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Abstract

The lack of a vaccine or any effective treatment for the aggressive novel coronavirus disease (COVID-19) has created a sense
of urgency for the discovery of effective drugs. Several repurposing pharmaceutical candidates have been reported or
envisaged to inhibit the emerging infections of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but their
binding sites, binding affinities and inhibitory mechanisms are still unavailable. In this study, we use the ligand-protein
docking program and molecular dynamic simulation to ab initio investigate the binding mechanism and inhibitory ability of
seven clinically approved drugs (Chloroquine, Hydroxychloroquine, Remdesivir, Ritonavir, Beclabuvir, Indinavir and
Favipiravir) and a recently designed α-ketoamide inhibitor (13b) at the molecular level. The results suggest that Chloroquine
has the strongest binding affinity with 3CL hydrolase (Mpro) among clinically approved drugs, indicating its effective
inhibitory ability for SARS-CoV-2. However, the newly designed inhibitor 13b shows potentially improved inhibition
efficiency with larger binding energy compared with Chloroquine. We further calculate the important binding site residues
at the active site and demonstrate that the MET 165 and HIE 163 contribute the most for 13b, while the MET 165 and GLN 189
for Chloroquine, based on residual energy decomposition analysis. The proposed work offers a higher research priority for
13b to treat the infection of SARS-CoV-2 and provides theoretical basis for further design of effective drug molecules with
stronger inhibition.
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Introduction
The recent outbreak of the novel coronavirus disease (COVID-
19) caused by severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) is a serious global risk for health and economy.
Unfortunately, no drug or vaccine has yet been approved to
prevent the infection or to treat the patients, and more time is
required to develop more specific strategy against this pathogen
[1, 2]. Given the urgency of the situation, researchers have been
trying a variety of clinically approved drugs in the hope that
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they hold promise to combat the COVID-19. Existing antivirals,
including virus protease inhibitors (Indinavir, Ritonavir etc.) as
well as some antiviral drugs that are still in the clinical trials
(e.g. Remdesivir and Chloroquine) are being tested against SARS-
CoV-2 [3–7]. Remdesivir is a nucleotide analog precursor that has
been reported to be active against specific viruses such as SARS
and Middle East respiratory syndrome (MERS) [8–11]. The efficacy
of Remdesivir is suggested by a recent recovery of US patient
infected with SARS-CoV-2 after intravenous treatment [12], while
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Chloroquine and Hydroxychloroquine are being reported to be
potential inhibitors of SARS-CoV-2 in vitro [13, 14]. However,
Remdesivir failed in a clinical trial against Ebola virus in 2019
[15], and there has been no clinical trial supporting its efficacy
against SARS-CoV-2. Empirical trials often involve substantial
trial-and-error costs, which require inevitable time consuming
in drug development. To prevent the spread of COVID-19 timely,
it is necessary to apply all approaches, including computational
analysis, to prioritize the pharmaceutical candidates, so as to
rapidly develop a strategy for COVID-19 treatment.

The SARS-CoV-2 genome is comprised of approximate 30
000 nucleotides, where two overlapping polyprotein genes (pp1a
and pp1ab) encode replicases essential for viral replications and
transcriptions. The 3C-like main protease (3CL Mpro) is a main
protease of SARS-CoV-2, essential for the immune regulation
and the releases of the polyproteins pp1a and pp1ab [16]. 3CL
Mpro controls the functional polypeptides releases from the
polyproteins by extensive proteolytic processing [17]. Its func-
tional importance in the viral life cycle and the absence of closely
related homologs in human make it an attractive target for anti-
SARS-CoV-2 drugs. Therefore, the discovery or design of drug
molecules that can bind to 3CL Mpro and inhibit its function
is an effective way to combat the virus. In this study, we chose
3CL Mpro as the therapeutic target to ab initio investigate its
inhibition mechanism and binding ability of these most promis-
ing drug molecules by ligand-protein docking program (Rosetta)
and molecular dynamics (MD) simulations. The experiments
and high-throughput screening researches have been going on
around the clock in hope of finding a cure for the COVID-19.
Based on pioneers’ studies, we selected seven most promising
drugs (i.e. Chloroquine, Hydroxychloroquine, Remdesivir, Riton-
avir, Beclabuvir, Indinavir and Favipiravir) and conducted high-
precision quantum calculations, so as to find the most effective
inhibitor. Recently, Zhang et al. [18] pursued a structure-based
design of peptidomimetic α-ketoamides as inhibitors of 3CL
Mpro, and demonstrated that the inhibitor 11r exhibited activity
against coronavirus. Soon later, based on 11r, Zhang et al. [19]
reported three structure modified inhibitors (i.e. 13a, 13b and
14b), and demonstrated that 13b is the most effective designed
inhibitor, which showed good tropism to the lungs with a well-
tolerated administration through inhalation in mice. Therefore,
in addition to the seven clinically approved drug molecules, we
also included 13b, as a candidate to investigate its binding ability
with 3CL Mpro.

The 3CL Mpro structure (PDB ID: 6 LU7) was obtained from
the RCSB Protein Data Bank, which was recently released by
Rao’s group [20, 21], while the 3D structures of the seven
drug molecules were obtained from the PubChem database.
Through molecular docking and kinetic analysis, we found
that for repurposed drugs, the Chloroquine molecule has
the strongest interaction with the 3CL Mpro, indicating that
Chloroquine is the best potential inhibitor for SARS-CoV-
2, followed by Hydroxychloroquine, Remdesivir, Ritonavir,
Beclabuvir, Indinavir and Favipiravir. Although Chloroquine
and Hydroxychloroquine share similar chemical structures and
mechanisms of acting as a weak base and immunomodulator,
we demonstrated that Chloroquine molecule has a stronger
binding with 3CL Mpro than Hydroxychloroquine, based on the
high-precision calculations of enthalpy and entropy. However,
the newly designed inhibitor 13b represents slightly stronger
binding affinity with 3CL Mpro compared with Chloroquine,
suggesting that 13b may be more effective than the selected
clinically approved drugs. We further analyzed the specific
residues of 3CL Mpro that contribute significantly to the

binding energy, and demonstrated that the residues MET165
and GLN189 in 3CL Mpro have the strongest affinities with
Chloroquine molecule, with decomposition energies of −2.50
and −2.34 kcal/mol, respectively. For 13b, the residues MET165
and HIE163 in 3CL Mpro contribute most to the binding energy,
with decomposition energies of −3.23 and −2.65 kcal/mol,
respectively. The determination of dominant residues in 3CL
Mpro provides a theoretical guidance for further drug molecule
design with larger binding energies and stronger inhibitory
abilities with target protein.

Results and Discussion
Since the complex structures between 3CL Mpro and inhibitors
have not been identified, we used the ligand-protein docking
program (Rosetta3) to determinate their 3D binding conforma-
tion. Based on the total energy of complex and interaction energy
between ligand and protein calculated by Rosetta, we generated
10 000 conformations for each inhibitor and selected the most
likely combination based on Rosetta score function. The total
Rosetta score, the binding energy between protein and ligand
and whether the ligand is touching the protein are considered
for the conformational selection. Table S8 in Supplementary
Information shows the total Rosetta energy score and important
energy terms of the selected conformations for the seven clini-
cally approved drugs from docking studies. The results show that
the selected conformation of Hydroxychloroquine has the lowest
Rosetta score, while Indinavir has the lowest binding energy. The
docking binding energies of all seven clinically approved drugs
with 3CL Mpro are lower than −10 kcal/mol, with the total energy
score lower than −642 kcal/mol. The virtual docking results show
that all seven inhibitors have high binding affinities to 3CL Mpro.

To investigate the binding ability and the interactions
between inhibitors and 3CL Mpro, the most favorable complex
conformations were used for molecular dynamic simulations.
After the equilibrium run of 1.2 ns, the ligand-protein complex
system became stable with the convergence of temperature,
density and total energy. Then a 40 ns production run was
performed while keeping the system stable. The root-mean-
square deviation (RMSD) was analyzed to detect the stability
of the ligand-protein system during simulation. Figure 1a
shows the RMSD of all non-hydrogen atoms for the complex
of 3CL Mpro and 13b over the entire production simulation.
The result indicates that the ligand-protein complex mostly
remains stable from 15 to 40 ns at 2.5–3 Å. Besides, the root
means square fluctuation (RMSF) was analyzed to detect the
fluctuation and flexibility of protein residues during the MD
simulation. Figure 1b shows the RMSFs of all non-hydrogen
atoms of 3CL Mpro over the entire simulation, where the LEU50,
PRO52, ASN51, ASN53, MET49, GLN189, ARG222, ASP48, SER46,
ASN277, GLU55 and TYR154 are the most flexible residues in the
protein middle region while 13b binds to 3CL Mpro. The RMSDs
and RMSFs of seven clinically approved drug molecules are
plotted in Figures S3, S6, S9, S12, S15, S18 and S21 of supporting
information, respectively. From these figures, the RMSFs of the
3CL Mpro are similar when the eight molecules (Chloroquine,
Hydroxychloroquine, Remdesivir, Ritonavir, Beclabuvir, Indinavir
and Favipiravir and 13b) bind to the protein pocket.

Table 1 shows the binding free energies of eight potential
inhibitors to 3CL Mpro, where the total enthalpies (ΔETOT) were
calculated by MD simulation and the total binding free energy
(ΔGbind) were obtained by the Molecular Mechanics-Generalized
Born Surface Area (MM/GBSA)-binding free energy. The total
enthalpies include the components of gas-phase and solvation
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Figure 1. The RMSD and RMSF of the complex of 3CL Mpro and 13b over 40 ns MD simulation. (a) RMSD of all the non-hydrogen atoms of the complex. (b) RMSF of all

non-hydrogen atoms of 3CL Mpro over the entire simulation.

Table 1. The enthalpies and binding free energies of eight ligands to 3CL Mpro, where ΔETOT-gas, ΔETOT-sol, ΔETOT, TΔSnmode and ΔGbind represent
the gas phase enthalpy, solvation enthalpy, total enthalpy, entropy contribution and total binding free energy, respectively. All values of energy
are shown in kcal/mol

Conformations �ETOT−gas �ETOT−solv �ETOT T�Snmode �Gbind

13b -100.2815 53.0246 -47.2569 -29.5070 -17.7499
Chloroquine -49.1969 14.0119 -35.1849 -19.0655 -16.1194
Hydroxychloroquine -52.3765 17.7180 -34.6585 -20.9370 -13.7215
Remdesivir -88.4507 49.1173 -39.3334 -28.4566 -10.8768
Ritonavir 16.8060 -47.8443 -31.0383 -26.2617 -4.7766
Beclabuvir -49.6568 18.8371 -30.8197 -23.0698 -7.7499
Indinavir -60.1888 28.1835 -32.0052 -25.4817 -6.5235
Favipiravir -20.7864 12.9465 -7.8399 -12.0494 4.2095

energies but without the entropy, which sometimes plays an
important role for ligand-protein interaction. So far, many effec-
tive methods have been applied to calculate the binding free
energy of proteins and ligands. MM/GBSA is a time-saving and
highly accurate method, which is often used to compute the
absolute binding free energy and shows great success in elu-
cidating the protein–protein and protein-inhibitor interactions
[22–25]. Based on the MM-GBSA method, we calculated the bind-
ing energy �Gbind between inhibitors and 3CL Mpro, consisting of
van der Waals energy, electrostatic energy, polar solvation energy
nonpolar solvation energy and entropic contribution.

From Table 1, the calculated total enthalpy �ETOT by MD
simulation (the green column) shows that for clinically
approved drugs, Remdesivir has the strongest binding energy as
−39.33 kcal/mol. However, the total enthalpy does not consider
the contribution of entropy, which depends on the alternation of
motional freedom induced by inhibitor binding and contributes
partly to the total binding energy [26]. After taking into
account of entropy contribution, Table 1 shows that Chloroquine
exhibits the lowest binding free energy (−16.119 kcal/mol)
among the seven clinically approved drugs (orange col-
umn), followed by Hydroxychloroquine (−13.7215 kcal/mol),
Remdesivir (−10.876 kcal/mol), Ritonavir (−4.78 kcal/mol),
Beclabuvir (−7.75 kcal/mol), Indinanir (−6.52 kcal/mol) and
Favipiravir (4.21 kcal/mol). This finding is consistent with
the recent in vitro study [13, 14] showing that Chloroquine,

Hydroxychloroquine and Remdesivir are the most effective in
controlling SARS-CoV-2 infection among a number of clinically
approved drugs. For patients with acute porphyria or porphyria
cutanea tarda, Chloroquine has some side effects of causing
fever, serum aminotransferase elevations and even jaundice.
Hydroxychloroquine, a less toxic metabolite of Chloroquine,
does not cause these adverse side effects and was found to
have partial beneficial effects in porphyria [27]. However, we
demonstrated that Chloroquine has a stronger affinity and
inhibitory ability to 3CL Mpro than Hydroxychloroquine. In
addition, from Table 1, the enthalpy and binding free energy
of the newly proposed inhibitor 13b are higher than those of
all selected clinically approved drug molecules, indicating the
strongest binding affinity of 13b with 3CL Mpro.

Figure 2a shows the complex structure of the binding
between 3CL Mpro and 13b, with similar binding position to
that of the analyzed clinically approved drugs. The complex
structure of 3CL Mpro bounded by clinically approved drugs
with the highest Rosetta score are shown in the Supplementary
Information. According to the calculated results, 13b molecule
as well as the clinically approved drugs binds tightly to 3CL
Mpro, with the binding position close to that of N3 inhibitor
proposed by Rao group [28]. Such binding pocket is also similar
to the previous report for SARS 3CL Mpro with inhibitors [29].
Figure 2b shows the ball-and-stick model for the binding pocket
of five residues with dominant binding contributions of 3CL
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Figure 2. Visualization of the docking conformation of 3CL Mpro and 13b. (a) The solid surface model of binding pocket between 13b molecule and 3CL Mpro. (b) The

ball-and-stick model, which shows the binding pocket of five residues with dominant binding contributions of 3CL Mpro with 13b.

Table 2. Top five residues with dominant binding contributions of 3CL Mpro with different potential inhibitors

Conformations Important residues
1 2 3 4 5

13b MET 165 HIE 163 HIE 164 CYS 145 ASN 142
Chloroquine MET 165 GLN 189 MET 49 ASP 187 ARG 188
Hydroxychloroquine CYS 145 MET 165 ASN 142 GLY 143 SER 144
Remdesivir ASN 142 MET 165 GLU 166 GLN 189 HIE 41
Ritonavir GLN 189 MET 49 HIE 41 MET 165 CYS 44
Beclabuvir GLN 189 MET 49 MET 165 HIE 41 LEU 50
Indinavir GLN 189 MET 49 MET 165 THR 24 ARG 188
Favipiravir TYR 126 SER 139 GLY 138 PHE 140 ALA 116

Mpro with 13b, where the blue, red, golden, yellow and orange
molecules represent the residues MET 165, HIE 163, HIE 164,
CYS 145 and ASN 142, respectively. Table 2 lists out the top five
residues with dominant binding contributions of 3CL Mpro with
the eight selected potential inhibitors. Figures S16, S17, S19 and
S20 show the docking conformation and ball-and-stick model of
3CL Mpro with Chloroquine and Hydroxychloroquine. Although
Chloroquine and Hydroxychloroquine share similar chemical
structures, the small difference makes the top five residues
with dominant binding contributions of Hydroxychloroquine
(CYS 145, MET 165, ASN 142, GLY 143 and SER 144 as shown in
Figure S17 and Table 2) very different from those of Chloroquine
(MET 165, GLN 189, MET 49, ASP 187 and ARG 188 as shown in
Figure S20 and Table 2).

To reasonably design drugs and select appropriate ligands,
we further analyzed the contribution of each residue of 3CL Mpro
when binding with ligands. Figure 3a shows the top 15 residues
with dominant binding attractions for 13b, while Figure 3b
shows the contributions of the binding free energy components
for the top five residues, which are decomposed into van der
Waals energy (vdW), electrostatic energy (Ele), polar solvation
energy (polar) and nonpolar solvation energy (nonpolar). In
Figure 3a, the major binding attractions of 3CL Mpro with 13b

molecule come from the residues MET 165, HIE 163, HIE 164, CYS
145 and ASN 142, which contribute more than −1.5 kcal/mol
to the binding energy. The decomposed energy distribution in
Figure 3b shows that the dominant favorable interactions of the
above-mentioned residues come from the electrostatic energy
(the purple bars). For Chloroquine (Figure S20), the top five
residues (MET 165, GLN 189, MET 49, ASP 187 and ARG 188) also
contribute more than −1.5 kcal/mol and the dominant favorable
interactions of these residues are van der Waals interactions.

Furthermore, MET 165 also forms strong hydrophobic
interaction with 13b and Chloroquine molecules, but not with
Hydroxychloroquine (Figure S17), which makes the former two
bind stronger to Mpro than the latter. When 13b binding with
3CL Mpro, the electrostatic interaction contributes the most for
residues HIE 163 and HIE 164, while the van der Waals interaction
is beneficial to residues MET 165, CYS 145 and ASN 142, as shown
in Figure 3b. In summary, the configuration and environment of
ligands impact significantly on the interaction of ligand and
residue pairs at the binding site, which leads to the binding
free energy difference. In this work, residues MET 165 and HIE
163 in 3CL Mpro make significant contributions when binding
with α-ketoamide inhibitor 13b, in which the van der Waals
interaction and electrostatic interaction play the most important
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Figure 3. Decomposing the binding free energy of key residues. (a) The top 15 residues with dominant binding contributions of 3CL Mpro to 13b. (b) Decomposing the

energy of top five residues and Chloroquine pairs into four energy terms, which are van der Waals interaction (vdW), electrostatic interaction (ele), polar solvation

energy (polar) and nonpolar energy (nonpolar).

roles. The discussions of binding free energy decomposing of
key residues for Chloroquine, Hydroxychloroquine, Remdesivir,
Ritonavir, Beclabuvir, Indinavir and Favipiravir are shown in
Supplementary Information. Such results can be used for
inhibitor molecule design with stronger binding affinity with
3CL Mpro of SARS-CoV-2.

Conclusions
In conclusion, based on the molecular dynamic simulation, we
ab initio determine that for clinically approved drugs, Chloro-
quine, a widely used antimalarial and autoimmune disease drug
possesses the strongest binding affinity with 3CL Mpro. However,
the newly designed inhibitor 13b exhibits stronger binding abil-
ity with 3CL Mpro, thus it is more likely to become a pharmaceu-
tical inhibitor against SARS-CoV-2. The proposed work suggests
that the α-ketoamide inhibitor 13b is expected to be a promising
candidate to treat the infection of SARS-CoV-2 and provides the-
oretical guidance for further design of drug molecular structure
with stronger inhibitory effect with target protein.

Methods
Target identification

In this study, 3CL Mpro was selected as the target of docking re-
search and binding analysis, due to its functional importance in
the life cycle of SARS-CoV-2. The 3D crystal structure of 3CL Mpro
(PDB ID: 6 LU7) was taken from RCSB Protein Data Bank, which
was resolved by Rao’s group [20] with a resolution of 2.16 Å.

Compounds selection

For docking and binding analysis, seven clinically approved
inhibitors (Chloroquine, Hydroxychloroquine, Remdesivir, Rito-
navir, Beclabuvir, Indinavir and Favipiravir) were selected from

previous reported virtual screening works or were found to be
highly effective in the control of SARS-CoV-2 infection in vitro
[6, 12]. And a newly designed α-ketoamide inhibitor (13b) was
selected for comparative analysis, which was a co-crystallized
ligand of the protein-ligand complex (PDB ID: 6Y2F) [19].

Ligand-protein docking

In this study, we applied ligand-protein docking by Rosetta pro-
gram [30–33], which attempted to find the conformation and
relative orientation of each ligand to minimize the Rosetta score
function. To explore the binding pocket, the initial position of
ligand was set near the protein target. After Monte Carlo min-
imization, we obtained 1000 conformations for 3CL Mpro and
ligand and selected the 5% candidates with the lowest energies
according to their energy scores from the ligand-protein contact
structures. The Rosetta total energy score is the weighted sum
of energy terms, including physical forces (e.g. electrostatics),
and statistical terms (e.g. possibility of finding torsion angles
in the Ramachandran space). Then, according to the sorting of
binding energy of ligand and protein, the structure with the
lowest binding energy was selected for MD simulation. The
presented binding energy calculation included van der Waals
energy, electrostatic energy, polar solvation energy nonpolar sol-
vation energy and entropic contribution; therefore, it considered
the core differences between the ligand and protein target and
eliminated some irrelevant noise in the protein variation.

Molecular dynamic simulation

Amber16 software was used to perform MD simulation and bind-
ing energy calculation between drug molecules and 3CL Mpro
[34]. The AM1-BCC charges of drug molecules were computed
by sqm program in amber16. The ff14SB force field [35] and
General Amber force field (GAFF) [36] were used for parameters’
generation of proteins and drug molecules, respectively. The
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ligand-protein complexes were immersed in a rectangular TIP3P
water box (12A), with counterions (Na+ and Cl−) to neutralize
the systems. The energy minimization and MD simulation were
performed with sander program in amber16, during which a
cutoff for nonbonded interactions of 8 Å was used and the time
step was set to 2 fs. After 30 000 steps of energy minimization, the
solvated ligand-protein complex was gradually heated from 0 to
300 K in the NVT ensemble using Langevin thermostat during
100 ps, followed by 100 ps of density equilibration with weak
restraints on the complex (10 kcal mol−1 Å−2). Then 1 ns equi-
libration run was performed in NPT ensemble with temperature
of 300 K and pressure pf 1 atm. At last, we performed a 40 ns
production run in the NPT ensemble for each solvated complex
system with a collection interval of 100 ps, and 300 frames were
collected for further energy calculation. All hydrogen atoms were
constrained with the SHAKE algorithm.

Binding free energy calculation

The binding free energy for small drug molecules and pro-
tein was calculated by the Molecular Mechanics-Generalized
Born Surface Area (MM-GBSA) [22–25] method using MMPBSA.py
script based on the MD trajectory. The MM-GBSA free energy
�Gbind was calculated by the following equation:

�GMM/GBSA = �ETOT − T�Snmode (1)

where �ETOT is the total enthalpy from the generalized Born
model, including internal and solvation energies, and �Snmode is
the entropy calculated by normal mode [37, 38]. Here, 150 frames
were used for �ETOT calculation while 50 frames were used for
�Snmode calculation. The enthalpy �ETOT can be calculated by:

�ETOT = �ETOT−gas + �ETOT−solv = �EvdW + �Eele + �GP + �Gnp (2)

where �ETOT−gas is the gas phase free energy, �ETOT−solv is the
solvation free energy, �EvdW is the van der Waals energy, �Eele is
the electrostatic energy, �GP and �Gnp are the polar and nonpolar
solvation free energies, respectively. The binding free energy
�Gbind was determined by:

�Gbind = �Gcom + �Glig + �Grec (3)

where �Gcom, �Glig and �Grec were MM/GBSA free energies, cor-
responding to complex, ligand and protein target, respectively.

Key Points
• Ab initio simulation is used to investigate the

inhibitory ability between eight potential clinical
pharmaceutical molecules and 3CL hydrolase in SARS-
CoV-2.

• Theoretical calculation demonstrates that the α-
ketoamide 13b is the most promising inhibitor for
SARS-CoV-2, while Chloroquine is the best among the
clinically approved drugs.

• The MET 165 and HIE 163 contribute the most based
on residual energy decomposition analysis.
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