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Traditionally, the key step before decoding motor intentions from cortical recordings is

spike sorting, the process of identifying which neuron was responsible for an action

potential. Recently, researchers have started investigating approaches to decoding

which omit the spike sorting step, by directly using information about action potentials’

waveform shapes in the decoder, though this approach is not yet widespread.

Particularly, one recent approach involves computing the moments of waveform features

and using these moment values as inputs to decoders. This computationally inexpensive

approach was shown to be comparable in accuracy to traditional spike sorting.

In this study, we use offline data recorded from two Rhesus monkeys to further

validate this approach. We also modify this approach by using sums of exponentiated

features of spikes, rather than moments. Our results show that using waveform feature

sums facilitates significantly higher hand movement reconstruction accuracy than using

waveform feature moments, though the magnitudes of differences are small. We find that

using the sums of one simple feature, the spike amplitude, allows better offline decoding

accuracy than traditional spike sorting by expert (correlation of 0.767, 0.785 vs. 0.744,

0.738, respectively, for two monkeys, average 16% reduction in mean-squared-error),

as well as unsorted threshold crossings (0.746, 0.776; average 9% reduction in

mean-squared-error). Our results suggest that the sums-of-features framework has

potential as an alternative to both spike sorting and using unsorted threshold crossings,

if developed further. Also, we present data comparing sorted vs. unsorted spike counts

in terms of offline decoding accuracy. Traditional sorted spike counts do not include

waveforms that do not match any template (“hash”), but threshold crossing counts do

include this hash. On our data and in previous work, hash contributes to decoding

accuracy. Thus, using the comparison between sorted spike counts and threshold

crossing counts to evaluate the benefit of sorting is confounded by the presence of hash.

We find that when the comparison is controlled for hash, performing sorting is better than

not. These results offer a new perspective on the question of to sort or not to sort.

Keywords: spike sorting, decoding, neuroprosthetics, brain–machine interfaces, brain–computer interfaces

INTRODUCTION

The traditional signal processing chain for cortical, penetrating-electrode brain–machine interfaces
(Nicolelis, 2003; Bensmaia and Miller, 2014) consists of spike (action potential) detection, spike
sorting, and decoding using sorted spike counts or spike times. The spike detection step finds
time windows in the recorded voltage time series which are likely to contain action potentials.
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These time windows are then passed to a spike sorting algorithm,
which uses the shape of the voltage vs. time curves (waveforms)
in these windows to determine the identity of the neuron which
emitted the spike (Wheeler and Heetderks, 1982; Lewicki, 1998;
Gibson et al., 2012). The result of this classification is a neuron
label for some portion, depending on recording conditions, of
detected spikes, along with the time of occurrence measured in
the spike detection step. Those waveforms (“hash”) which do
not sufficiently match the waveforms of neurons believed to be
near the electrode are traditionally discarded as they may be
contaminated with noise or consist of action potentials from
many neurons mixed together. The labeled spike times are then
fed to the decoder for estimation of motor intention or other
variables of interest. Point process decoders use spike times
directly, while decoders operating on instantaneous firing rate
will estimate this firing rate using spike counts in small temporal
windows, computed by “binning;” alternatives to binning exist,
but work similarly well (Cunningham et al., 2009).

One alternative approach to spike sorting followed by
decoding is to decode using (features of) spike waveforms
directly. Several studies have used this approach (Chen et al.,
2012; Kloosterman et al., 2014; Todorova et al., 2014; Deng
et al., 2015; Ventura and Todorova, 2015). Particularly, Ventura
and Todorova (2015) proposed an innovative, computationally
efficient method for incorporating waveform information in
linear decoders. In this approach, features on each waveform are
calculated. Then, the first p moments of these features for all
spikes occurring within a time bin are calculated. This time bin
can be the same size as that used for estimating instantaneous
firing rate. These p moments are used, along with the threshold
crossing count (a count of all detected spikes regardless of neuron
label), as inputs to linear decoders such as the Kalman filter or
Wiener filter. Ventura and Todorova show that this approach is
comparable in accuracy to traditional spike sorting followed by
decoding on binned spike counts.

In this study, we wanted to test Ventura and Todorova’s
approach on a larger set of offline data from two Rhesusmonkeys.
We also propose a modification to their approach. Instead of
computing moments of features, which compute expectations,
we compute the sum of the features (taken up to the p-th power).
This change basically omits a division by the threshold crossing
count. We show that this approach, when used with the spike
amplitude, allows for better decoding accuracy than traditional
sorted spike counts. We also show that using the sum instead of
themoment results in significantlymore accurate offline decodes,
though the magnitude of differences was not large. We then
analyze some design choices for the waveform feature decoding
approach.

We also contribute data toward the question of whether spike
sorting is beneficial (Stark and Abeles, 2007;Won, 2007; Ventura,
2008; Fraser et al., 2009; Chestek et al., 2011; Smith and Paninski,
2013; Todorova et al., 2014; Christie et al., 2015; Perel et al., 2015;
Ventura and Todorova, 2015).We confirm previous findings that
the hash should not be discarded, as it substantially increases
decoding accuracy when included along with sorted spike counts
(Todorova et al., 2014; Christie et al., 2015; Oby et al., 2016).
Since sorted spike counts traditionally do not include hash,

while threshold crossing counts do include hash, a comparison
between these two methods is actually comparing two factors:
presence of hash and use of spike sorting. We thus decided to
systematically examine all four combinations of these two factors.
This approach offers a new perspective on the debate within
the community regarding whether spike sorting is beneficial.
Previous studies comparing sorted spike counts (without hash) to
threshold crossing counts were mixing the effects of two factors,
so depending on the relative influences of these factors, results
varied. In our data, when comparisons aremade by changing only
the sorting factor, the results favor spike sorting.

METHODS

Moments of Waveform Features
Using features, such as amplitude or width, computed on
spike waveform shapes as input for decoding is an intriguing
alternative to using counts of sorted spikes. For decoders which
operate on binned data, i.e., uniform time intervals in which
more than one spike may occur, one challenge of applying this
approach is the question of how to aggregate the features of all the
spikes which were detected in a time bin, as the number of spikes
in the time bin varies. The theoretical contribution by Ventura
and Todorova (2015) is to show that one solution is to compute
moments of the features:

W
p
t =

1

at

∑

i

(

f (si)
)p
, (1)

whereW
p
t is the vector of sample p-th rawmoments of waveform

features in time bin t, at is the number of putative spikes (or
threshold crossings) detected in time bin t, i indexes over these
spikes, si is a single putative spike, the function f( ) computes a
waveform feature vector from a spike, and the exponential on
the right hand side is performed element-wise. In this section,
we show that using sums is another way of aggregating waveform
feature values.

We consider a single recording channel, with K neurons, at the
time instant of recording a new threshold crossing. The kinematic
variables (or other variables to be decoded) at the time are
represented by the vector x. We assume each neuron’s waveforms
do not change with time or x, and so the distribution of the
features computed from its waveforms is stationary. Letµ

p
j be the

vector of the p-thmoments of the waveform features for neuron j.
For example, if we have one feature, the spike amplitude, then µ1

j

is the mean spike amplitude of neuron j. Let λj(x) be the linear
tuning function of neuron j, which gives the probability that a
threshold crossing is a spike from neuron j (as opposed to other
neurons or noise), given the kinematics. Let τ (x) be the fraction
of threshold-crossings which are real spikes, as opposed to noise.
Note that τ (x) =

∑

j λj (x). Let πj (x) be the probability that any
one real spike is produced by neuron j, given the kinematics x. So
πj (x) = λj (x) /τ (x), and

∑

j πj (x)= 1.
Now, let W be a vector random variable representing the

feature values of a new threshold crossing waveform. Ventura
and Todorova show that the p-th moment ofW can be expressed
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as a linear function of the p-th moments of the features for each
neuron and the p-th moment of the features of the noise:

E
(

Wp|x
)

= [1−τ (x)]w
p
0 + τ (x)





K
∑

j=1

πj (x) µ
p
j



 (2)

= w
p
0 +

K
∑

j=1

λj (x)
(

µ
p
j −w

p
0

)

. (3)

Here, w
p
0 is the vector of the p-th moments of the features of the

noise, which is assumed to be zero by Ventura and Todorova.
We can satisfy this assumption by feature engineering, but we
will also see in the following equation that handling a non-zero
w
p
0 is done during parameter fitting. Since the λj (x) are assumed

to be linear in x, and µ
p
j is assumed to not change with x, the

product λj (x)
(

µ
p
j − w

p
0

)

is also linear in x. Thus, we can write

the sample moments in a time bin t as (Ventura and Todorova,
Equation 2.9):

W
p
t = γ

p
0 + GPxt + δ

p
t . (4)

Here, W
p
t is the sample p-th raw moment of waveform features

in time bin t. xt is the vector of kinematics at time t. γ
p
0 and

GP are a vector and a matrix of coefficients, respectively, to
be fitted by linear regression. Fitting γ

p
0 and GP takes into

account any non-zero w
p
0 term. δ

p
t is the residual vector. This

form is similar to the form of encoding models used in Kalman
filter decoders. In those models, the left hand side is typically
a sorted spike count (the observations of the Kalman filter
decoder). In the waveform feature moment decoding framework,
one uses waveform feature moments, along with threshold
crossing counts, as observations of the Kalman filter decoder. The
waveform features of different channels are included as separate
observations. For example, for 100 channels and one waveform
feature with three moments, the total number of waveform
feature moments is 300. Combined with 100 threshold crossing
counts, the total number of observations is 400.

Left-multiplying both sides of Equation (4) by the

pseudoinverse of GP,
(

GP
)+

, we can change the equation
to a form similar to the Wiener filter model, showing that we can
use waveform feature moments as input to the Wiener filter as
well:

γ′
p
0+
(

GP
)+

W
p
t+δ′

p
t = xt . (5)

Here, γ′
p
0 = −

(

GP
)+

γ
p
0 and δ′

p
t = −

(

GP
)+

δ
p
t are new constant

vectors and residual vectors, respectively. In practice, we fit the

coefficients by regressing the linear model with W
p
t as predictor

and xt as target values, instead of using
(

GP
)+

as coefficients.

Sums of Waveform Features
We note that the sums of the p-th power of the features can also
be expressed in a similar manner as the p-th moments of W (as

in Equation 3):

∑

W
p
t = atw

p
0+





K
∑

j=1

cj (x) (µ
p
j −w

p
0)



+ǫ
p
t , (6)

where cj (x) is the expected spike count of neuron j in a time
bin as a function of the kinematics x, i.e., the tuning function,
and ǫ

p
t is the residual vector, which we assume to be normally

distributed. We obtain Equation (6) from Equation (3) by
multiplying both sides by the count of threshold crossings. Like
Ventura and Todorova, we assume w

p
0 = 0. This assumption can

be thought of as assuming there are no noise waveforms: every
putative threshold crossing is a spike. This assumption does not
lead to problems with stationary noise because any such noise can
be modeled as a unit with null tuning. Assuming cj (x) (µ

p
j − w

p
0)

is a linear function of x, we see Equation (6) has a similar form as
Equation (4), allowing similar use of sums of waveform features
as moments of waveform features in the Kalman filter and the
Wiener filter.

An advantage of using the sum approach is that the sum
naturally increases with the number of spikes in a bin, and so
it may be used alone, without augmenting threshold crossing
counts, as input to decoders. We discuss other advantages of the
sum approach in Section Moment vs. Sum in the Discussion.

Features
In this study, we tested several simple features of waveforms for
use in the waveform feature decoding framework. While it is
possible to use complex features, such as the difference from a
waveform template, we wanted to avoid features requiring much
computation. We used the following features:

F1: Spike amplitude, i.e., voltage difference between peak and
trough.

F2: Peak-to-trough-time, i.e., the time difference between the
peak and trough (also called spike width).

F3: Trough, i.e., minimum voltage of the waveform.
F4: Peak, i.e., maximum voltage of the waveform.

When no spikes are recorded in a time bin, the feature values
are set to zero (like Ventura and Todorova). Except for feature
F4, the others are similar to the features chosen by Ventura and
Todorova.We compared the different features used one at a time,
and also with the first three features together, similar to Ventura
and Todorova.

Methods for Comparisons
For the main analysis of overall offline decoding accuracy using
waveform features, we compared the following spike data pre-
processing methods:

F∗_moment+TC: First three moments (no cross-moments)
of features combined (by concatenation) with the threshold
crossing count. The ∗asterisk indicates which features are used,
e.g., F123_moment uses the features F1, F2, and F3. This is the
method proposed by Ventura and Todorova. Total count of
decoder inputs per channel isM · 3+ 1, whereM is the number
of waveform features.
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F∗_moment: Similar to F*_moment+TC, but without the
threshold crossing count. This pre-processing approach was
not proposed by Ventura and Todorova and is not expected
to do well because the moments do not directly capture the
instantaneous firing rate, but we include it for completeness of
comparison. Total count of inputs per channel isM · 3.
F∗_sum: Sums of features, sums of their squares, and sums of
their cubes. This is our proposed method. Total count of inputs
per channel isM · 3.
F∗_sum+TC: Similar to F*_sum, but augmented with threshold
crossing counts (by concatenation). We believe the threshold
crossing counts are redundant when using sums, but we include
this method for completeness of comparisons. Total count of
inputs per channel isM · 3+ 1.
Sorted: Spike counts from spike sorting by sum-of-squared-
differences template matching, using experimenter created
templates. Online spike sorting using these templates was
performed by the Omniplex recording system. Hash are not
included. Total count of inputs per channel is K, where K is the
number of units decided by the experimenter.
Threshold crossing (TC): The count of all threshold crossings.
Total count of inputs per channel is 1.
Sorted+hash: Similar to Sorted, except that the count of
putative waveforms not matching any template is included (by
concatenation) as a multiunit. Total count of inputs per channel
is K+ 1.
Merged: Sorted spike counts merged together, undoing the
spike sorting, but not including hash. This can be seen as
threshold crossing counts without hash. Total count of inputs
per channel is 1.

A flowchart depicting the steps in signal processing for the
methods we tested is shown in Figure 1A. Figure 1B illustrates
the process of calculating waveform amplitude (F1) sum, up
to the 3rd order, for one channel at one time bin. The full
observation vector for a Kalman filter decoder at one time bin
would consist of the three numbers in rectangles calculated
separately for each channel. As a default, we set the number of
moments or order of exponentiation (maximum value of p) to
three, without using cross-moments for moment calculations.
However, we also explore the effect of changing the order of
exponentiation.

To compare the methods, we used them in combination
with standard decoders to make offline reconstructions of
previously recorded data. That is, we decode previously recorded
neural activity, collected while monkeys moved their hands,
into movement intentions and scored the methods by how
well the decoded movements match the actual recorded hand
movements. We use two standard decoders from the field.
First is a position-velocity Kalman filter (Wu et al., 2006),
with zero temporal offset between neural data and kinematics.
This decoder used the standard linear encoding model where
hand position and velocity (two dimensions each) comprise
the kinematic variables. Second, we use a 3-tap Wiener filter
(Carmena et al., 2003) to decode position and velocity. We
used a small number of taps to reduce risk of over-fitting.
Both filters used 100ms bins, and moments or sums of

FIGURE 1 | (A) Flowchart of signal processing. (B) Example waveform

amplitude sum computation, up to 3rd order, for one channel and one time

bin. Inputs to the decoder are in the blue rectangles. Values are normalized to

unit variance before input into the decoder. (C) Illustration of data collection

setup. A Rhesus monkey controlled a cursor with a joystick in its right hand to

complete a center-out reaching task. Extracellular signals were recorded from

left primary motor cortex using an implanted 96 channel Utah silicon electrode

array.

features were computed with this same bin size. All input
to the decoders were normalized to be zero mean and unit
variance. For waveform features, this happens after the sum
or moment computation. The mean and variance needed for
normalization were computed on all bins of the training
data.

Animal Surgeries and Experiments
Neural and kinematic data were collected from two adult male
Rhesus monkeys (Macaca mulatta) each implanted with one 96-
channel Utah silicon electrode array (BlackrockMicrosystems) in
the left primary motor cortex over arm and hand representation
areas (Li et al., 2016). All surgical procedures were in compliance
with the National Institutes of Health Guide for the Care
and Use of Laboratory Animals and were approved by the
Institutional Animal Care and Use Committee of Beijing Normal
University. Surgery was performed under sterile conditions
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following standard Utah array implantation procedures. Arrays
were implanted∼4mm anterior of the central sulcus, at∼15mm
left of the midline. The Utah array for monkey B (11 kg, 6
years age) had 1.0mm long electrodes, while the Utah array for
monkeyM (8 kg, 4 years age) had 1.5mm long electrodes. For
more details, see Li et al. (2016).

Monkeys were trained to perform a center-out reaching task
on a computer screen by using their right hands to control
the computer cursor via a joystick (Figure 1C). The position
of the joystick linearly mapped to the position of the cursor.
The behavioral task consisted of cursor movements to center
and peripheral targets (5 cm diameter) in alternation. Peripheral
targets appeared at random locations equidistant from the center
target location (radius varies per session, 8–10 cm). The center
of the cursor had to be held within the target for a hold time
(500ms) to successfully complete the trial. Task logic, kinematic
data collection, and experimental control were performed by a
custom software suite (BMI3, courtesy of the Nicolelis Lab, Duke
University).

Neural signals were recorded using an Omniplex (Plexon Inc.)
128-channel recording system in an electromagnetically-shielded
room. Signals were amplified (up to 8,000x) and digitized (16 bit,
40 kHz) and processed online by the Omniplex system before
being sent to the data acquisition computer. This processing
included threshold-based spike detection (threshold set by
experimenter with the goal of maximizing number of sorted
units, including multiunits, mean thresholds given in Section
Spike Sorting in the Results) and spike sorting using templates
created by the experimenter. Both well-isolated single units and
multiunits were sorted and used without distinction. The unit
labels from spike sorting were used, or ignored, depending on
the method, in our offline analysis. We aggressively spike sorted,
preferring to differentiate groups of waveforms into more units
when the choice was not obvious.

Analysis Methods
We performed all decoding and analysis offline. To make
reconstructions of motor activity, we split the neural and
kinematic data into training and testing portions and performed
cross-validation. For Kalman filter reconstructions we used seven
folds, and for Wiener filter reconstructions we used two folds,
due to the computational expense of fitting the filter. We fitted
parameters of the Kalman or Wiener filters using ordinary least
squares (OLS) linear regression. We chose OLS because we did
not want the performance trends to be affected by tuning of
regularization parameters. Also, we believe plain least squares
is fair because it has a built-in penalty for methods with more
features (by over-fitting). An ideal sparsity-based or regularized
parameter fitting procedure could decide which features are
relevant, but then the optimal strategy for increasing accuracy
would be to throw every imaginable feature at the decoder. This
route of analysis would not give us informative results about how
features and methods compare.

Accuracy of reconstructions was measured using primarily
two metrics, Pearson’s correlation coefficient and signal-to-noise
ratio of decoding. The correlation coefficient was calculated
between the reconstructed hand movement position or velocity

time series (in each axis separately) and the actual hand
movement position or velocity time series, as recorded by the
joystick. Then, the correlations from the two axes were averaged.
Signal-to-noise ratio was computed using this equation:

SNRdecoding = 10 · log10

(

∑

t

(

jt − j
)2

∑

t

(

jt − rt
)2

)

, (7)

where jt is the joystick position or velocity in one axis at time
t, j is the mean value, rt is the reconstructed value at time t,
and SNRdecoding is in decibels (dB). The SNR of the two axes
were then averaged.We include the SNR alongside the traditional
correlation coefficient since it measures errors in scale and offset
and does not saturate. It can be thought of as the normalized
inverse of the mean-squared-error with a log transform. We
also used mean-squared-error in one analysis so as to have the
same metric as Ventura and Todorova. We average across cross-
validation folds, for one accuracy value per recording session.

For quantifying the quality of cortical recordings, we
computed the signal-to-noise ratio of recording, which measures
the size of spikes compared to the size of the background noise:

SNRrecording = 20 · log10

(

P

SD

)

, (8)

where P is the mean peak-to-trough height of spike waveforms
sorted on the channel, SD is the standard deviation of the noise
on the channel (when no spikes are present), and SNRrecording is
in decibels (dB).We calculate SNR of recording as averages across
channels for each session.

We tested for significant differences using paired, two-tailed
sign tests with significance level α = 0.05. In most of the
analysis, the pairs of methods compared were pre-planned,
but in exploratory analysis we used correction for multiple
comparisons: the Holm-Bonferroni method. We computed up
to 16 numbers or measurements for each spike processing
method (2 monkeys × 2 filters {Kalman, Wiener} × 2 variables
{position, velocity} × 2 metrics {CC, SNRdecoding}), which can
be viewed as 16 experiments. All of these measurements are
tabulated for completeness. For some analyses we only computed
a subset of these measurements for the sake of speed. The
trends in the measurements were generally consistent, with no
interesting deviations. In the Results Section and figures, we show
the correlation coefficient of Kalman filter reconstructions of
velocity. We do this to reduce clutter and focus the analyses.
These numbers were representative of the trends in all the
measurements, and the position-velocity Kalman filter, velocity
control, and evaluation by correlation coefficient are commonly-
used in this field.

We analyzed data from 47 recording sessions from monkey
B and 28 recording sessions from monkey M, chosen from all
available data by the criteria of: (1) free from large recording noise
or artifacts, (2) dates of recording have roughly equal-length
time gaps in between, with the intention of sampling a range of
recording quality. Data used from sessions ranged from 5.46 to
8.33min in length (mean 8.24). In terms of trials of the center-
out task, the data analyzed were 131–199 trials in length (mean
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197). Data from monkey B were collected 10–184 days post-
implantation, and data from monkeyM were collected 15–168
days post-implantation.

RESULTS

We computed the offline reconstruction accuracies for two
monkeys, for the Kalman and Wiener filters, for position and
velocity, and using correlation coefficient and signal-to-noise
ratio as metrics, for a total of 16 mean values per method. The
results are tabulated in Table 1 as mean ± SEM. In the results
below we focus on the Kalman filter velocity reconstruction
accuracy as measured by correlation, as this is a commonly-used
decoding approach. The trends in the other measurements were
similar.

Sum of Waveform Amplitude
In this study, we wanted to gather more data about the potential
efficacy of using waveform features for motor decoding as
an alternative paradigm for brain-machine interfaces. We also
wanted to compare our proposed modification of using sums
of features instead of moments. We were expecting waveform
feature decoding to not significantly differ from decoding by
sorted spike counts, consistent with the results from Ventura and
Todorova (2015).

Figure 2A plots the Kalman filter velocity reconstruction
accuracy as measured by correlation when using sorted spike
counts (sorted), threshold crossings (TC), and sum of the
waveform amplitude feature (F1_sum) as pre-processing. In this
measure, F1_sum had mean r-values of 0.767, 0.785 (monkey
B, M), sorted had mean r-values of 0.744, 0.738, and TC had
mean r-values of 0.746, 0.776. The mean correlation (across all
measures using correlation) and mean SNR (across all measures
using SNR) are given at the bottom of Table 1. We were surprised
to find that using the waveform amplitude sums for decoding
actually resulted in significantly higher correlation than that
when using sorted spike counts or threshold crossings (P-values
in Supplementary Table A), even though the magnitudes of
differences were small.

We were curious whether waveform feature decoding was less
robust to recording quality degradation as compared to decoding
from sorted units. We regressed (F1_sum − sorted), as the
dependent variable vs. the quality of recording (signal-to-noise
ratio of recording), as the independent variable. The correlations
were nominally positive but not significant (monkey B: p =

0.0669, slope = 0.0088, R2 = 0.0727; monkey M: p = 0.322,
slope = 0.0021, R2 = 0.0377; Figures 2B,C). This suggests that
amplitude sum was not more sensitive to recording quality than
template-based spike sorting.

Comparison to Previous Work
We compared using moments of waveform features (augmented
by threshold crossing counts) vs. using sums of waveform
features (Figure 3A, p-values in Supplementary Tables B,C).
Decoding using F123_sum resulted in significantly higher
correlation compared to decoding using F123_moment+TC.
Decoding using F1_sum (amplitude sum) resulted in

FIGURE 2 | (A) Offline reconstruction accuracy comparison of amplitude sum

(F1_sum) with traditional methods. Correlations of velocity reconstructions via

Kalman filter are plotted. Error bars indicate ± SEM. (B) Differences in

accuracy between F1_sum and sorted spike counts regressed over

signal-to-noise ratio of recordings, showing relative sensitivity of F1_sum

performance to recording quality. Each data point is a session. Line is best fit

linear trend. Monkey B shown. (C) Same for monkey M. **p < 0.001;

***p < 0.0001.

significantly higher correlation compared to decoding using
F1_moment+TC. Though significant, the magnitudes of
differences were small.

We performed further analysis with the amplitude
feature alone. To use the same metrics as Ventura and
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Li and Li Sums of Waveform Features

FIGURE 3 | (A) Offline reconstruction accuracy comparison between moment

and sum. Correlations of velocity reconstructions via Kalman filter are plotted.

Error bars indicate ±SEM. (B) For comparison to Ventura and Todorova,

accuracy was also measured in mean-squared-error. Smaller values are better.

*p < 0.05; **p < 0.001; ***p < 0.0001.

Todorova (2015), we computed the mean-squared-error (MSE)
on the Kalman filter decoded velocity. Our F1_moment+TC
condition is the same as their model 1. Reconstruction accuracies
in MSE, efficiency relative to TC, i.e., MSE(TC)/MSE(∗), and
CC are tabulated in Table 2, and MSE-values are plotted in
Figure 3B. Significance testing (p-values in Supplementary
Table C) indicated that F1_moment+TC was significantly better
than sorted and threshold crossing for both the correlation
and MSE measures (consistent with their findings). Testing
also showed F1_sum was significantly better than sorted and
threshold crossing for both the correlation and MSE measures.
F1_sum was significantly better than F1_moment+TC in the
MSE measure.

Feature Comparison
We next compared the four waveform features under the sum
paradigm. Each feature and its powers up to the 3rd order were
summed and usedwithout threshold crossing counts.Table 3 and
Figure 4A show the resulting reconstruction accuracy. For this
analysis, we compared only Kalman filter position and velocity
reconstruction accuracy, as measured by correlation coefficient,
and plot only the velocity results.

The features ranked by average correlation (average of
position and velocity), from best to worst, were: (1) amplitude
(F1_sum), (2) peak voltage (F4_sum), (3) trough voltage
(F3_sum), and (4) peak-to-trough-time (F2_sum). Significance
testing results and p-values corrected using the Holm-Bonferroni
method are given in Supplementary Table D. Amplitude (F1) was
significantly better than peak-to-trough-time (F2), trough (F3),
and peak (F4), but generally differences were small.

Order of Exponentiation
We next compared performance between different orders (p) of
the waveform features. We raised features to the first, second,
third, or fourth power before summation, analogous to using
the first one, two, three, or four moments. Note that the 2nd
order condition includes the features raised to the 1st power;
the 3rd order condition includes the features raised to the 1st
and 2nd power, and so on. For this analysis we used features F1
(amplitude), F2 (spike width), and F3 (trough). Table 4 shows
the resulting Kalman filter position and velocity reconstruction

TABLE 2 | Comparison with previous work.

Sorted Sorted

+hash

TC F1_moment F1_moment

+ TC

F1_sum F1_sum+TC

BVKM 6.193 ± 0.265

(0.973)

5.665 ± 0.213

(1.063)

6.023 ± 0.236

(1)

7.061 ± 0.266

(0.853)

5.782 ± 0.226

(1.042)

5.592 ± 0.223

(1.077)

6.000 ± 0.417

(1.004)

MVKM 6.689 ± 0.220

(0.897)

5.773 ± 0.201

(1.040)

6.002 ± 0.217

(1)

6.906 ± 0.230

(0.869)

5.814 ± 0.225

(1.032)

5.756 ± 0.212

(1.043)

5.764 ± 0.207

(1.041)

BVKC 0.744 ± 0.010 0.768 ± 0.009 0.746 ± 0.011 0.695 ± 0.012 0.758 ± 0.009 0.767 ± 0.009 0.760 ± 0.011

MVKC 0.738 ± 0.008 0.783 ± 0.007 0.776 ± 0.007 0.719 ± 0.006 0.781 ± 0.006 0.785 ± 0.006 0.783 ± 0.006

Entries show mean ± SEM of decoding accuracy. Numbers in parentheses indicate efficiency relative to TC, i.e., MSE(TC)/MSE(*). Each column is a method. Each row is an accuracy

measure, with the following name code: first letter, monkey {B,M}; second letter, kinematic variable {position, velocity}; third letter, filter {Kalman}; last letter, metric {correlation,

mean-squared-error}. MSE units are (cm/s)2, with smaller values better. Larger relative efficiencies are better.
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Li and Li Sums of Waveform Features

TABLE 3 | Mean ± SEM of decoding accuracy when using different features.

Amplitude Peak-to-

trough-time

Trough Peak

BPKC 0.853 ± 0.009 0.813 ± 0.011 0.844 ± 0.010 0.846 ± 0.009

BVKC 0.767 ± 0.009 0.733 ± 0.011 0.762 ± 0.010 0.760 ± 0.010

MPKC 0.883 ± 0.006 0.869 ± 0.007 0.864 ± 0.010 0.878 ± 0.006

MVKC 0.785 ± 0.006 0.770 ± 0.007 0.769 ± 0.009 0.781 ± 0.006

Each column is a method, each row is an accuracy measure, with the following name

code: first letter, monkey {B,M}; second letter, kinematic variable {position, velocity}; third

letter, filter {Kalman}; fourth letter, metric {correlation}.

accuracymeasured by correlation coefficient, and Figure 4B plots
the velocity accuracy.

The accuracy was very similar amongst the orders. The
ranking of average correlation (average of position and velocity)
from best to worst was: (1) 2nd order, (2) 4th order, (3) 1st
order, and (4) 3rd order. Holm-Bonferroni-corrected significance
testing results and p-values are tabulated in Supplementary
Table E.

Raw vs. Central Moments
Ventura and Todorova used raw moments in their design (the
above analyses all used raw moments). We were curious if using
central moments, instead of raw moments, could improve the
performance of waveform feature moments. To be specific, when
computing raw moments, one does not first subtract the mean
value:

rawp = E
[

Wp
]

, (9)

where p is the order of the moment. When computing central
moments (of order 2 and above), one first subtracts the mean
value:

centralp = E
[

(W−E [W])p
]

. (10)

To avoid giving the decoder garbage values, for the 1st
order central moment, we used the 1st order raw moment.
We compared raw and central moments of features F1
(amplitude), F2 (spike width), and F3 (trough) of order 3,
without cross-moments, and both with and without including
threshold crossing counts. Kalman filter position and velocity
reconstruction accuracies, as measured by correlation, are
tabulated in Table 5, and velocity reconstruction correlation
values are plotted in Figure 4C.

Significance testing (p-values in Supplementary Table F)
indicated that raw moments without TC were significantly better
than central moments without TC, and raw moments with TC
were also significantly better than central moments with TC.

Spike Sorting
We compared decoding using sorted spike counts vs. unsorted
counts, a long-running question in the field. Spike sorting
typically rejects threshold crossings which do not match
any unit’s template or criteria. However, since these hash
waveforms may be multiunit waveforms or single-unit

FIGURE 4 | (A) Comparison between waveform features under sum

approach. Correlations of velocity reconstructions via Kalman filter are plotted.

Error bars indicate ±SEM. (B) Comparison between orders (degree to

exponentiate feature values) of sums. (C) Comparison between raw and

central moments. *p < 0.05; **p < 0.001; ***p < 0.0001.

waveforms contaminated with noise, they may potentially
help decoding. Todorova et al. (2014) found that including
(concatenating) the count of this hash improved the decoding
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Li and Li Sums of Waveform Features

TABLE 4 | Mean ± SEM of decoding accuracy when exponentiating features F1,

F2, and F3 to different orders and summing.

Order 1 Order 2 Order 3 Order 4

BPKC 0.838 ± 0.009 0.845 ± 0.009 0.824 ± 0.012 0.846 ± 0.009

BVKC 0.756 ± 0.010 0.756 ± 0.009 0.728 ± 0.012 0.758 ± 0.010

MPKC 0.881 ± 0.006 0.882 ± 0.006 0.871 ± 0.007 0.879 ± 0.006

MVKC 0.785 ± 0.006 0.782 ± 0.007 0.765 ± 0.009 0.779 ± 0.007

Each column is a method, each row is an accuracy measure, with the following name

code: first letter, monkey {B,M}; second letter, kinematic variable {position, velocity}; third

letter, filter {Kalman}; fourth letter, metric {correlation}.

TABLE 5 | Mean ± SEM of decoding accuracy, comparing raw vs. central

moments.

Raw Raw+TC Central Central+TC

BPKC 0.768 ± 0.015 0.822 ± 0.012 0.660 ± 0.027 0.738 ± 0.025

BVKC 0.659 ± 0.015 0.718 ± 0.012 0.580 ± 0.024 0.643 ± 0.023

MPKC 0.804 ± 0.014 0.851 ± 0.012 0.615 ± 0.032 0.699 ± 0.033

MVKC 0.682 ± 0.013 0.740 ± 0.013 0.505 ± 0.028 0.595 ± 0.030

Each column is a method, each row is an accuracy measure, with the following name

code: first letter, monkey {B,M}; second letter, kinematic variable {position, velocity}; third

letter, filter {Kalman}; fourth letter, metric {correlation}.

accuracy of sorted spike counts. We note that when comparing
sorted spike counts without hash vs. threshold crossings,
one is not just comparing the utility of spike sorting, since
the hash is included in threshold crossings but not in the
sorted spike counts. Thus, to properly evaluate the benefit
of spike sorting, we compare sorted spike counts with
hash vs. threshold crossings. We also compare sorted spike
counts (without hash) with a “merged” condition, derived
by merging the units separated by spike sorting, which is
equivalent to threshold crossings which do not include the
hash.

Figure 5 shows Kalman filter velocity reconstruction
results as measured by correlation while Table 1 shows all
measures. Significance testing (p-values in Supplementary
Table G) indicated that sorted+hash was in all 16 measures
significantly better than threshold crossing. Furthermore,
sorted was in all 16 measures significantly better than
merged.

In the (confounded, in our opinion) comparison between
sorted and threshold crossing, 8 of 16 comparisons were
significantly different (in favor of threshold crossing) while
others were not significantly different. The comparisons which
were significant were all from monkey M, and none of the
comparisons for monkey B were significant. The two monkeys’
electrode lengths were different and different experimenters
collected the data, set thresholds, and made templates for
the spike sorting. The mean (across sessions and channels)
spike detection thresholds in our data were −2.84 ± 0.22
and −2.77 ± 0.50 times the noise standard deviation for
monkey B and monkey M, respectively. The mean (across
sessions and channels) signal-to-noise ratios of our recordings

FIGURE 5 | Comparison between sorted and unsorted. Correlations of

velocity reconstructions via Kalman filter are plotted. Error bars indicate

±SEM. Hash are waveforms which do not match any units’ template. Merged

condition is sorted spike counts with units merged back together, equivalent to

threshold crossing counts without hash. ***p < 0.0001.

were 16.0 ± 0.92 and 15.2 ± 2.6 dB for monkey B and
monkey M, respectively. The ± indicate standard deviation
across sessions.

Though not a main point of our study, we found that
sorted+hash was in all measures significantly better than
sorted, replicating Todorova et al. (2014). Threshold crossing
was in all measures significantly better than merged. These
two results show that the useful information in the hash
was more beneficial than the detrimental effects of the
noise in the hash in our recordings and for our threshold
values.

Analysis under More Stringent Spike
Detection Threshold
We wanted to know to what extent our results generalized to a
more stringent spike detection threshold, as our average spike
detection thresholds were less stringent than commonly seen
in the field. Thus, we repeated a subset of the analyses using
a threshold of −4.5 times the noise standard deviation for all
channels. We applied the new threshold by culling spikes which
did not meet the threshold. The spike sorting labels, if applicable,
were not altered.We performed reconstructions with the Kalman
filter and measured accuracy in terms of correlation of velocity
estimates with actual velocities.

Correlation of reconstructions are tabulated in Table 6.
Compared to reconstructions under our original thresholds, the
reconstructions under −4.5 thresholds were all significantly and
substantially less accurate (p-values in Supplementary Table H).
Under −4.5 thresholds, F1_sum was still significantly better
than sorted, but no longer better than sorted+hash and TC.
However, comparing F1_sum under original thresholds vs.
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sorted, sorted+hash, and TC under −4.5 thresholds shows that
F1_sum was significantly better.

Under −4.5 thresholds, F1_sum was still significantly better
than F1_moment+TC. Amplitude was still the best feature
nominally in terms of correlation, though some testing results
were no longer significant.

In terms of sorted vs. unsorted comparisons, under −4.5
thresholds, sorted+hash was still significantly better than TC,
though sorted was not significantly different from merged. The
benefit of including hash was still significant.

DISCUSSION

In this study, we contributed more experimental data toward
validating themoments of waveform features decoding approach.
We proposed a modification of the moments approach which
uses sums, and show it facilitates small, but significant
improvements in offline decoding accuracy. We show that using
the sums of waveform amplitudes to decode offline allows
accuracy which is significantly better than both sorted spike
counts and threshold crossing counts. We compare different
choices of waveform features, different values for the order of
exponentiation, and raw vs. central moments. Lastly, we present
data comparing the use of sorted vs. unsorted spike counts, in
which the presence of hash waveforms is controlled, finding that
sorted spike counts are significantly better for decoding.

Waveform Amplitude Sums
Our results showed that using the sums of waveform amplitude
facilitated decoding that was significantly more accurate than
sorted spike counts or threshold crossing counts, the two
commonly-used approaches for motor decoding. Had our results
shown no significant difference between this new paradigm
and the traditional methods, the new approach would already
be a viable alternative to the traditional methods (for reasons
we discuss below). Our results with two decoders, two output
variables, two accuracy metrics, and two monkeys show a
consistent and significant improvement. Even though the
absolute improvements were small in terms of correlation, in
terms of signal-to-noise ratio of decoding accuracy, an average
improvement of 0.75 dB vs. sorted (see last row of Table 1)
and 0.41 dB vs. threshold crossings correspond to ∼16% and
9% reduction in mean-squared-error, respectively, which are
substantial improvements. Even though threshold crossings and
sorted spikes with hash were better than sums of waveform
amplitude when spike detection was performed with −4.5 noise
standard deviation thresholds, sums of waveform amplitude at
our original spike detection thresholds was still better than both
of these methods at −4.5, so in terms of accuracy, there is little
reason to use the traditional methods with−4.5 thresholds.

The sums of waveform features paradigm offers some
advantages over the spike sorting approach: (1) no templates
or sorting parameters need to be set, an operation which
requires substantial experimenter time or advanced algorithms.
(2) Depending on the details of the sorting algorithm, waveform
features may be less computationally expensive. For example,
compared to template matching on sum-of-squared differences, T
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which is 3·s·K+K floating point operations per waveform, where
s is the number of samples per waveform and K is the number of
units, amplitude sum is 2·s operations per waveform. (3) Instead
of updating sorting parameters to follow changes in waveform
shape or after detecting loss or emergence of neurons, parameters
of the decoder can be updated to capture these changes, using
previously published adaptive methods (e.g., Li et al., 2011). This
approach would combine updates for spike sorting parameters
and decoding parameters into one operation.

One disadvantage for waveform feature decoding is that
emergence of new neurons or loss of neurons cannot be detected
during spike sorting and used as triggers for parameter updates.
This may not matter if decoder parameter updates occur in the
background at all times regardless of spike sorting instability.
Alternatively, a separate monitoring process using spike sorting
can be used to detect such changes. Since such a monitor would
not have to process spikes in real time for decoding, it can operate
intermittently in the background, consuming few computational
resources.

Compared to threshold crossings, the sums of waveform
features paradigm is not faster in execution. However, our work is
fairly preliminary in terms of developing this approach, so there
is much room for improvement, while the threshold crossing
approach is unlikely to be improved any further without also
increasing complexity. From a theoretical view, using only the
threshold crossing count is statistically inefficient, as waveform
shape information is ignored (Ventura and Todorova, 2015).

Moment Vs. Sum
The comparisons between moments+TC and sums show
that sums were significantly better, though the magnitude of
differences were small. The comparison remained the same when
more stringent spike detection thresholds were used. The small
sizes of the differences mean that practically, the difference
between approaches was minor on our data. However, we believe
the sum approach has some theoretical advantages.

First, using sums do not require the inclusion of threshold
crossing counts. This allows lower dimensional input to decoders
and thus reduces the risk of over-fitting. Second, since threshold
crossing counts are not required, this approach has the potential
to be extended: sums of features computed directly from voltage
traces, without detection of spikes. This is a direction of our
future work. Third, we believe the definition of tuning curves
under the sums framework is slightly more intuitive. Under the
sums framework, tuning functions output the expected number
of spikes in the time bin, which is the classic rate coding approach.
Under the moments framework, tuning functions output the
probability that a detected threshold crossing is from the neuron
in question, i.e., a relative activation. The slight awkwardness
with this definition is that this probability depends on the activity
of the other neurons and the amount of noise on the channel, as
probabilities have to sum to 1.

Spike Sorting
We contribute data on a question of interest to the brain-machine
interface community: whether spike sorting is beneficial. This is
often framed as a choice between whether sorted spike counts

are better (Won, 2007; Smith and Paninski, 2013; Todorova
et al., 2014; Perel et al., 2015; Ventura and Todorova, 2015)
or threshold crossing counts are sufficient or even better (Stark
and Abeles, 2007; Ventura, 2008; Fraser et al., 2009; Chestek
et al., 2011; Christie et al., 2015). Though we believe this is
the incorrect question to ask, our data suggest that sorted
spike counts (without hash) and threshold crossing counts are
generally comparable. Our results differed between monkeys
(similar to Christie et al., 2015). Our monkeys had different
length electrodes, and different experimenters specified the spike
detection thresholds and templates for spike sorting. These facts
suggest that whether sorted spike counts or threshold crossing
counts are better for motor decoding depends on the specifics of
the experimental preparation.

We believe the comparison between sorted spike counts and
threshold crossing counts is not the correct way to judge the
merit of spike sorting, since the presence of hash is a confounding
factor. When the presence or absence of hash as a confounding
factor is removed, by comparing sorted spike counts vs. merged
spike counts, or by comparing sorted spike counts with hash vs.
threshold crossings, the benefit of sorting is clear.

The spike detection thresholds we used in the main analyses
were fairly low in absolute value, <3 standard deviations of the
noise, compared to typical values in the field (particularly when
not spike sorting) and the default values seen in commercial
spike acquisition systems. However, our lower absolute threshold
values were likely more optimal for extracting motor intention,
particularly magnitude of intended hand velocity (Oby et al.,
2016). Indeed, our follow-up analyses confirm that our
original threshold values resulted in better reconstructions than
thresholds of −4.5 times noise standard deviation. At the more
stringent −4.5 noise standard deviation threshold, sorted spikes
with hash was still significantly better than threshold crossings,
but sorted was not significantly different from merged.

The noise characteristics of recording setups may differ, so
our results here may not generalize. For example, a recording
setup which picks up many threshold crossing artifacts may not
have a net benefit from including hash. However, our findings
suggest that BMI practitioners who use sorted spike counts
should examine whether including hash waveforms as amultiunit
improves decoding in their experimental preparation.

Related Work
Besides the work of Ventura and Todorova (2015), on which
this work is based, there has been other work using waveform
features for decoding. Chen et al. (2012) and Kloosterman
et al. (2014) used spike waveform features to decode from
hippocampal recordings. Their approach is based on the spatial-
temporal Poisson process, where a Poisson process describes the
spike arrival time and a random vector describes the waveform
features of the spike. Later, Deng et al. (2015) presented a marked
point-process decoder that uses waveform features as the marks
of the point-process and tested it on hippocampal recordings.
This approach is similar in spirit to the spatial-temporal Poisson
process. The primary difference between these approaches and
ours is in the way time is segmented. The spatial-temporal
Poisson process and marked point-process operate on single
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spikes, which requires a high refresh rate and somewhat more
sophisticated Bayesian inference. Our approach works on time
bins, which allow lower refresh rates and compatibility with the
relatively simple Kalman and Wiener filters. However, operating
on time bins requires some way to summarize the waveform
shape information of all the spikes which occurred during the
bin, hence Ventura and Todorova’s moments and our sums.
These statistics entail their own assumptions (linearity of tuning,
stationarity of waveform shape, etc.) and approximations (using
a finite number of moments or sums).

Todorova et al. (2014) decoded motor intent from threshold
crossing counts and the spike amplitude waveform feature.
Their model was non-parametric and fitted using the
expectation-maximization scheme of Ventura (2009). Due to the
non-parametric model, decoding required a computationally-
expensive particle filter. This drawback led to the search for
a more computationally efficient method, the result of which
is the waveform feature moments framework of Ventura and
Todorova (2015).

Also related are earlier work by Ventura on spike sorting using
motor tuning information (Ventura, 2009) and on sorting entire
spike trains to take advantage of history information (Ventura
and Gerkin, 2012). These ideas are similar to waveform feature
decoding in that they also combine spike shape information and
neural tuning, but different in that the goal is spike sorting.

Limitations
One limitation of this study is the use of offline reconstructions.
There is some debate in the field as to whether improved offline

reconstructions always translate into improved online control.
Further work using online decoding comparisons are needed to
fully verify the efficacy of waveform feature decoding.
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