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Learning RNA 
structure 
prediction 
from crowd- 
designed RNAs

RNA molecules designed by 
citizen scientists and probed in 
high-throughput experiments 
highlighted discrepancies among 
RNA folding algorithms in their 
ability to predict RNA structure 
ensembles. These datasets were 
used to train a new algorithm 
that demonstrated improved 
performance in a collection of 
independent datasets, including 
viral genomic RNAs and mRNAs 
probed in cells.

The problem

RNA folding involves the formation of 
Watson–Crick–Franklin base pairs, typi-
cally referred to as secondary structure. 
Since the introduction of the Nussinov al-
gorithm to enumerate RNA base-pairing 
states1, algorithms to predict RNA struc-
tures have been in continuous develop-
ment. Today, RNA structure algorithms 
are workhorses of molecular biology 
and biotechnology, having implica-
tions across scientific and clinical fields 
including gene regulation, therapeutics 
and diagnostics. These algorithms have 
traditionally been evaluated on their 
ability to predict single structures from 
databases of natural RNAs. However, RNA 
molecules can adopt multiple struc-
tures, a fact not captured when scoring 
algorithms using only single predicted 
structures. Being able to predict the com-
plete set of possible molecular structures 
and their relative weights (termed the 
RNA structural ensemble) is paramount 
for using these algorithms in design  
and analysis.

The observation

We asked how a range of RNA second-
ary structure algorithms, varying from 
widely used nearest-neighbor models to 
recent deep-learning-based approaches, 
performed in their ability to predict two 
types of ensemble properties. The first, 
chemical mapping data, measures how 
likely a nucleotide is to be unpaired, aver-
aged over all possible structures. The sec-
ond data source came from equilibrium 
binding constants of synthetic riboswitch 
molecules that had been designed to bind 
a fluorescent protein, and that were syn-
thesized and probed using the massively 
high-throughput RNA-MaP platform2. 
For both types of data — the chemical 
mapping and riboswitch affinity experi-
ments — the thousands of RNA sequences 
had been designed by participants of the 
online RNA design project Eterna3. We 
used these data sources because they 
represent, to our knowledge, the largest 
collections of diverse RNA sequences with 
accompanying structure-related experi-
mental data.

We found that, in both tasks, the pack-
age CONTRAfold4 consistently performed 
best. This was a surprise, as CONTRAfold 
is a model that had its parameters fit by 
maximizing the likelihood of single struc-
tures from a database of natural RNAs. Of 
note, CONTRAfold does not make use of 
biophysical RNA thermodynamics meas-
urements that are typically considered 

the gold standard for understanding  
RNA folding and fluctuation. We noted 
that CONTRAfold used a training  
framework that we hypothesized could 
be updated to ‘learn’ from other data 
sources. With this in mind, we updated 
CONTRAfold’s code to also maximize  
the likelihood of the chemical mapping 
and riboswitch affinity data, hoping to 
further improve its performance on  
these ensemble-averaged observables 
(Fig. 1a). Though the two types of data had 
not been designed to encompass as much 
RNA sequence or structure space as pos-
sible, we found that performing multitask 
training on both these data types resulted 
in a model (which we term EternaFold) 
that demonstrated improved perfor-
mance on a collection of 31 published 
datasets of RNA structure mapping data 
from other groups, including full-length 
RNA genomes and mRNAs probed in cells 
and in viral particles (Fig. 1b).

Future directions

While EternaFold is not built as an artifi-
cial neural network, its training is much 
closer in spirit to modern neural network 
approaches that learn from large data sets 
of crowdsourced image or text5 than to 
classic biophysical approaches for improv-
ing RNA secondary structure prediction 
from lower throughput measurements 
and the intuition of a few human experts. 
In fact, we hope that the EternaFold model 
presented in this work will be readily su-
perseded by new algorithms developed 
with these prediction tasks in mind that 
account for molecule ensemble of all pos-
sible structures.

Important improvements abound for 
future models, including incorporating 
effects of ionic conditions and tem-
perature. Perhaps the most significant 
leap for RNA structure prediction will 
be to incorporate prediction of tertiary 
structure motifs into secondary struc-
ture modelling. Many state-of-the-art 
3D structure prediction and structure 
refinement methods require accurate 
secondary structure predictions as a 
starting point. An end goal of the field 
is to perform end-to-end inference 
from sequence to atomistic structure, 
which training from large collections of 
ensemble-based measurements such as 
these may enable.
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From the editor

“Predicting RNA secondary structure is an 
important problem in biophysics and is also 
crucially important for understanding the 
structure and biological function of diverse 
RNAs. What impressed me immediately about 
this work was how much could be learned 
by comparing the performance of available 
software tools for predicting RNA structures. 
I am also convinced that EternaFold, the 
newly developed prediction tool, enables 
improved prediction for diverse downstream 
applications.” Rita Strack, Senior Editor, 
Nature Methods.

Behind the paper

One of my first conversations with R.D. 
was in front of pages and pages of Eterna 
chemical mapping data that hung in the 
Stanford Biochemistry Department hallway. 
He pointed out eccentricities in these RNA 
data, collected over years of experiments, 
and alluded to a dream of actually inferring 
thermodynamics from these molecules 
designed by the Eterna community — 
molecules with names like “The Nonesuch” 
and “Robot Serial Killer 1.” These datasets 

represented a massive, curiosity-driven, 
community labor of love. An exhilarating 
moment came in testing EternaFold on data 
from the influenza A virus and realizing it 
performed best on this very important RNA. 
We kept testing datasets from other groups to 
see if this was a fluke, including SARS-CoV-2 
genomes (an unexpected test that emerged 
after EternaFold’s development); 31 tests 
later, we concluded the model ought to be 
shared. H.K.W.-S.

Expert opinion

“The manuscript by Wayment-Steele et al. 
performed a rigorous comparison of a diverse 
array of secondary structure prediction 

programs.” Hashim Al-Hashimi, Columbia 
University Irving Medical Center, New York, 
NY, USA.
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Fig. 1 | Multitask training improves prediction of ensemble-averaged base-pairing. a, Schematic of RNA 
data types used in multitask training of the EternaFold algorithm and loss functions used for each data type. 
R.m.s.e., root mean-squared error. b, Example prediction of mRNA for ribosomal protein S27A from HEK293 
cells probed ex vivo, showing that EternaFold unpaired probabilities demonstrate higher correlation (corr.) 
to chemical mapping signal across sequence position than those of top-performing RNA structure prediction 
algorithms. © 2022, Wayment-Steele, H. K. et al.
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	Fig. 1 Multitask training improves prediction of ensemble-averaged base-pairing.




