
Diabetic retinopathy (DR) is a common microvascular 
complication of long-standing diabetes. According to a 
systematic review based on 35 population-based studies 
(1980–2008), the overall prevalence of DR and vision-
threatening DR is 34.6% and 10.2%, respectively [1]. Another 
group of researchers, by extrapolating these results to global 
numbers, estimated that the number of people with DR will 
grow from 126.6 million in 2011 to 191.0 million by 2030 
[2]. The poor outcomes in diabetic retinopathy are attributed 
to the microvascular changes caused by hyperglycemia-
induced activation of the metabolic and biochemical path-
ways. These pathways include activation of the polyol and 
hexosamine pathways, activation of the protein kinase C, and 
the increased formation of advanced glycation end products 
(AGEs) [3]. Taken together, these pathways result in oxidative 

stress and inflammation that attenuate vascular wall integrity 
leading to vascular occlusion, increased permeability, and 
local ischemia [4,5].

AGEs have been suggested to play a significant role in 
the diabetic vascular injury. Exposure of vascular endothelial 
cells in the retina to AGEs augments inflammation, which 
is considered to be the key driver in the pathophysiology of 
DR [6]. Increased expression of proinflammatory cytokines, 
such as tumor necrosis factor (TNF)-α, has increasingly been 
implicated in DR. Increased vitreous levels of TNF-α have 
been detected in patients with proliferative DR [7-9] and in 
the diabetic rat retina [7,10,11]. TNF-α promotes leukocyte 
adhesion to the retinal endothelium and increases blood–
retinal barrier (BRB) permeability [12]. Increased expression 
of proinflammatory cytokines in DR is associated with the 
activation of nuclear factor-kappa B (NF-κB) [13]. NF-κB 
is a transcription factor that plays an important role in the 
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Purpose: Diabetic retinopathy is a common microvascular complication of long-standing diabetes. Several complex 
interconnecting biochemical pathways are activated in response to hyperglycemia. These pathways culminate into pro-
inflammatory and angiogenic effects that bring about structural and functional damage to the retinal vasculature. Since 
Zingiber officinale (ginger) is known for its anti-inflammatory and antiangiogenic properties, we investigated the effects 
of its extract standardized to 5% 6-gingerol, the major active constituent of ginger, in attenuating retinal microvascular 
changes in rats with streptozotocin-induced diabetes.
Methods: Diabetic rats were treated orally with the vehicle or the ginger extract (75 mg/kg/day) over a period of 24 
weeks along with regular monitoring of bodyweight and blood glucose and weekly fundus photography. At the end of the 
24-week treatment, the retinas were isolated for histopathological examination under a light microscope, transmission 
electron microscopy, and determination of the retinal tumor necrosis factor-α (TNF-α), nuclear factor-kappa B (NF-κB), 
and vascular endothelial growth factor (VEGF) levels.
Results: Oral administration of the ginger extract resulted in significant reduction of hyperglycemia, the diameter of the 
retinal vessels, and vascular basement membrane thickness. Improvement in the architecture of the retinal vasculature 
was associated with significantly reduced expression of NF-κB and reduced activity of TNF-α and VEGF in the retinal 
tissue in the ginger extract–treated group compared to the vehicle-treated group.
Conclusions: The current study showed that ginger extract containing 5% of 6-gingerol attenuates the retinal micro-
vascular changes in rats with streptozotocin-induced diabetes through anti-inflammatory and antiangiogenic actions. 
Although precise molecular targets remain to be determined, 6-gingerol seems to be a potential candidate for further 
investigation.
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development of DR via transcriptional regulation of proin-
flammatory cytokines [14,15].

The exposure of vascular endothelial cells to AGEs is 
also associated with the increased expression of vascular 
endothelial growth factor (VEGF), which has emerged as a 
key mediator of BRB breakdown and neovascularization in 
DR [16,17]. VEGF plays a significant role in the leukocyte-
mediated breakdown of the BRB and retinal neovascular-
ization and is causally linked to the pathogenesis of DR 
[17]. Increased VEGF expression has been documented in 
streptozotocin (STZ)-induced diabetic rat retinas [18-20], and 
increased vitreous concentration of VEGF has been detected 
in the patients with proliferative DR [21].

Current therapeutic strategies in the management of 
DR have suboptimal efficacy, and disease progression often 
continues despite pharmacological and non-pharmacological 
interventions. Newer therapeutic options that can target key 
mediators of microvascular damage in DR are of significant 
importance. In the current study, we investigated the efficacy 
of ginger (Zingiber officinale) rhizome extract, standard-
ized to 5% 6-gingerol, in attenuating retinal microvascular 
changes in STZ-induced diabetic rats. 6-gingerol possesses 
antioxidant and anti-inflammatory properties [22,23]. The 
antiangiogenesis potential of 6-gingerol in vivo and in vitro 
has also been documented [24,25]. Since inflammation and 
angiogenesis are considered the key targets in the treatment 
of DR, we investigated whether 6-gingerol ameliorates the 
microvascular changes of DR by targeting TNF-α, NF-κB, 
and VEGF activities in the diabetic rat retina.

METHODS

All animal handling in this study was in accordance with the 
ARVO statement for the Use of Animals in Ophthalmic and 
Vision Research and institutional guidelines. Wistar albino 
rats of either sex (200–250 g), obtained from the animal 
facility of the institute, were housed at 21±2 °C with a 12 
h:12 h light-dark cycle. All animals received food and water 
ad libitum. STZ was purchased from HiMedia, Mumbai, 
India, enzyme-linked immunosorbent assay (ELISA) kits 
from Diaclone (Besancon Cedex, France) and RayBiotech, 
Inc. (Norcross, GA), glycosylated hemoglobin (HbA1c) kits 
from Biosystems S.A. (Barcelona, Spain), rabbit polyclonal 
NF-ƙB p65 antibody from Abcam, Plc. (Cambridge, UK), and 
the detection system for immunohistochemistry was from 
Bio SB (Santa Barbara, CA). The ginger extract, prepared by 
extracting 100% natural dried root with an 80:20 mixture of 
ethanol:water, was purchased from Xi'an Aquar Technology, 
Xi'an, China. The extract was authenticated and standardized 

to 5% of 6-gingerol contents with high-performance liquid 
chromatography (HPLC).

Study design: Diabetes was induced in rats with a single 
intraperitoneal injection of STZ 45 mg/kg bodyweight, in 
0.1 M citrate buffer, pH 4.5. Animals with a blood glucose 
concentration greater than 300 mg/dl after 48 h of STZ 
injection were considered diabetic and included in the study. 
Age-matched healthy rats that were injected with an equal 
volume of citrate buffer served as the normal control (NC). 
The diabetic rats were randomly divided into diabetic control 
(DC) and ginger extract treatment groups (6-G; n = 15; 30 
eyes per group). The 6-G-treated group received the ginger 
extract (75 mg/kg/day) evenly dispersed in 0.5% Tween-80 
by oral gavage in a volume of 0.5 ml/kg bodyweight. The DC 
group similarly received vehicle. The dose of ginger extract 
selected for this study was based on previous studies that 
investigated the effects of ginger extract on the blood glucose 
level in rats [23,26,27].

During the 24-week experimental period, bodyweight 
and blood glucose levels were monitored weekly using Accu-
Chek® Active Glucose Test Strips and Accu-Chek® meters 
(Roche Diagnostics, Mumbai, India). Fundus photography 
was performed every 4 weeks, and the last photographs were 
used to calculate vessel diameter.

At the end of the experimental period, blood was 
collected for HbA1c. Subsequently, the rats were euthanized 
in a CO2 chamber. Eyes were enucleated, and retinas were 
isolated to estimate TNF-α (n = 6), VEGF (n = 6), and 
phosphorylated NF-κB (n = 6) using ELISA, western blot 
analysis for NF-kB p65 (n = 4), histopathological examina-
tion using hematoxylin and eosin (H&E) staining (n = 4), and 
immunohistochemistry for NF-κB (n = 4). H&E staining and 
immunohistochemistry were performed using the same eye. 
Additionally, we performed transmission electron microscopy 
(TEM; n = 4) for accurate measurement of the retinal vascular 
membrane thickness.

Fundus photography and vessel diameter: The fundus 
photographs were taken after pupillary dilation with 1% 
tropicamide (Sunways, Mumbai, India) in conscious rats 
using a fundus camera (Genesis-Df, Kowa, Tokyo, Japan). 
The arteriolar and venular diameters in the fundus photo-
graphs were estimated as described previously [28]. Briefly, 
the vessel diameters of the three most prominent vessels were 
estimated at three sites in its widest portion. Before the diam-
eter estimation, the retinal photographs from all groups were 
randomized, and three independent observers performed the 
estimations. An average of three estimates was taken as the 
final vessel diameter.

http://www.molvis.org/molvis/v22/599


Molecular Vision 2016; 22:599-609 <http://www.molvis.org/molvis/v22/599> © 2016 Molecular Vision 

601

Inflammatory and angiogenic parameters: For the estimation 
of TNF-a α and VEGF, isolated retinas were homogenized in 
ice cold phosphate buffer saline (PBS; pH 7.4). Subsequently, 
TNF-α (n = 6) and VEGF levels in retinas (n = 6) were esti-
mated using commercially available ELISA kits according to 
the manufacturer’s instructions.

Histopathological studies: The retinal tissues (n = 4) were 
fixed in 4% phosphate buffered formalin. Paraffin-embedded 
tissue was cut into 4-µm sections; slides were prepared and 
stained with H&E. Histological features were studied by 
an experienced pathologist unaware of the identity of the 
samples.

Immunohistochemistry for NF-ƙB: For the immunohistochem-
istry, 4-μm formalin-fixed, paraffin-embedded sections of the 
retinal tissue (n = 4 retinas) were placed on polylysine coated 
slides. The sections were deparaffinized and rehydrated, and 
endogenous peroxidase activity was blocked with H2O2 in 
methanol. The sections were pretreated in citrate buffer (pH 
6.0) for antigen retrieval in a microwave oven [29]. Incuba-
tion was performed overnight under humid conditions using 
NF-ƙB rabbit polyclonal antibody (dilution 1:1,000, Abcam, 
Cambridge, UK) at 4 °C. The slides were then washed three 
times in Tris buffer for 5 min each. The mouse/rabbit Immu-
noDetector horseradish peroxidase/3, 3-diaminobenzidinetet-
rahydrochloride (HRP/DAB) detection System (Bio SB) was 
used in which the sections were incubated with biotinylated 
anti-mouse and anti-rabbit immunoglobulin solution and then 
with streptavidin conjugated to HRP solution and finally with 
DAB plus chromogen. The slides were then counterstained 
with hematoxylin. Immunopositivity expression was assessed 
under a light microscope.

Western blot for NF-ƙB and ELISA for phosphorylated 
NF-ƙB: The retinal tissues were homogenized in ice-cold 
protein extraction buffer RIPA (3M Tris-HCl, 5M NaCl, 
0.01% Nonidet P40, 0.1% glycerol, 100 mM sodium vana-
date, and 0.05% protease inhibitor cocktail; Sigma-Aldrich 
Corporation, Bangalore, India) and incubated at 4 °C for 
1 h followed by centrifugation at 10,000 ×g for 30 min at 
4 °C. The supernatant was collected immediately after 
centrifugation and stored at −80 °C. Protein concentrations 
of the samples were estimated with the Bradford method. 
Twenty-five µg of protein was loaded in each lane, along 
with protein markers (molecular weight range: 10–250 kDa, 
Bio-Rad, Hercules, CA) in 10–12% sodium dodecyl sulfate 
(SDS) polyacrylamide gels and electrophoresed at 80 V. The 
separated proteins were then transferred on the nitrocellulose 
membranes at 65 V for 50 min. Later, the membranes were 
treated with 3% non-fat milk for 1 h to block the non-specific 
binding and incubated with primary antibodies against 

NF-kB p65 (dilution: 1:1,000, rabbit polyclonal, Abcam) and 
β-actin (1:5,000, mouse monoclonal, Sigma-Aldrich) for 12 h 
at 4 °C. The blots were then incubated in the anti-mouse and 
anti-rabbit secondary antibodies (dilution: 1:200) followed by 
incubation in preformed avidin-biotin-peroxidase complex 
for 2 h. The protein bands were visualized by incubation 
in the development solution containing DAB and hydrogen 
peroxide. Protein extracts from the rat retina were used 
as a positive control, and β-actin was used as the loading 
control for proteins. For densitometric analysis, the blots 
were scanned in a gel documentation system, using Quantity 
1 software (Bio-Rad). All blots were scanned simultaneously 
and normalized with β-actin. The activation of NF-κB was 
also quantified by measuring the phosphorylated NF-κB 
p65 levels using the phosphorylated NF-κB p65 ELISA kit 
(Cell Signaling Technology, Danvers, MA), according to the 
manufacturer’s instructions and as described previously [30].

Transmission electron microscopy: For TEM, the retinal 
tissues were fixed in 2.5% glutaraldehyde and 2% parafor-
maldehyde in 0.1 M phosphate buffer (pH 7.4). After 6 h 
of fixation at 4 °C, the retinas were cut around 2 mm from 
the region of the optic nerve head and further trimmed into 
1–2 mm pieces. The 1–2 mm pieces were again fixed in 1% 
osmium tetraoxide, dehydrated, and embedded in araldite CY 
212. The semithin sections (500 nm thick) were examined 
under a light microscope to select the areas of interest after 
staining with 0.5% toluidine blue. Thin sections (70 nm) were 
cut using an ultramicrotome, contrasted with uranyl acetate 
and lead citrate and viewed under a TECNAI G20 transmis-
sion electron microscope (FEI, Eindhoven, the Netherlands).

Measurement of vascular basement membrane thickness: The 
capillaries from the nerve fiber layer (NFL) and the ganglion 
cell layer (GCL) of the retinas were selected for the evalua-
tion of the basement membrane (BM) thickness. Five sections 
were selected at 500 µm from the mid-retina. A total of four 
rat retinas were analyzed per group. Only cross-sectioned 
capillaries were considered for the BM thickness, which 
was measured using the Siperstein method [31]. The cross-
sectioned capillaries were superimposed on a vessel, and the 
BM thickness was measured at the points of intersection by 
each beam divided symmetrically into 24 clock hours [32].

Statistical analysis: All data are expressed as mean ± stan-
dard deviation (SD). Statistical comparisons were made using 
one-way ANOVA (ANOVA) with the post-hoc analysis using 
the Dunnett multiple comparison test (Graph Pad Prism, 
Version 5). A p value of less than 0.05 was considered statisti-
cally significant.
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RESULTS

Bodyweight and blood glucose: The mean bodyweight of the 
rats in three groups was comparable at the start of the study 
(p>0.05). However, at the end of the 24-week experimental 
period, the mean bodyweight of the animals in the DC group 
(210.66±11.30 g) was significantly (p<0.0001) lower than that 
of the NC group (328.16±20.68 g). The 6-G-treated group 
showed significantly greater bodyweight (298.83±29.89 g) 
when compared with the DC group (p<0.0001; Figure 1).

At 24 weeks, the mean blood glucose level in the DC 
group (533.66±113.12 mg/dl) was significantly higher 
(p<0.0001) than that in the NC group (99.16±8.36 mg/dl). 
Oral administration of the ginger extract reduced the blood 
glucose levels to a mean value of 361.33±93.44 mg/dl, which 
was significantly lower compared to that in the DC group 
(p<0.001) but remained significantly higher than in the NC 
group (p<0.001; Figure 2). In line with the blood glucose 
levels, HbA1c in the 6-G-treated group (6.66±1.11) was 
also significantly lower than in the DC group (9.91±1.56; 
p<0.0001) but remained significantly higher than in the NC 
group (4.95±0.68; p<0.01).

Fundus photography and vessel diameter: The retinal blood 
vessels in the DC group showed a significantly greater 
diameter compared to that in the NC group (p<0.0001), 
whereas in the 6-G-treated group the vessel diameter was 
significantly reduced compared to that in the DC group 
(arterioles p<0.001, venules p<0.0001). When compared to 
the NC group, the vessel diameter in the 6-G-treated group 

remained significantly higher (arterioles p<0.0001, venules 
p<0.0001; Figure 3).

Proinflammatory and angiogenic markers: The levels of the 
proinflammatory marker, TNF-α, in the retinal homogenate 
from the DC group (32.88±1.42 pg/ml) were significantly 
higher compared to that in the NC rats (13.75±1.67 pg/ml). 
The same in the 6-G-treated group (19.47±1.23) showed 
significant reduction compared to the DC group; however, 
remained higher compared to that in the NC group (Figure 
4A). The VEGF levels in the DC group (14.10±1.8 pg/ml) 
were significantly higher compared to that in the NC group 
(4.71±0.8 pg/ml), whereas the 6-G rats showed mean VEGF 
levels of 6.6±0.85 pg/ml, which was significantly lower 
than in the DC rats but remained higher than in the NC 
rats (p<0.0001 versus DC; p<0.01 versus NC; Figure 4B). 
The significantly improved TNF-α and VEGF levels in the 
6-G-treated group compared to the DC group but not the NC 
group were in accordance with the effects observed on the 
vessel diameter in this group.

Histopathological changes: The H&E-stained sections 
showed well-organized retinal layers in the NC group. In the 
DC group, we observed edematous retinal tissue, particularly 
in the inner retina. Observation of the retinal blood vessel 
(Ret BV) was in line with the observations made earlier of 
vessel diameters in the fundus photography as we observed 
a thinner vascular basement membrane in the 6-G-treated 
group as well as in the NC group compared to the DC group 
indicating considerable thickening of the vascular basement 

Figure 1. The rats treated with 
Zingiber officinale, showed signifi-
cantly lesser weight gain compared 
to normal rats; however it was 
significantly greater than diabetic 
controls. (n=15 for all groups). 
Values are mean ± standard devia-
tion (SD). NC = normal control; DC 
= diabetic control; 6-G = Zingiber 
officinale–treated. **p<0.001; *** 
p<0.01; ****p<0.05 versus the NC 
group. ##p<0.001 and ###p<0.01 
versus the DC group.
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membrane in the DC group and a reduction in the thickness 
after treatment with 6-G (Figure 5A).

Immunohistochemistry: The retinas in the DC group showed 
intense expression indicating higher expression of NF-kB in 
the nerve fiber layer (NFL), inner plexiform layer (IPL), and 

Figure 2. The rats treated with 
Zingiber officinale, showed signifi-
cantly greater blood glucose level 
compared to normal rats; however 
it was significantly lower than 
diabetic controls. (n=15 for all 
groups). All data points represent 
mean ± standard deviation (SD). 
NC = normal control; DC = diabetic 
control; 6-G = Zingiber officinale–
treated diabetic group. **p<0.001 
versus the NC group. ##p<0.001 and 
###p<0.01 versus the DC group.

Figure 3. Fundus photographs after 
24 weeks of treatment with stan-
dardized extract of Zingiber offici-
nale in the rats with STZ-induced 
diabetes. Fundus photographs in 
the NC group show normal vascular 
architecture. In the DC group, the 
fundus photographs show dilated 
vessels. In the 6-G-treated group, 
the retinal vessel showed normal-
ization of the vessel diameter (n=15 
for all groups). Values are mean ± 
standard deviation (SD); *p<0.0001 
versus the corresponding NC 
group; #p<0.0001 versus the corre-
sponding DC group. NC = normal 
control; DC = diabetic control; 6-G 
= Zingiber officinale–treated.

http://www.molvis.org/molvis/v22/599


Molecular Vision 2016; 22:599-609 <http://www.molvis.org/molvis/v22/599> © 2016 Molecular Vision 

604

Figure 4. The effect of standardized extract of Zingiber officinale on retinal TNF-α and VEGF levels after 24 weeks of treatment in rats 
with STZ-induced diabetes. All values are mean ± standard deviation (SD). NC = normal control; DC = diabetic control; 6-G = Zingiber 
officinale–treated. *p<0.0001; *** p<0.01 versus the NC group; #p<0.0001 versus the DC group.

Figure 5. Microphotographs (40X) showing the effect of the standardized extract of Zingiber officinale on the retinal vasculature and 
nuclear factor-kappa B (NF-κB) expression after 24 weeks of treatment in rats with STZ-induced diabetes. A: Hematoxylin and eosin 
stained retinal sections showed thickened wall of the retinal blood vessel (Ret BV) in the DC group but not in the group treated with 6-G 
(n=4 for all groups). B: Retinal microphotographs after immunostaining for nuclear factor-kappa B (NF-κB) showed intense staining in 
NFL, IPL and INL. Less intense staining was observed in 6-G group (n=4 for all groups). NC = normal control; DC = diabetic control; 6-G 
= Zingiber officinale–treated diabetic group. ILM = inner limiting membrane; NFL = nerve fiber layer; GCL = ganglion cell layers; IPL = 
inner plexiform layer; INL = inner nuclear layer.
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inner nuclear layer (INL). Less intense expression of NF-kB 
was visualized in the NFL, IPL, and INL in the 6-G retinas 
(Figure 5B).

Western blot for NF-kB and ELISA for phosphorylated 
NF-kB: Western blot analysis was performed to assess the 
protein level of NF-κB p65 in the retinas of the three groups. 
We observed little expression of NF-κB P65 in the NC retinas 
whereas in the DC retinas the amount of NF-κB P65 had 
notably increased. However, in the retinas of the diabetic 
rats treated with 6-G, the expression of NF-κB p65 was 
markedly reduced. Quantification of P-NF-κB using ELISA 
showed significantly elevated levels in the DC rats compared 
to the NC rats, while the same was significantly lower in 
the 6-G-treated rats compared to the DC rats (Figure 6). 
These observations were in agreement with those made in 
the immunohistochemistry.

Basement membrane thickness: Electron microscopy revealed 
that the mean vascular basement membrane thickness in 
the DC group (173.64±10.85 nm) was significantly higher 
compared to the NC group (77.46±9.83 nm; p<0.0001). 
However, in the 6-G-treated group, the basement membrane 
thickness (120.14±10.50 nm) was significantly lower 
compared to the DC group (p<0.0001) but remained higher 
compared to the NC group (p<0.001; Figure 7). The elec-
tron microscopic measurements of the basement membrane 
thickness supported our observations made on the histopatho-
logical examination, which also showed that the basement 
membrane thickness was greater in the DC group compared 

to the NC group and the 6-G-treated group, and the same 
was comparable in the 6-G-treated group and the NC group.

DISCUSSION

The present study demonstrated the effects of oral admin-
istration of the ginger extract containing 5% 6-G on DR 
in rats with STZ-induced DR. The treatment resulted in a 
significant reduction in the diameter of the retinal vessels and 
the vascular basement membrane thickness. A previous study 
has also shown that ginger in combination with purple waxy 
corn protects against retinopathy in rats with STZ-induced 
diabetes. In that study, the protective effect of the combined 
herbs was associated with reduced retinal oxidative stress 
[33]. In this study, the improvement in the architecture of the 
retinal vasculature was associated with significantly reduced 
activity of TNF-α, NF-κB, and VEGF in the retinas of the 
6-G-treated group compared to the DC group. Additionally, 
we observed significant reduction in the blood glucose level 
compared to the DC group and better preservation of body-
weight in the 6-G-treated diabetic rats.

Several complex interconnecting biochemical pathways 
play a key role in the pathogenesis of microvascular complica-
tions of diabetes mellitus such as retinopathy. The role of the 
highly active polyol pathway that involves aldose reductase 
is well-established. Molecular docking studies have shown 
that gingerenones A, B, and C from ginger have a high 
docking score, binding affinity, and sustained protein-ligand 
interactions [34]. Thus, it is likely that inhibition of aldose 
reductase contributed to the reduced retinal microvascular 

Figure 6. Effect of standardized extract of Zingiber officinale on retinal NF-kB p65 expression after 24 weeks of treatment as shown with 
western blot. A: Intense bands were seen on western blot in DC groups but not in 6-G treated group (n=4 for all groups). B: Quantification 
of P-NF-kB p65 in the retinas of three groups of animals using enzyme-linked immunosorbent assay (ELISA; n=4 for all groups). Each 
value represents mean ± standard deviation (SD). NC = normal control; DC = diabetic control; 6-G = Zingiber officinale–treated diabetic 
group. *p<0.0001 versus the NC group; #p<0.001 versus the DC group.
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changes in the 6-G-treated group by reducing the polyol 
accumulation. Excessive formation and accumulation of the 
AGEs is one of these biochemical pathways, and evidence 
from animal studies has shown that exposure to AGEs results 
in vascular complications [35-37]. In the current study, we did 
not measure the AGEs; however, their accumulation is one of 
the certain outcomes of prolonged hyperglycemia that was 
present in the STZ-injected animals. In the DC group, the 
presence of persistent hyperglycemia was further supported 
by elevated HbA1C. Treatment with 6-G resulted in a signifi-
cant reduction in blood glucose levels and consequently 
HbA1c. Bodyweight measurement also indicated reduced 
catabolic influence of hyperglycemia in the 6-G-treated rats 
compared to the DC rats.

AGEs form covalent crosslinks between proteins, cause 
oxidative stress, and bring about changes in the structure 
and function of cellular matrices, basement membranes, and 

vessel-wall components [38]. They also interact with cell-
surface AGE-binding receptors leading to cell activation 
and proinflammatory responses [35]. Additionally, hyper-
glycemia leads to activation of a serine/threonine kinase, 
protein kinase C (PKC) that brings about remodeling of the 
vascular structures and enhances the inflammatory responses 
[39-41]. In the current study, one of the hallmark features of 
DR in the STZ-injected animals, namely, the thickening of 
the basement membrane, was clearly documented using trans-
mission electron microscopy and light microscopy. In these 
groups, the structural alterations in the retinal arterial and 
venular components were also seen by fundus photography 
in the form of increased vessel diameter compared to healthy 
vessels. Treatment of the diabetic rats with 6-G resulted in 
significant improvement in the microvascular structure.

In this study, the vascular structural changes in the STZ-
injected rats were associated with increased retinal levels of 

Figure 7. Transmission electron micrographs showing the retinal capillary endothelial BM. A: Thickening of the basement membrane (BM) 
was observed in the DC group but not in the 6-G group. B: Quantitative expression of capillary BM thickness in three groups after 24 weeks 
of treatment (n=4 for all groups). Values are mean ± standard deviation (SD).*p<0.0001 versus NC, #p<0.0001 versus DC. NC = normal 
control; DC = diabetic control; 6-G = Zingiber officinale–treated diabetic group.
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TNF-α, NF-κB, and VEGF. Treatment with 6-G resulted 
in significant reduction in all three parameters. It is well-
established that inflammation plays a prominent and complex 
role in DR. Hyperglycemia-initiated oxidative stress, AGE 
accumulation, and PKC activation induce an inflammatory 
reaction that further amplifies through increased produc-
tion of inflammatory mediators. NF-κB is a transcription 
factor, and NF-κB signaling promotes increased expression 
of proinflammatory cytokines such as TNF-α. The retinas of 
diabetic animals and retinal cell culture in high glucose show 
increased NF-κB DNA binding affinity for the development 
of DR via proinflammatory effects [42]. Levels of TNF-α 
have been found to be significantly elevated in the vitreous of 
patients with proliferative diabetic retinopathy (PDR), and the 
role of TNF-α in PDR pathogenesis has been characterized 
[43-45]. Increased levels of TNF-α are associated with BRB 
breakdown, retinal leukostasis, and apoptosis [46,47]. Addi-
tionally, amplified VEGF signaling leads to BRB breakdown 
and increased vascular permeability.

In the current study, the beneficial effects of 6-G in 
attenuating hyperglycemia-induced retinal microvascular 
structural abnormalities could be attributed to its effects 
primarily on the reduction of blood glucose levels. The 
polyphenols from ginger have previously been shown to 
have hypoglycemic and insulinotropic properties [48-50]. 
However, ginger extract has also been shown to significantly 
reduce the elevated expression of NF-κB and TNF-α in the 
absence of hyperglycemia [51,52]. Ginger extract was shown 
to suppress PKC alpha and NF-κB pathways in lipopolysac-
charide-stimulated mouse macrophages [53]. 6-G also inhibits 
VEGF-induced proliferation of human endothelial cells [24]. 
Thus, it is likely that in the current study, the effects of 6-G 
on the retinal vasculature may partially be attributed to 6-G’s 
direct anti-inflammatory and antiangiogenic actions resulting 
from the suppression of NF-κB signaling and the suppression 
of TNF-α and VEGF activity.

In conclusion, the current study showed that the stan-
dardized extract of Zingiber officinale attenuates retinal 
microvascular changes in STZ-induced diabetic rats through 
its anti-inflammatory and antiangiogenic actions. Although 
these effects could result from the antihyperglycemic effects 
of the ginger extract containing 5% 6-G, it is likely that 
this can also be attributed at least partially to the extract’s 
direct effects on the retinal vasculature. Although the precise 
molecular targets remain to be determined, 6-gingerol seems 
to be a potential candidate for further investigation.
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