
weakly interconnected whole-brain functional network that
consists of many visual nodes and that is linked to high polygenic
risk for psychosis [76].

Retinal markers of early psychosis
Schizophrenia impacts N-methyl-D-aspartate (NMDA) receptors
throughout the entire brain [9, 77], the retina and brain grow
out of the same embryonic tissue, and NMDA receptor activity
influences functioning of all major retinal cell types (amacrine,
bipolar, photoreceptor, horizontal, ganglion) [78]. Therefore, it
would be surprising if there were no retinal differences in
schizophrenia. A major way to demonstrate such differences is
through electroretinography (ERG), which detects retinally
generated electrical activity in response to a flashing light
stimulus. Depending on the stimulus properties, the resulting
waveform can be decomposed into: an a-wave, reflecting
hyperpolarization of photoreceptors; a b-wave, which derives
from the depolarization of a complex of Müller and ON-center
bipolar cells; and a photopic flicker response, which is defined
by a series of positive peaks and is byproduct of cone
functioning [79]. In a large study (n ≥ 150/group), when retinal
responses were averaged across multiple luminance levels,
lightness-adapted cone a- and b-wave amplitudes were smaller
in schizophrenia relative to healthy controls (d=−0.49, −0.70);
the b-wave latency was also prolonged (d= 1.29) [80]. The
effects were highly replicable across 2-month durations.
Critically, none of these effects depended on illness duration,
at least not after controlling for age, suggesting that they may
be apparent by the first psychotic episode. Furthermore, a
stepwise logistic regression model could distinguish schizo-
phrenia patients from a medication-matched subsample of
bipolar patients via cone a-wave amplitude and latency (45/
group; AUC= 0.83, sensitivity= 0.80, specificity= 0.82). Elec-
troretinography conducted with a portable device has also
distinguished schizophrenia patients from major depression
patients for the a-wave amplitude, b-wave amplitude, and
photopic flicker response (all d > 0.65; see Fig. 3C) [81].

Visual testing in the clinic
The foregoing visual tests can often be administered in real-world
clinical settings. The behavioral tests can be conducted with
commercial “gaming” monitors (120 Hz refresh rate; <$1000), an
ordinary desktop computer, and freely available software for
stimulus presentation and screen gamma correction (e.g.,
PsychoPy [82]). Fixation dispersion can be measured with
increasingly affordable eye-trackers (e.g., Gazepoint GP3; < $1000;
60 Hz, 0.5–1.0 deg precision) [83]. Retinal functioning can be
assayed non-invasively with a portable, handheld FDA-approved
“RETeval” device, which automatically adjusts for pupil size on a
trial-by-trial basis in nondilated eyes [84]. The device is well
tolerated and imposes few inclusion/exclusion criteria. The
behavioral, oculomotor, and electroretinography tests can each
be performed within 5–15min and therefore can readily be
appended to other assessments routinely administered in clinical
high-risk clinics.
The brain-based data (e.g., resting-state, VEP, gamma oscilla-

tions) obviously require significant infrastructure and expertise to

Fig. 3 Electroretinographic markers of early psychosis. A Two
example waveforms that have distinguished schizophrenia patients
from healthy controls and mood disorder patients (photopic flicker
response not shown). B Using a portable handheld device, light-
adapted (photopic) retinal functioning of different cell types can be
measured within 15 min. C Four ERG variables that have significantly
distinguished schizophrenia patients from well-matched healthy
controls and people with major depression (the most common final
diagnosis among those at clinical high risk for psychosis; n= 25/
group). The a- and b-wave amplitudes were measured under three
photopic viewing conditions (P1, P2, P3); the photopic flicker
response was measured under a fourth condition (for details see
[81]). All effects were in a direction that could be anticipated from
past research. *p < 0.05, **p < 0.01, ***p < 0.001.
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collect. However, VEP and gamma oscillation data can often be
obtained in under one hour and such sessions are generally well
tolerated with few contraindications. Moreover, fMRI-based
resting-state group differences have emerged with different
scanners, data types (multiband, single-band), and preprocessing
strategies, and require minimal effort from the subject. It is true
that resting-state connectivity metrics are prone to motion
artifacts. However, with proper head padding and coaching,
group-wise motion differences are small, especially when compar-
ing psychosis patients to individuals with other forms of
psychopathology [61, 85]. Moreover, new and more effective
methods for controlling for motion are on the horizon, including
multi-echo fMRI and prospective high-motion scan detection
[86, 87].

Mechanistic implications
It is beyond the scope of this work to delineate the physiological
mechanisms engaged by each measure and how they relate to
the emergence of psychosis. However, many of the measures have
been extensively investigated in humans and other animals, in
clinical and non-clinical populations, and with multiple methodol-
ogies (EEG, fMRI, TMS, single-cell recordings), indicating that their
mechanisms for predicting psychosis could become readily
known. For example, ketamine models suggest that NMDA
receptor hypofunction may strengthen visual thalamo-cortical
connectivity [88] and distort V1 activity during visual object
recognition [89]. Contrast sensitivity tests might flag impending
psychosis because they depend on dopamine synthesis [90],
which itself predicts a transition to psychosis [91]. The ERG b-wave
amplitude is generated by D1 receptor signaling on cone ON-
bipolar and horizontal cells [90], implying again that alterations of
this waveform could predict psychosis through its sensitivity to
dopamine. Reduced gamma-band synchrony has been attributed
to parvalbumin or somatostatin expressing GABAergic interneur-
ons [68, 92, 93]. Therefore, not only could visual system
assessments predict who will develop a psychotic disorder, they
could also provide critical clues on the cell types, circuits, and
neurotransmitter systems that underlie such a transition.
Note that visual measures may be clinically useful even if they

are not yet mechanistically understood. For instance, the Hopkins
Verbal Learning Test-Revised has improved psychosis risk
estimates in CHR studies [22], yet it remains unclear why this is
so or why other cognitive tests (e.g., the continuous performance
or vocabulary tests) have not achieved a similar outcome [94].
Likewise, in the treatment domain, we now understand that
antipsychotic medications modulate the dopamine D2 receptor
but this discovery happened more than two decades after it was
shown to ameliorate positive symptoms [95]. Therefore, demon-
strating a test’s predictive power can precede and thereby
motivate a more focused search for the mechanisms responsible,
which in turn can provide novel targets for treatment and
intervention.

Addressing objections and limitations
One may object that psychosis alters each of the senses and thus
any battery that focuses only on vision will be necessarily limited.
This objection, while technically correct, overlooks the fact that
the human cerebral cortex is devoted to more to vision than any
other sense and that we know more about the visual system than
any other sensory system, implying that behavioral results can
have direct implications for our understanding of brain function-
ing. Moreover, demonstrating the utility of visual tests in no way
precludes and may even serve to justify the development of tests
based on other sense modalities. For example, Fig. 2B (showing
thalamic hyperconnectivity with the somatomotor cortex) sug-
gests that tests of motor and tactile functioning could constitute a
novel and complementary family of predictive measures. Our
argument therefore is not that vision should be used alone in

screening, but alongside other promising tests to facilitate a
timely, accurate clinical prediction.
A related objection is that most of the foregoing assessments

were developed in the context of schizophrenia rather than
psychosis more broadly, but psychosis risk calculators apply to
affective psychosis as well [22]. Therefore, our tests may not be as
useful in ordinary clinical contexts, where a transition to any
psychotic disorder remains the question of interest. First, it is
simply too soon to decide whether the above-described assess-
ments are useless for flagging other forms of psychosis and,
indeed, some have already differentiated individuals with affective
early psychosis [60]. Second, if the above-mentioned tests
primarily differentiate non-affective psychosis patients, then that
itself would be important; it would demonstrate novel biological
and behavioral differences between patient subtypes that could
justify a search for more individualized treatments and
interventions.
A more general objection is that it is more fruitful to examine

functional outcome rather than “transition to psychosis”, which
inherently assumes a case/control approach [96, 97]. However,
people with psychotic disorders typically have worse functional
outcomes than people who do not, at least in some domains [98].
Therefore, identifying people with psychosis is tantamount to
identifying people with poor functional outcome. An analogous
point applies to non-affective psychosis. A large longitudinal study
of patients with affective and non-affective psychosis has shown
that individuals with 10 days or more of psychosis outside of a
mood episode at baseline had steeper declines in their Global
Assessment in Functioning scores (up to 10 years later) than those
who did not [99]. Thus, if the goal is to predict eventual changes in
functioning, then this goal will largely be accomplished by
identifying people who develop non-affective psychosis. Finally,
many of the measures have been associated with negative
symptoms in at least some studies; these include self-reported
visual distortions [46], weaker collinear facilitation [46], stronger
backward masking [38], spatially restricted eye movements [100],
visual thalamo-cortical hyperconnectivity [101], attenuated P1
amplitude (VEP) [64], attenuated photopic ERG amplitude [102],
and white matter microstructural abnormalities of the inferior
fronto-occipital fasciculus [73]. Consequently, not only might
abnormal vision predict poor outcome, it may also predict the
negative symptoms that often accompany poor outcome and that
often emerge first in illness development [103].
General limitations to our approach are worth noting. First,

many visual tests will not be clinically predictive. For example,
thalamic connectivity is normal for many visual regions (see
Fig. 2A, B), backward masking deficits are more apparent for some
stimulus configurations than for others [104], and free-viewing
eye-tracking tasks better discriminate patients than smooth
pursuit or steady fixation [51]. The reason why only some tests
or brain regions discriminate psychosis patients remains an
interesting open question. Visual testing will also likely not be
useful for screening for psychosis in the general population.
Bayesian analysis straightforwardly shows that—because psycho-
sis is a low base-rate illness (~1% prevalence)—diagnostic tests
with outstanding sensitivity and specificity will still yield
unacceptably high false alarm rates [105].

Future directions
The visual system is seldom viewed as a viable source of
biomarkers in psychosis research [3, 106]. This is unfortunate
because examples spanning all major levels of analysis—from
phenomenology to behavior to brain and retinal functioning—
have shown how visual system assessment could help identify
individuals who go on to develop a psychotic disorder. Three
markers have already longitudinally distinguished individuals with
psychosis: visual basic symptoms, visual thalamo-cortical hyper-
connectivity, and spatially restricted eye movements. The
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remaining markers have mostly been demonstrated in first-
episode patients. All of the above assessments must be validated
longitudinally in CHR populations alongside more established
neurocognitive and clinical predictors. Just as only some cognitive
deficits turned out to be uniquely predictive in CHR studies, so too
will only a subset of visual abnormalities. This opinion piece is
therefore a call for action—to harness visual tests to consider
which might improve clinical prediction in CHR populations.
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