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The nuclear hormone receptor peroxisome proliferator activated receptor gamma (PPARγ) is an important transcription factor
regulating adipocyte differentiation, lipid and glucose homeostasis, and insulin sensitivity. Numerous genetic mutations of PPARγ
have been identified and these mutations positively or negatively regulate insulin sensitivity. Among these, a relatively common
polymorphism of PPARγ, Pro12Ala of PPARγ2, the isoform expressed only in adipose tissue has been shown to be associated
with lower body mass index, enhanced insulin sensitivity, and resistance to the risk of type 2 diabetes in human subjects carrying
this mutation. Subsequent studies in different ethnic populations, however, have revealed conflicting results, suggesting a complex
interaction between the PPARγ2 Pro12Ala polymorphism and environmental factors such as the ratio of dietary unsaturated
fatty acids to saturated fatty acids and/or between the PPARγ2 Pro12Ala polymorphism and genetic factors such as polymorphic
mutations in other genes. In addition, this polymorphic mutation in PPARγ2 is associated with other aspects of human diseases,
including cancers, polycystic ovary syndrome, Alzheimer disease and aging. This review will highlight findings from recent studies.

Copyright © 2009 Weimin He. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. Introduction

Peroxisome proliferator activator receptor gamma (PPARγ)
is a member of the nuclear hormone receptor superfamily
that transcriptionally regulates genes controlling a variety
of biological functions including cell growth, differentiation,
and metabolism in response to lipophilic hormones, dietary
fatty acids, and their metabolites [1]. Unlike some steroid
hormone receptors such as the estrogen receptor, that
are bound by heat shock proteins and sequestered in the
cytoplasm, PPARγ is constitutively localized in the nucleus
[2], heterodimerizes with the retinoid X receptor (RXR)
[3], and binds to corepressors [4]. Ligand binding results
in a conformational change in the receptor, triggering
dissociation of corepressor complex and recruitment of
coactivator proteins, leading to activation of gene expression
[4].

Human PPARγ gene is located in chromosome 3 and
spans a genomic segment of >150 kb. It consists of 9 exons
(A1, A2, B, and 1–6), from which the two distinct isoforms
of PPARγ mRNA and protein, PPARγ1 and PPARγ2, are
derived through the use of separate promoters and 5′ exons.

PPARγ1 mRNA specie is comprised of exons A1, A2, and 1–
6, and is translated from P1 promoter while PPARγ2 mRNA
is a combination of exons B and 1–6 and is translated from
P2 promoter. The two proteins differ by the presence of
extra 28 amino acids at the NH2-terminus of PPARγ2 [5, 6].
PPARγ is abundantly expressed in adipose tissue, colon and
macrophages while its expression is much lower in skeletal
muscle, heart and other tissues [7, 8]. PPARγ1 is ubiquitously
expressed whereas PPARγ2 expression is restricted to adipose
tissue [9] (Figure 1).

PPARγ plays many functional roles in different organs
and tissues (Figure 2). In vivo and in vitro studies demon-
strate its critical role in regulating adipocyte differentiation
and promoting lipid accumulation in adipose tissue [10–
13]. It is also important for maintaining the viability and
normal function of differentiated adipocytes [14–16]. In
macrophages, PPARγ may enhance foam cell formation and
atherogenesis upon increased uptake of oxidized low-density
lipoprotein (oxLDL) [17, 18] or increases liver X receptor
(LXR)-ATP-binding cassette A1 (ABCA1)-dependent choles-
terol efflux upon pharmacological activation by its agonist
TZDs [19, 20]. PPARγ in macrophages has also been shown
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Figure 1: Domain structure of human PPARγ. AF1, activation
function 1; DBD, DNA binding domain; LBD, ligand binding
domain; AF2, activation function 2.
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Figure 2: Pleiotropic functions of PPARγ in different
organs/tissues.

to be involved in suppression of inflammatory cytokine
production [21, 22] and improvement of insulin sensitivity
[23, 24]. PPARγ in Skeletal muscle critically regulates normal
glucose metabolism in muscle and lipid homeostasis in fat
and the liver [25, 26] while PPARγ in the liver is implicated
in controlling systemic glucose and lipid metabolism [27,
28]. PPARγ also plays roles in regulating bone homeostasis
[29], heart hypertrophy [30, 31], high fat diet-induced
hypertension [32], and urine concentration in the kidney
(Cao et al., unpublished data).

PPARγ is also intimately implicated in regulation of
glucose and lipid homeostasis and insulin sensitivity [33–
35]. Not surprisingly, PPARγ has been identified as the
target for thiazolidinediones (TZDs) [36], a class of synthetic
compounds that improve insulin sensitivity in a variety of
insulin resistant animal models and diabetic patients [33–
35]. This role of PPARγ in affecting insulin action is con-
sistent with many human genetic studies with various single
amino acid mutations, including Pro12Ala, Pro115 Gln,
Cys114Arg, Cyc131Tyr, Cyc162Trp, Val290Met, Pro388Leu,
Arg425Cyc, His477His, and Pro467Leu that are scattered
in activation function domain 1 (AF1), DNA binding
domain (DBD), or ligand binding domain (LBD) of the
receptor [37–45]. These mutations result in either gain-of-
function or loss-of-function of the receptor; human subjects
bearing these mutations show decreased or increased lipid
accumulation in adipose tissue, enhanced insulin sensitivity
or insulin resistance, dyslipidemia, diabetes, and hyperten-
sion [46–50]. Among these, Pro12Ala mutation in PPARγ2
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Figure 3: Effects of PPARγ2Pro12Ala polymorphism on various
aspects of human health. FFAs, free fatty acids, IL-6, interleukin 6.

(PPARγ2Pro12Ala) is the most common. This mutation was
first identified by Schuldiner’s group in 1997 [37], with dif-
ferent ethnic populations showing various allelic frequencies.
Caucasians have the highest frequency (12%), followed by
Mexican Americans (10%), West Samoans (8%), African
Americans (3%) while Chinese have the lowest (1%) [37].
In the last 10 years, extensive studies have been undertaken
to assess the effects of this polymorphism on many aspects
of human physiology (Figure 3). This review will summarize
the effect of this mutation on human health revealed in these
studies.

2. Effect of PPARγ2Pro12Ala on Adiposity

Soon after the identification of Pro12Ala mutation, an inde-
pendent study demonstrates that Ala12 variant is associated
with decreased transactivation function of PPARγ2 and
lower body mass index (BMI) [51]. This finding is consistent
with reduced adipogenic function of the mutant receptor
in 3T3-L1 preadipocytes [52]. However, further studies in
various ethnic populations demonstrate that effect of this
mutation on body mass is more complex. An association
of Ala12 variant with decreased adiposity is confirmed
in diabetic, nondiabetic, or healthy subjects [53–58]. In
studies involving an African American population and a
white American population, this mutation is associated
with lower BMI in African Americans and increased BMI
in white Americans [59, 60], indicating that same genetic
mutation results in different responses in different ethnic
groups. PPARγ2Pro12Ala mutation has been also shown to
enhance weight loss brought about by exercise in offspring
of type 2 diabetic subject [61] or prevent body weight
regain after weight loss [62–64]. However, numerous studies
suggests an association of Ala12 variant with increased
risk of obesity, including studies in ethnic populations
of Mexican Americans [65], male Spanish adults [66] or
Spanish children and adolescents [67], French [68], male
white Italians [69], French Canadians [70], male Brazilians
of European descent [71], native Javanese [72], Uygurs,
Kazaks, Hans (Chinese) [73], and Greek young girls [74].
This association can also be found in nondiabetic and
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nonobese or obese Americans [75], obese Finnish women
[76], overweight Korean female subjects [but not in lean
female subjects] [77] and in Turkish women with gestational
diabetes [78]. In addition, women with the Ala12 allele
have also been shown to gain more weight than women
with Pro12 allele [79]. Despite these, studies in Germans
[80], French [81], Hispanics (Colorado, US) [82], Japanese
[83], Koreans [84, 85] and Polish [86] do not show an
association between Pro12Ala polymorphism and body fat
mass. Meta-analysis of 57 studies on nondiabetic individuals
show that Caucasians with the X (Pro or Ala)/12Ala genotype
is associated with significantly increased BMI, although no
difference can be found in the global population [87]. These
results indicate that a mild change in PPARγ2 transcription
activity has a significant impact on lipid accumulation in
adipose tissue.

It is unclear how a single genetic mutation results
in conflict results in different ethnic populations. Given
the proadipogenic role of PPARγ, it can be expected that
moderate reduction of PPARγ2 transactivation function
results in lower BMI in PPARγ2Pro12Ala carriers. Heteroge-
neous effects of this polymorphic mutation on adiposity
in association studies clearly show that PPARγ regulation
of human adipose tissue physiology is a complex process.
Several studies suggest roles of genetic or environmental
contexts, such as the character of the diet, in shaping the
patterns of associations of Pro12Ala polymorphism with
body fat composition in different human populations. In
at least two studies, ratio of dietary polyunsaturated fatty
acid to saturated fatty acid (P : S ratio) have been shown
to significantly affects body mass in Ala12 allele carriers.
Thus, intake of a diet with higher P : S ratio results in
lower BMI while a food with lower P : S ratio is inversely
associated with BMI in human subjects carrying Ala12
allele [88]. Similarly, intake of monounsaturated fatty acid
also shows such an effect in Ala12 allele carriers [89]. In
another study, total fat and saturated fat intake is positively
correlated with body mass change in Pro12 homozygotes
while Ala12 allele carriers are protected [70]. In addition,
changes in genetic context, such as coexistence of other
polymorphisms, may have a significant impact on the effect
of Pro12Ala polymorphism on body weight composition,
resulting opposite findings mentioned above (flip-flop phe-
nomenon) [90]. For example, either Pro12Ala or G174C
(promoter region) of interleukin 6 (IL-6) shows an effect on
reducing body fat mass or preventing body weight regain
after weight loss and the presence of both variants has an
additive effect [54, 62]. On the other hand, subjects bearing
both Pro12Ala and Trp64Arg of β3-adrenergic receptor (β3-
ARTrp64Arg) have increased risk to obesity when compared
to those carrying only a single mutation in a case-control
study [67] or in a study in dizygotic twins [91], while
subjects with the Ala12 allele become more obese only
when they also carry the Trp64Arg variant in a Mexican
American population [92]. These data suggest complex
interactions between genes that both affect lipid metabolism.
Yet, there is no study thus far to show that the effect of
Pro12Ala polymorphism is negated by mutations in other
genes.

3. PPARγ2Pro12Ala Regulating
Insulin Sensitivity

PPARγ2Pro12Ala has also been found to increase insulin sensi-
tivity in middle-aged and elderly Finns [51] and this finding
is confirmed by subsequent studies in other populations,
assessed by plasma levels of insulin and homeostasis model
assessment of insulin resistance (HOMA-IR) [54, 55, 59, 66,
79, 93–95]. In healthy carriers of the Ala12 allele, second-
phase insulin secretion in response to free fatty acid infusion
or insulin secretion in response to arginine is significantly
decreased compared to subjects with Pro12 genotype [96].
Although increased glucose uptake in skeletal muscle is
observed only in lean but not in obese subjects in Finns
carrying Ala12 allele [97], enhanced insulin sensitivity is
observed in obese children [98, 99] as well as in obese adults
[100, 101]. Even in diabetic patients, Ala12 allele is associate
with lower fasting insulin and increased insulin sensitivity
[102], more significant hypoglycemic effect of exercise
[103], and increased response to TZD treatment [104]. A
population-based study in twins also shows a significant
impact of the Ala12 allele on maintaining glucose tolerance
and insulin sensitivity [105]. Meta-analysis of such studies
confirmed a significantly lower levels of fasting insulin in
subjects with the homozygous Ala12Ala genotype compared
to the Pro12Pro genotype and significantly greater fasting
glucose levels and insulin resistance in obese subjects in the
Pro12Pro group [87]. These findings point to a beneficial
effect of Ala12 variant on systemic insulin sensitivity.

The effect of PPARγ2Pro12Ala polymorphism on insulin
sensitivity can be influenced by dietary fatty acids and/or
physical activity. Intake of monounsaturated fatty acids is
inversely associated with insulin resistance in a Spanish
population with Ala12 allele, especially in those with sig-
nificant obesity [106]. Both dietary P : S ratio and physical
activity have been shown to inversely associated with fasting
insulin concentration [107]. The effect of dietary P : S ratio
on fasting insulin is significant only in physically active,
but not in physical inactive subjects carrying Ala12 allele
[108]. Ala12 allele also interacts with other genes to influence
insulin sensitivity. PPARα Leu162Val allele has been found
to be associated with impaired glucose tolerance and this
deleterious effect of PPARα mutation is neutralized by the
Ala12 variant [109]. Similarly, the Gly > Arg mutation
(Gly97Arg) of the insulin receptor substrate 1 (IRS1) is
associated with a 15% increased risk of type 2 diabetes,
although the difference is not significant [110]. Against this
genetic background, insulin sensitivity is almost twice greater
in carriers of the 12Ala allele than in subjects with Pro12
allele while no such effect of Ala12 allele can be seen on the
Gly97 background [111]. Such a protective effect of Ala12
allele on insulin sensitivity can also be observed in human
subjects carrying both the Ala12 allele and the Lys121Gln
polymorphism of plasma cell 1 (PC-1) glycoprotein [112].
Subjects bearing PC-1Lys121Gln variant show higher levels of
fasting glucose and decreased insulin sensitivity on Pro12
background, whereas this effect of PC-1Lys121Gln variant is lost
on Ala12 background [113]. These results further support
the notion that PPARγ2Pro12Ala polymorphism interacts with
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other genetic mutations to affect systemic insulin sensitivity
and glucose homeostasis.

4. Association of PPARγ2Pro12Ala with
the Risk of Type II Diabetes

A large-scale family-based study shows an association
between Pro12Ala mutation and reduced risk of type 2
diabetes (T2D) [110]. A similar result is obtained in
twins carrying Ala12 allele [105]. However, further studies
clearly show heterogeneous effects of this polymorphism on
predicting susceptibility to the risk of diabetes in various
populations. Resistance to the risk of diabetes has been found
in Ala12 allele carriers compared to Pro12 allele carriers in
ethnic populations as diverse as Japanese [114–116], Korean
[117], Iranians [118], Scotts [119], Danish [120], Finns
[121], French [122], Spanish [106], and American Cau-
casians [123, 124]. On the other hand, Ala12 allele has also
shown to be functional leading to a predisposition to T2D
in populations of Germans [125, 126], Finns [127], Italians
[128], Dutch [129], US Caucasians [130], French Caucasians
[81], British/Irish Caucasians [131], Asian Indians (Sikh)
[132], Parkateje Indians [133], and Arabians [134]. Again,
no such effect of Ala12 on the risk of type 2 diabetes can
be observed in such diverse populations of Italians [135],
Tunisians [136], Qatarians [137], Polish [138], and non-
Hispanic and Hispanic white women [139]. In spite of
such heterogeneity, however, meta-analysis of these studies
indicates that Ala12 carriers have an average of 19% reduced
risk of T2D compared to Pro12 carriers. BMI seems to
be a major factor accountable for the heterogeneous effect
of Pro12Ala polymorphism on the risk for T2D since the
risk reduction is greater when BMI is lower. Risk reduction
is higher in Asians carrying Ala12 allele (35%) than in
Northern Americans and Europeans with the Ala12 genotype
(18% and 15%, resp.) compared to their own Pro12 allele
controls. When adjusted for the BMI of controls, difference
between Asians and Europeans is no longer significant. Even
among Europeans, Northern Europeans carrying Ala12 allele
show significantly reduced risk for T2D (26%) while the risk
reduction in Central and Southern Europeans with Ala12
allele is barely significantly (10%) or is not significant at all
(0%) [140]. These data suggest a generally beneficial role of
Ala12 allele in preventing the pathogenesis of T2D in several
populations with lower body fat mass.

While the heterogeneity between Asians and other
populations is statistically explained by BMI, this is not
the case for the heterogeneity observed in Europeans,
indicating that other factors, including different genetic
and/or environmental background might cause the heteroge-
neous Pro12Ala-related T2D risk in Europeans. Indeed, the
protective role of Ala12 allele against T2D is considerably
affected by dietary lipid levels. In a study in human subjects
from Ethiopia, Benin, Ecuador, Italy, and world populations,
protection against T2D can be observed mainly in popula-
tions where energy from lipids exceeds 30% of total energy
intake [141]. However, lipid composition in the diet is a
significant determination factor since chronic intake of trans

fatty acids and saturated fatty acids predispose to increased
risk of T2D and impaired fasting glucose in Ala12 carriers
than Pro12 carriers [142]. In addition, intrauterine condition
may also determine the risk of T2D in later life. A study
in Dutch population suggests that subjects bearing Ala12
allele are associated with a higher prevalence of impaired
glucose tolerance and T2D when they are prenatally exposed
to famine during midgestation [129]. On the other hand,
Finns carrying Ala12 allele who have smaller body weight
at birth seem to be protected against insulin resistance and
T2D [143]. Again, Pro12Ala polymorphism interacts with
other genetic mutations to affect the risk of developing
diabetes. Subjects with the Ala12Ala allele and Gly972Gly
variant of IRS-1 have significantly higher plasma adiponectin
levels compared to those with the Pro12Pro and Gly972Gly
genotype [144]. In Mexican Americans, subjects with the
Ala12 allele become more obese only when they also carry
the Trp64Arg of Beta-3 adrenergic receptor (β-3ARTrp64Arg)
polymorphism [92]. In a study in dizygotic twin pairs, those
with both β-3ARTrp64Arg and PPARγ2Pro12Ala polymorphisms
show greater BMI, waist to hip ratio, percent of body fat,
and blood glucose [91]. Such interaction between the two
polymorphisms also increases the risk of obesity in children
and adolescents [67]. In a family-based study in Chinese and
Japanese, subjects with both Ala12 allele and the adiponectin
T allele are more insulin sensitive than subjects bearing other
combinations of genotypes [145]. Recently, an interaction
between Ala12 variant and a single nucleotide polymorphism
of PPARδ (rs6902123) has been found to contribute to
conversion from impaired glucose tolerance to T2D [121].
These studies again emphasize the importance of taking into
account of other gene mutations when determining an effect
of Pro12Ala polymorphism on the risk of T2D.

5. Effect on Other Components of
Metabolic Syndrome

The Ala12 allele has been shown to be associated with
reduced prevalence of essential hypertension in Chinese
nonagenarians and centenarian [146]. Ala12 allele carriers
also show lower blood pressure than subjects carrying Pro12
allele [120, 147] and the Ala12 allele is associated with
lower diastolic blood pressure in male, but not in female
subjects with T2D [148]. Furthermore, hypertensive subjects
with lower birth weight or shorter length at birth and
Pro12Pro variant have raised blood systolic blood pressure
[149]. However, others have suggested either a potential
contribution of Ala12 variant to hypertension [115] or
an association of Ala12 allele with higher diastolic blood
pressure in obese patients with T2D [150] while couple of
studies fails to show an association between the PPARγ2
variant and hypertension [151, 152].

Triglyceride (TAG) and cholesterol metabolism may be
regulated by Pro12Ala mutation. Ala12 allele is inversely
associated with blood TAG concentrations in one report [54]
while it has also been found to be associated with a trend
of an increase in TAG and hyperlipidemia in another [152].
This variant has also been shown to be associated with lower
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levels of serum total and nonhigh-density lipoprotein (non-
HDL)-cholesterol in a general population [153], lower low-
density lipoprotein (LDL)-cholesterol in T2D patients [154],
or higher levels of serum HDL-cholesterol in family-based
or population-based studies [155, 156]. however, several
studies also show an association of Ala12 allele with higher
concentration of low-density lipoprotein (LDL)-cholesterol
[68, 157] and lower HDL-cholesterol [70]. Interestingly,
Pro12Ala mutation interacts with body size at birth to mod-
ulate cholesterol metabolism since an association between
increased concentration of serum total, LDL- and non-HDL-
cholesterol and Ala12 allele can be found only in those who
had birth weights below 3 kilograms [158]. In addition,
cholesterol metabolism is also affected by genotype-alcohol
interaction since Ala12 allele carriers consuming alcohol
have higher serum total and HDL cholesterol while the
nondrinkers carrying Ala12 allele show lower serum total
and HDL cholesterol compared with Pro12 homozygotes
[155].

Due to its role in regulating lipid metabolism, Pro12Ala
polymorphism may influence risk of cardiovascular compli-
cations such as atherosclerosis and coronary artery diseases.
Ala12 allele does not seem to affect the risk of acute
myocardial infarction, coronary artery disease, and ischemic
stroke in healthy subjects [159, 160]. In a population with an
increased risk of T2D and cardiovascular disease, however,
improvement in flow-mediated vasodilation and reduction
of serum C-reactive protein (CRP), a risk factor for cardio-
vascular disease, are prominent only in Ala12 allele carriers,
but not in Pro12 homozygotes [161]. Consistently, Ala12
allele carriers have been found to have lower carotid intima-
media thickness [162, 163] and decreased risk of myocardial
infarction [164] in T2D patients. Yet again, studies do show
that Ala12 allele either is associated with increased risk of
myocardial infarction [165, 166], or attenuates the protective
effect of polyunsaturated fatty acids on myocardial infarction
[167], or confers excess hazard of developing cardiovascular
diseases in patients with diabetic nephropathy [168].

As a result of affecting lipid homeostasis and risk of
diabetes, Pro12Ala mutation can be expected to influence
diabetic complications. Notably, Ala12 allele is associated
with decreased risk of developing diabetic nephropathy
compared to Pro12 allele in a case-control study [169]. Ala12
allele carriers also have significantly reduced urinary albumin
excretion than noncarriers and the reduction becomes even
more dramatic along with increased duration of diabetes
[154, 170]. Ala12 variant has also been shown to be
associated with decreased risk of diabetic retinopathy in T2D
patients [171]. These data suggest a protective effect of the
Ala12 allele in relation to complications associated
with T2D.

6. Effect on Polycystic Ovary Syndrome

Central obesity, insulin resistance, and hyperinsulinemia are
typical feature of polycystic ovary syndrome (PCOS) and
significant number of PCOS patients show impaired glucose
tolerance and are in increased risk of developing T2D [172].

Studies show that frequency of Ala12 allele is significantly
reduced in the PCOS group compared with the control
group [173, 174]. Moreover, PCOS subjects carrying Ala12
allele show lower levels of free sex hormones (testosterone,
androstenedione, and dehydroepiandrosterone sulfate) and
reduced luteinizing hormone/follicle-stimulating hormone
ratio compared to PCOS subjects carrying Pro12 allele [174].
Insulin sensitivity, evidenced by fasting insulin and HOMA-
IR, is also significantly improved in Ala12 allele carriers
than in Pro12 allele carriers [174–177]. Even in first-degree
relatives of PCOS subjects, distribution of Ala12 Allele is
significantly reduced compared to Pro12 allele [178] and
fasting insulin and HOMA-IR are lower in first-degree
relatives of PCOS subjects with Ala12 variant compared
to first-degree relatives of PCOS subjects with Pro12 allele
[178].

7. Cellular Mechanism of
PPARγ2Pro12Ala Polymorphism

Since PPARγ2 is expressed only in adipose tissue, how
moderate reduction of PPARγ2 activity in adipose tissue
influences insulin sensitivity, diabetes, and other metabolic
parameters have been studied but not fully elucidated.
Given the role of adipose tissue free fatty acids and
adipokines in regulating insulin sensitivity, the effect of
Pro12Ala polymorphism can be anticipated to be mediated
by changes in these factors. Indeed, subjects with Ala12
allele show lower lipoprotein lipase (LPL) activity [179],
which may result in decreased breakdown of lipoproteins
and hence, reduced plasma FFAs, which is deleterious to
insulin action in skeletal muscle [180]. Consistent with this,
Ala12 allele carriers have lower plasma FFAs, higher adipose
tissue and skeletal muscle blood flow, and greater insulin-
mediated postprandial hormone-sensitive lipase suppres-
sion along with greater insulin sensitivity [181]. Besides,
insulin suppression of lipolysis in adipose tissue is also
increased in lean subjects or in T2D patients carrying
Ala12 allele than in subjects with Pro12Pro allele [182,
183]. However, long-term inhibition of lipolysis will, in
theory, result in increased adiposity (body mass) rather
than lean phenotype in Ala12 allele carriers. Indeed, one
study suggests there is an association between Ala12 allele
and increased body mass [182]. Obviously, this may not be
the true mechanism or may not be the only mechanism
underlying the effect of Pro12Ala. Adipose-derived cytokines
leptin and adiponectin levels have been shown to increase
insulin action [184, 185]. Indeed, Ala12 allele is associated
with higher plasma levels of leptin in Spanish diabetic
women [186]. In comparison, two Japanese population
studies show that Ala12 allele carriers have significantly
lower plasma levels of adiponectin than Pro12 allele car-
riers [187, 188] and another two case-control studies in
either diabetic patients or women with PCOS fail to find
significant change in serum adiponectin levels [189, 190].
Adiponectin does not seem to play a role in increasing
insulin sensitivity in Ala12 allele carriers. Finally, recent
studies suggest that increased oxidative stress in adipose
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tissue is a contributing factor to insulin resistance in obesity
[191] and that insulin sensitization by PPARγ agonists
is mediated, at least in part, by suppressing oxidative
stress in adipose tissue [192]. In adipose tissue-restricted
PPARγ heterozygous mice that show reduction of PPARγ
in adipose tissue and similarly increased insulin sensitivity
as in human subjects carrying Ala12 allele, antioxidant
genes are significantly increased; this may be associated with
increased resistance to chemical-induced oxidative stress
in these animals [193]. Yet, it has not been investigated
whether Pro12Ala polymorphism of PPARγ2 is associ-
ated with changes in oxidative stress in adipose tissue
thus far.

8. PPARγ2Pro12Ala Polymorphism and
Risk of Cancers

PPARγ ligands have been shown to inhibit proliferation
of many tumor cells in vitro and PPARγ may also be
implicated in tumorigenesis in vivo [194]. Although PPARγ2
is exclusively expressed in adipose tissue, genetic variation of
PPARγ2 seems to indirectly affect the risk of several forms
of tumors. The most studied thus far is the association
between Ala12 allele with the risk of colorectal cancer.
The Ala12 variant is inversely associated with incident
sporadic colorectal adenoma, and the effect of this mutation
is especially pronounced in women and those who do
not take nonsteroidal anti-inflammatory drugs [195]. In a
case-control study, Ala12 allele, together with high lutein
intake, low refinery grain intake and a high prudent diet
score, is associated with reduced risk of colon cancer [196].
Interestingly, the same study shows an increased rectal
cancer risk in Ala12 carriers [196]. In another case-control
study, Pro12Pro genotype is associated with increased risk
of colorectal cancer while no such association is observed
among Ala12 carriers [197]. In comparison, there is no
evidence to show a significant association of Ala12 allele
with colorectal cancer in an Indian (Asia) population [198].
In 3 studies related to gastric cancer, Ala12 allele has been
found to be associated with increased risk of gastric cancer
[199–201] and this effect of PPARγ is probably related to
gastric mucosa atrophy and Helipobacteria pylori infection
since the presence of Ala12 allele does not increase the risk
of gastric cancer in H. pylori-negative subjects [199]. In two
studies on prostate cancer, one study finds a 2-fold greater
risk of prostate cancer in Ala12 allele carriers with BMI
above 27.2 kg/m2 compared to those with the Pro12 allele
[202] while the other study fails to notice such an association
[203]. In addition, a marginally significant increase in the
risk of breast cancer is observed in women carrying Ala12
variant [204], but Ala12 allele may decrease the risk of breast
cancer associated with alcohol consumption [205]. Finally,
Ala12 variant is associated with reduced risk of bladder
cancer [206] and renal cell carcinoma [207]. The reason
underlying some of the inconsistent findings is unclear, but
again may reflect a possibility of gene-gene interaction. In
at least one study, Pro12Ala allele interacts with vitamin D
receptor (VDR)/bsm/polyA to increase risk of rectal cancer
[208].

9. Effect on Aging and Alzheimer Disease

The potential role of genetic variability at Pro/Ala loci
of PPARγ2 gene on longevity is studied in a group of
centenarians and long-lived men show an increased
frequency of Pro/Ala genotype [209]. PPARγ may also be
associated with Alzheimer disease (AD) since activation
of PPARγ decreases the release of amyloid-β (Aβ), main
component of the amyloid plaques associated with AD
[210–212]. In line with these observations, a study shows
significant overrepresentation of Ala12 allele in octogenarian
AD patients, compared to Pro12 allele [213]. However,
this result is in contrast with a reported role of Ala12
variant in protecting pathogenesis of AD in female,
but not in male subjects in a case-control study [214],
while two studies fail to show an association between
the Ala12 variant with the genetic risk of AD [215, 216].
Nevertheless, Ala12 allele carriers show an earlier onset of
dementia [215], suggesting that Ala12 allele may modify
the age of onset in late-onset AD. Ala12 allele carriers also
show increased risk of dementia or cognitive impairment
without dementia than noncarriers in diabetic patients
[217, 218]. It is unclear how PPARγ2Pro12Ala polymorphism
confers such effects on human lifespan or age-related
diseases since a change in PPARγ activity by this mutation
is supposed to happen only in adipose tissue. Indeed,
preliminary studies suggest that the effect of Ala12 allele on
human aging may be attributable to decreased IL-6 levels,
although there are also reports that healthy elderly have
higher levels of IL-6 [219, 220]. In addition, PPARγ2Pro12Ala

polymorphism may affect pathogenesis of AD by modulating
cholesterol metabolism since cholesterol levels influence
AD pathology [221, 222]. Studies in larger population are
required to further elaborate the role of PPARγ2Pro12Ala

polymorphism on blood cholesterol metabolism and
AD.

10. Conclusion

Much has been done to evaluate the association between
PPARγ2Pro12Ala polymorphism and body mass, insulin sen-
sitivity, risk of T2D, cancer, and other aspects of human
health. However, it is not fully understood how reduction
of PPARγ activity in adipose tissue can have such diverse
effects on human health. While alteration of fatty acid
and cytokine release from adipose tissue may underlie
the effect of this mutation on insulin sensitivity and the
risk of T2D, it is hard to believe that these factors also
account for the effect of Pro12Ala polymorphism on cancer
and age-related disease. It is likely that some factors that
are overlooked or some unknown factors from adipose
tissue may also play a role. Besides, the conflicting results
often observed in association studies clearly show the
presence of gene-gene interaction. Future association studies
should employ a more comprehensive approach, such as
linkage disequilibrium or haplotype analyses [223, 224],
to examine influence of variants at other genetic loci that
may compromise or enhance allelic effect of a genetic
polymorphism. PPARγ2Pro12Ala polymorphism will be a good
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model to elucidate how alteration of adipose PPARγ activity
affects metabolic program and other aspects of human
physiology.
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[109] Y. Bossé, S. J. Weisnagel, C. Bouchard, J.-P. Després, L.
Pérusse, and M.-C. Vohl, “Combined effects of PPARγ2 P12A
and PPARα L162V polymorphisms on glucose and insulin
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