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Abstract

Estrogen action is mediated by various genes, including estrogen-responsive genes

(ERGs). ERGs have been used as reporter-genes and markers for gene expression. Gene

expression profiling using a set of ERGs has been used to examine statistically reliable tran-

scriptomic assays such as DNA microarray assays and RNA sequencing (RNA-seq). How-

ever, the quality of ERGs has not been extensively examined. Here, we obtained a set of

300 ERGs that were newly identified by six sets of RNA-seq data from estrogen-treated and

control human breast cancer MCF-7 cells. The ERGs exhibited statistical stability, which

was based on the coefficient of variation (CV) analysis, correlation analysis, and examina-

tion of the functional association with estrogen action using database searches. A set of the

top 30 genes based on CV ranking were further evaluated quantitatively by RT-PCR and

qualitatively by a functional analysis using the GO and KEGG databases and by a mecha-

nistic analysis to classify ERα/β-dependent or ER-independent types of transcriptional regu-

lation. The 30 ERGs were characterized according to (1) the enzymes, such as metabolic

enzymes, proteases, and protein kinases, (2) the genes with specific cell functions, such as

cell-signaling mediators, tumor-suppressors, and the roles in breast cancer, (3) the associa-

tion with transcriptional regulation, and (4) estrogen-responsiveness. Therefore, the ERGs

identified here represent various cell functions and cell signaling pathways, including estro-

gen signaling, and thus, may be useful to evaluate estrogenic activity.

Introduction

Estrogenic chemicals are found abundantly in natural and industrial materials, and they

exhibit a variety of cellular and physiological activities [1]. Along with the increasing interest

in the estrogenic activity of these chemicals and their beneficial applications, there is growing

need to develop new technologies for their detection and characterization. Thus, a variety of

assays have been developed, such as ligand-binding assays, reporter-gene assays, yeast two-

hybrid assays, transcription assays, protein assays, cell assays, and animal tests, which are

based on the mechanisms of estrogen action at the levels of molecules, cells, tissues, and the

whole body [2]. Among the assays, gene expression profiling, such as the DNA microarray

assay, is a technology used to detect the alterations of gene expression by monitoring the
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amount of mRNA or proteins of the estrogen-responsive genes (ERGs), which can detect the

estrogenic activity of chemicals and mixtures of chemicals [3–5].

Searching for useful genes was challenging when the technological development was in

its infancy. Recently, the development of DNA microarray technology for comprehensive

searches of genes that were newly identified by the human genome project accelerated the

search for ERGs, where tens to sometimes over a thousand ERGs were identified from more

than ten thousand human genes and expressed sequence tags [6–11]. The identified ERGs

have been examined for use in various fields such as food, clinical, pharmacological, and envi-

ronmental applications [1]. For example, better understanding of the gene-regulation net-

works based on the ERGs is critical for the development of therapeutics for breast cancer [5].

Likewise, gene expression profiling based on ERGs has been used for environmental studies

[12].

While the number of ERGs used for gene-expression profiling is important to reliably eval-

uate the estrogenic activity, the differences in the quality of ERGs due to various factors, such

as their amounts in cells, the degrees of their responses, and their different cell functions, can

cause unpredictable errors in the assay results. Other factors also need to be considered such as

the cost, laboriousness, and the requirements of devices and equipment. The proportion of

genes quantitatively showing differences in expression under different stimulations is roughly

a few to a few tens of % of all human genes [13]. When considering statistical stability, the

number of the genes that can be used to predict specific results, like clinical outcomes, should

be no more than 1,000 and preferably less than 100 [13]. For example, MammaPrint, a US

Food and Drug Administration-cleared molecular diagnostic test used for predicting the risk

of breast cancer recurrence, contained 70 genes [14]. On the other hand, gene expression pro-

filing has been used to predict estrogen activity, where a number of chemicals were examined

by DNA microarray-based assays (reviewed by Kiyama & Zhu, 2014 [12]). A total of 120

ERGs, consisting of six functional groups of genes, were used to evaluate estrogenic activity,

with comparable reliability to other estrogen assays [15]. However, methods for reliably identi-

fying ERGs with statistical stability within satisfactory limits have not been reported, even

though more information about genes and their functions has been obtained. Here, we deter-

mined the ERGs that have statistical stability based on RNA sequencing (RNA-seq) analysis

and examined their usefulness by focusing on their reliability and applicability to predict the

estrogen action of chemicals.

The recent progress in RNA-seq has enabled its wider use in applications such as food qual-

ity control, environmental materials, and medicine [16–20]. For estrogen actions, RNA-seq

data obtained from estrogen-stimulated MCF-7 cells were compared with reverse transcrip-

tion (RT)-PCR and DNA microarray data, suggesting mutually consistent or respectively com-

plimentary gene expression profiles among them [21]. Furthermore, functional annotations of

RNA-seq data with databases, such as the Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) databases, have been used to identify targets of antitumor agents

against breast cancer such as diallyl trisulfide (a garlic metabolite) [22], 6-thioguanine [23],

shikonin [24], tamoxifen [25], and chickpea isoflavones [26]. Based on RNA-seq analysis,

novel mechanisms of cancer progression and metastasis involving non-coding RNAs [27, 28],

enhancer RNAs [29], and circular RNAs [30, 31] were demonstrated. Functional regulatory

networks examined by comparing chromatin immunoprecipitation-sequencing (ChIP-seq)

data and time-course RNA-seq data revealed that transcription factor MYC plays an important

role in connecting the networks between promoters and enhancers [32].

Here, we obtained a set of novel ERGs by RNA-seq that can be used for gene expression

profiling of potential estrogenic chemicals and demonstrated their usefulness by examining

their statistical reliability and their functional relevance.
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Materials and methods

Materials

Human breast cancer MCF-7 cells were obtained from the Japanese Collection of Research

Bioresources Cell Bank. Antibodies used for Western blotting were those against total Erk1/2

(T-Erk; #9102, Cell Signaling Technology, Ipswich, MA, USA), phospho-Erk1/2 (P-Erk;

#9101), total Akt (T-Akt; #4691), and phospho-Akt (P-Akt; #4060).

Sulforhodamine B (SRB) assay

MCF-7 cells were cultured in a phenol red-free RPMI 1640 medium (Gibco, Thermo Fisher

Scientific, Waltham, MA, USA) supplemented with 10% fetal bovine serum (FBS) (Gibco,

Thermo Fisher Scientific) and maintained at 37˚C with 5% CO2 in an incubator (Thermo

Fisher Scientific). The sulforhodamine B (SRB) assay was performed as described by Dong

et al. [33, 34]. Before stimulation of MCF-7 cells with chemicals, the cells were cultured at a

density of 1.5×104 cells per well in RPMI 1640 containing 10% (v/v) dextran-coated charcoal-

treated FBS (DCC-FBS) (Gibco, Thermo Fisher Scientific) for 3 days in 24-well plates. After

treatment with 10 nM 17β-estradiol (E2; Sigma-Aldrich, St. Louis, MO, USA), 1 μM ICI

182,780 (ICI; Sigma-Aldrich), or 0.1% dimethyl sulfoxide (vehicle) (DMSO; FUJIFILM Wako

Pure Chemical, Osaka, Japan) for 3 more days, MCF-7 cells were fixed with trichloroacetic

acid (Sigma-Aldrich) at 4˚C for 30 min and washed with ultrapure water. After washing, sam-

ples were stained with acetic acid containing 0.4% SRB (Sigma-Aldrich) at room temperature

for 20 min and then washed with acetic acid. The bound protein was dissolved with 10 mM

unbuffered Tris-base (pH = 10.5) at room temperature for 10 min and transferred into 96-well

plates to measure the absorbance at 490 nm using the Modular-Designed Multimode Reader

SH-9000 (Corona Electric, Ibaraki, Japan). Three independent assays were performed for each

chemical, and the data were analyzed by t-test.

Western blotting

Western blotting was performed as described by Dong et al. [33, 34]. MCF-7 cells at a density

of 1.0×105 cell per well were cultured for 2 days in DCC-FBS in 6-well plates and then one

more day in serum-free medium. The cells were pretreated with ICI for 1 h and then treated

with 10 nM E2 or vehicle (0.1% v/v DMSO). The total protein was extracted from the cells and

examined by SDS-PAGE using e-PAGEL (ATTO, Tokyo, Japan) and electro-transferred onto

nitrocellulose membranes (Millipore, Billerica, MA, USA) using a semi-dry transfer cell (Bio-

Rad Laboratories, Benicia, CA, USA). The membranes were blocked with EzBlock BSA

(ATTO) and incubated with the antibodies against signal proteins (T-Erk, P-Erk, T-Akt or

P-Akt) overnight at 4˚C after appropriate dilution (1:500 or 1:1000). The antibody-antigen

complexes were detected with a horseradish peroxidase-coupled goat antibody against rabbit

IgG (Cell Signaling Technology) after dilution (1:1000) and visualized using WSE-6100 Lumi-

noGraph I (ATTO).

RNA-seq analysis

MCF-7 cells at a density of 1.0×106 cells per well were cultured in DCC-FBS for 3 days at 37˚C

in 5% CO2. The cells were treated with 10 nM E2, 1 μM ICI, or 0.1% DMSO (vehicle) for 2

more days. Total RNA was extracted using a RNeasy Mini-kit (QIAGEN, Venlo, the Nether-

lands). The DNA libraries for sequencing were constructed using the Truseq Stranded mRNA

Library Prep (Illumina, San Diego, CA) and MGIEasy Universal Library Conversion Kit (MGI

Tech, Shenzhen, PRC). Then, the libraries were subjected to sequencing using the
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DNBSEQ-G400 (MGISEQ-2000RS, MGI Tech) instrument, and the obtained reads were

aligned using splitBarcode (https://github.com/MGI-tech-bioinformatics/splitBarcode). The

read data were downsized to 20 M read pairs using seqkit v0.13.0 [35]. After the adopter

sequences were cleaned with cutadapt ver.2.10 [36], the read data were mapped with HISAT

v2.2.1 [37]. The value of FPKMs (reads per kilobase of transcript per million reads mapped)

for each gene was estimated with Cuffdiff v2.2.1 [38], and the gene expression was analyzed as

described previously [15]. After RNA-seq was repeated 6 times for E2, the standard deviation

(SD) and the average (Av) for the 203 genes, which includes ERGs and control genes [15],

were determined and used for calculating the log2 of FPKMs. These genes were evaluated

based on the absolute value of SD/Av and used in the correlation analysis with the correlation

coefficient (R value) between one of the assays (E2-1) and each of the other five assays (E2-2~

E2-6).

Real-time RT-PCR

The FPKM values obtained with RNA-seq were log2-transformed and a total of 300 genes were

selected based on the log2 value (gene expression ratio). Among the 300 genes, 30 genes were

selected by ranking the SD/Av values and further analyzed by real-time RT-PCR [8]. Real-time
RT-PCR was conducted with the CFX Connect real-time PCR detection system using the iTaq

Universal SYBR Green One-Step Kit (Bio-Rad). The conditions for real-time RT-PCR were as

follows: reverse transcription for cDNA at 42˚C for 10 min and denaturation at 95˚C for 1

min, followed by 46 cycles of denaturation at 94˚C for 10 sec, annealing at 57˚C for 30 sec, and

extension at 72˚C for 20 sec. After PCR, a melting curve was constructed by increasing the

temperature from 65 to 95˚C to confirm the validity of the reaction. Real-time RT-PCR was

repeated 3 times for each gene and the Av and SD were calculated using CFX Maestro Software

(Bio-Rad). The nucleotide sequences of PCR primers (S1 Table) were obtained from the refer-

ences for EGR3 [8], LOXL2 [39], and SYNE1 [40], or otherwise by web-based calculation.

Data analysis for gene expression

The FPKM values obtained by RNA-seq were log2-transformed and p-values were calculated.

The genes showing statistically significant (p< 0.05) up-regulation or down-regulation, or

those without significant changes, were visualized by Volcano plotting [26], where log2-trans-

formed expressional changes (X-axis) and -log10-transformed p-values or SD/Av values (Y-

axis) are indicated. The pathway analysis was performed with WebGestalt software (WEB-

based Gene SeT AnaLysis Toolkit) (www.webgestalt.org/; [41]) using the gene sets showing

statistical significance (p< 0.05) from the GO (www.geneontology.org/) and KEGG (www.

genome.jp/kegg/) databases. False discovery rates (FDRs: Q-values) were estimated using the

Benjamini-Hochberg method, and the top ten categories of FDR < 0.05 were visualized.

Results

Gene expression profiling based on RNA-seq

Gene expression profiling is a method to evaluate the estrogenic activity of chemicals, and a

variety of assays have been developed based on transcriptomic and proteomic technologies [1].

Here, we screened ERGs for evaluating estrogenic activity by transcriptomic assays such as

RNA-seq and RT-PCR. To obtain a set of ERGs, we adopted a two-step process involving a

correlation analysis and a coefficient of variation (CV) analysis (Fig 1A). MCF-7 cells were

used as a cell system for the evaluation, which was performed first by two assays, a cell prolifer-

ation assay (SRB assay; Fig 1B) and protein assay (Western blotting to detect the
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Fig 1. Evaluation of estrogenic activity by gene expression profiling. (A) A strategy adopted here. (B) Cell proliferation assay. MCF-7 cells treated

with E2 (10 nM), E2 (10 nM) + ICI (1 μM), or vehicle (0.1% DMSO) were subjected to cell proliferation assays with SRB. The relative proliferation index

for MCF-7 cells treated with E2 (10 nM), E2 (10 nM) + ICI (1 μM), or ICI (1 μM) alone are shown: �p< 0.05, vs. control (0.1% DMSO). (C) Western

blotting. MCF-7 cells were treated with E2 (10 nM), E2 (10 nM) + ICI (1 μM), or vehicle (0.1% DMSO) for indicated times and cell extracts were

subjected to Western blotting for the evaluation of phosphorylated proteins (P-Erk1/2 and P-Akt) (upper images) and total proteins (T-Erk1/2 and

P-Akt) (lower images). (D) Correlation analysis of RNA-seq data. The gene expression profiles for MCF-7 cells treated with E2 obtained by RNA-seq

were compared using a set of the 120 ERGs, and the results are visualized in scatter-plot graphs. The vertical and horizontal axes indicate log2-values of

FPKMs. R- and p-values were calculated for each graph based on linear regression between two profiles.

https://doi.org/10.1371/journal.pone.0273164.g001
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phosphorylation of two marker proteins, Erk1/2 and Akt; Fig 1C), which have frequently been

used to evaluate estrogenic activity [42–44]. The cells showed the response to estrogen (17β-

estradiol; E2), and the response was inhibited by treatment with an ER antagonist ICI in both

assays in the same way as previously reported [15], suggesting that the cells responded to E2

through the ER. Then, we performed the RNA-seq analysis to evaluate the cell response at the

transcription level (Fig 1D). A total of six sets of gene expression profiles for MCF-7 cells

treated with E2 were obtained by RNA-seq, where a set of the 120 ERGs, which were previously

used in DNA microarray assays [15], were used to compare the profiles (first five panels in Fig

1D). The six combinations of profiles showed R-values of 0.83 to 0.95, indicating strong and

statistically significant correlations among the profiles (see the data for all combinations in S2

Table). In contrast, there was no correlation between the profiles for the E2 treatment and

E2+ICI treatment (the last panel in Fig 1D), suggesting the response to be mediated by the ER.

Therefore, the ERGs that we obtained using gene expression profiling methods and by RNA-

seq techniques can be used as markers for the evaluation of estrogenic chemicals.

Evaluation of RNA-seq-based gene expression profiling

Next, we examined the quality of the obtained ERGs by CV analysis (Fig 2). Among the six sets

of ERGs obtained by RNA-seq (Fig 1D), the sets of 203 ERGs that were used to evaluate estro-

genic activity by DNA microarray assays [15] were again examined by CV analysis (indicated

by the bar graph in Fig 2), where the 203 genes included expression standards and 174 original

ERGs, and the sets of 150, 120, 90, 60, or 30 genes were selected from the top of the list of

genes ranked by CV values (mean of SD/Av). The top-ranked ERGs exhibited low CV values,

Fig 2. Statistical evaluation of ERGs. The RNA-seq for E2 was repeated 6 times and gene expression profiles were

obtained (E2-1 to E2-6). The correlation coefficients (R-values) between one profile (E2-1) and the others (E2-2 to E2-

6), giving five sets of data, were calculated for respective numbers of gene sets. The R-values of the total 203 genes, or

the indicated numbers (174, 150, 120, 90, 60, or 30) of genes taken from the top of the list in the order of the genes

ranked by the values of SD/Av indicating the statistical stability, are shown for the five sets of data in a line graph. The

mean of SD/Av for respective numbers of genes are shown in a bar graph; SD/Av for 203 genes is 2.31 ± 6.24 and that

for 174 genes is 2.34 ± 6.6.

https://doi.org/10.1371/journal.pone.0273164.g002
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0.17 +/- 0.04 for the top 30 ERGs, indicating that gene expression profiling by RNA-seq can

provide mean CV values that are lower than those by DNA microarray assays (mean CV value

of 0.22; [15]). Furthermore, the correlation coefficients (R-values) for the top 30 ERGs in the

five data sets obtained by RNA-seq were 0.97 to 0.99, which are also more reliable than those

with nine data sets obtained by DNA microarray assays (0.93 to 0.97; [15]), confirming that

the statistical stability of data is greater in RNA-seq than in DNA microarray assays.

Selection of new ERGs for gene expression profiling

We selected new ERGs for gene expression profiling based on the approach shown in the pre-

vious section. A total of 300 ERGs were selected from the ranks created by CV analysis, from

all human genes available for RNA-seq (a total of approx. 26,000 genes), which consist of 150

up-regulated and 150 down-regulated genes (see S3 Table for the complete list). Among the

300 ERGs, the top 30 ERGs (Table 1) were examined by real-time RT-PCR (Fig 3A), and the

data were compared with those obtained by RNA-seq (Fig 3B). Both datasets were identical,

except for minor differences due to slight variation in the locations of the transcripts that were

detected by these assays. Notably, the statistical significance levels are lower for some genes,

probably due to the lack of expression levels in the statistical consideration.

Functional analysis of ERGs

The newly identified ERGs were examined by signaling pathway analysis using the GO and

KEGG databases (Fig 4). The characteristics of ERGs were analyzed first by the statistical eval-

uation of the relationship of the significance (p-values; Fig 4A) or stability (CV values; Fig 4B)

of expressional alterations with the degrees of the alterations (log2-transformed fold changes)

and then by the functional searches in the GO (Fig 4C and 4D) and KEGG (Fig 4E and 4F)

databases. We confirmed that 30 ERGs belong to the groups of genes showing statistically sig-

nificant alterations of their expression due to the treatment with estrogen (red or green circles

in Fig 4A and 4B). From the database searches, significant levels of association were found

between the genes of significant alterations of their expression and specific cell functions and

Table 1. List of 30 ERGs.

Rank Gene symbol CV Rank Gene symbol CV

1 LINC02593 0.058 16 DOK7 0.125

2 PDLIM3 0.083 17 CYP1A1 0.125

3 RAP1GAP 0.090 18 LOXL2 0.126

4 ACOX2 0.091 19 RAPGEFL1 0.126

5 B4GALT1 0.094 20 PKIB 0.126

6 TMPRSS3 0.096 21 CCDC68 0.126

7 MATN2 0.098 22 GATA4 0.128

8 SUSD3 0.099 23 SPOCD1 0.129

9 FDFT1 0.099 24 CRISP3 0.134

10 ZNF521 0.099 25 IGSF1 0.134

11 FRY 0.104 26 RAB26 0.136

12 BARX2 0.107 27 EGR3 0.139

13 IL20 0.108 28 SRGAP3 0.139

14 CTSD 0.118 29 SYNE1 0.143

15 CSTA 0.124 30 INSYN1 0.145

The top 30 ERGs among the 300 genes stably responding to E2 are listed.

https://doi.org/10.1371/journal.pone.0273164.t001
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pathways such as the cellular macromolecule catabolic process (a 262-gene group showing up-

regulation), protein localization to organelles (a 220-gene group showing up-regulation),

mRNA metabolic process (a 201-gene group showing up-regulation), negative regulation of

gene expression (a 290-gene group showing down-regulation), negative regulation of biosyn-

thetic process (a 283-gene group showing down-regulation), negative regulation of cellular

biosynthetic process (a 281-gene group showing down-regulation), and negative regulation of

macromolecule biosynthetic process (a 276-gene group showing down-regulation) in the GO

database (Fig 4C and 4D; S4 Table), and metabolic pathways (a 279-gene group showing up-

regulation), protein processing in endoplasmic reticulum (a 58-gene group showing up-regu-

lation), cell cycle (a 55-gene group showing up-regulation), pathways in cancer (a 90-gene

group showing down-regulation), human papillomavirus infection (a 66-gene group showing

down-regulation), endocytosis (a 46-gene group showing down-regulation), and breast cancer

(a 32-gene group showing down-regulation) in the KEGG database (Fig 4E and 4F; S4 Table).

Furthermore, significant numbers of the 30 and 300 ERGs that were characterized in Fig 2

were included in the groups of genes found by the database searches (S4 Table), suggesting the

association of these ERGs with specific cell functions.

ER subtype-specific interaction of ERGs

Since ERGs are likely controlled by ERs through the interaction at their promoter and

enhancer regions, we examined the ChIP-seq data that are available in the Gene Expression

Fig 3. Transcriptional analysis of ERGs. (A) Real-time RT-PCR analysis for 30 ERGs. The 30 ERGs (listed in Table 1) that were selected by RNA-seq

analysis in Fig 2 were analyzed again by real-time RT-PCR. The expression level of each gene was normalized by that of β-actin and indicated in a bar

graph, where the bars show the mean ± SD (n = 3) of log2-transformed ratios of E2+ data and E2- data (E2+/E2-). (B) RNA-seq analysis for 30 ERGs. The

values of FPKMs (n = 6) obtained by RNA-seq were log2-transformed and indicated in a bar graph, where the bars show the mean ± SD (n = 6) of the

ratios, as shown in panel A. The top 30 genes selected according to SD/Av and expression ratios have stable gene expression. �p< 0.05: between E2 and

the control (0.1% DMSO).

https://doi.org/10.1371/journal.pone.0273164.g003
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Fig 4. Signaling pathways associated with ERGs. (A) Volcano plots for ERGs in MCF-7 cells. The genes showing significant

(p< 0.05) up-regulation (red circles) or down-regulation (green circles) are indicated, while those that are not significant are shown

by gray circles. The novel 30 ERGs are shown by black dots. The graph shows log2-transformed fold-changes (X-axis) and -log10 of p-
values (Y-axis). (B) Volcano plots for the 30 genes that show stable expression in response to E2. The graph shows log2-transformed

fold-changes (X-axis) and mean of SD/Av values (Y-axis). (C, D) GO analysis for the biological processes (BPs). The top 10

significantly affected (Q< 0.05) BPs for the ERGs that exhibit up-regulation (panel C) or down-regulation (panel D) are shown. The

number of genes in each group is visualized by the size of the circles, and theQ-values of the group by color. (E, F) KEGG analysis for

metabolic pathways. The top 10 significantly affected (Q< 0.05) metabolic pathways for the ERGs that exhibit up-regulation (panel

C) or down-regulation (panel D) are shown.

https://doi.org/10.1371/journal.pone.0273164.g004
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Omnibus database to determine whether the regions containing these ERGs were identified as

ER subtype-specific binding sites (Table 2). The results indicate that 29 ERGs (except

LINC02593) were classified into four groups; ERα-specific (SUSD3, RAPGEFL1, PKIB,

INSYN1, SPOCD1, BARX2, SYNE1, SRGAP3, CSTA, and FRY), ERβ-specific (ACOX2 and

LOXL2), ERα/β-specific (EGR3, GATA4, IL20, PDLIM3, CTSD, TMPRSS3, FDFT1, DOK7,

Table 2. ER subtype-specific interaction of ERGs.

Gene No. Gene symbol ERαa Erα bindingc ERβa Erβ bindinge Receptor subtype

E2- Q-valueb (n = 3) E2+ Q-valueb (n = 3) E2+ Average of S/N ratiod (n = 2)

1 EGR3 0 279 + 1.1 + ERα/β

2 ACOX2 0 0 - 1.4 + ERβ

3 GATA4 133 2133 + 1.2 + ERα/β

4 SUSD3 449 3026 + 0.7 - ERα

5 IL20 1307 3091 + 1.1 + ERα/β

6 ZNF521 0 0 - 0.9 - -

7 PDLIM3 0 72 + 1.1 + ERα/β

8 IGSF1 0 0 - 1.0 - -

9 RAPGEFL1 764 4529 + 0.0 - ERα

10 LOXL2 0 0 - 8.2 + ERβ

11 CTSD 234 1683 + 4.4 + ERα/β

12 TMPRSS3 263 2761 + 3.2 + ERα/β

13 FDFT1 1121 3753 + 1.2 + ERα/β

14 PKIB 304 1887 + 0.8 - ERα

15 INSYN1 200 3575 + 1.0 - ERα

16 DOK7 676 2677 + 32.7 + ERα/β

17 SPOCD1 0 31 + 1.0 - ERα

18 B4GALT1 145 1105 + 18.9 + ERα/β

19 BARX2 89 465 + 1.0 - ERα

21 SYNE1 0 395 + 1.0 - ERα

22 RAB26 118 991 + 4.8 + ERα/β

23 RAP1GAP 45 133 + 2.1 + ERα/β

24 CRISP3 0 0 - 0.8 - -

25 MATN2 0 200 + 2.5 + ERα/β

26 CYP1A1 1203 2489 + 12.3 + ERα/β

27 CCDC68 0 1490 + 1.2 + ERα/β

28 SRGAP3 125 1290 + 0.9 - ERα

29 CSTA 124 840 + 1.0 - ERα

30 FRY 0 117 + 0.7 - ERα

Gene No. is based on the order of the data from real-time RT-PCR (Fig 3). Gene No. 20 (LINC02593) is not listed here because it is a long non-coding RNA and

inappropriate for the analysis.
a The original data analyzed in this table are available in the NCBI’s Gene Expression Omnibus with accession numbers GSE117569 (for ERα; [135]) and GSE149979

(for ERβ; [151]).
b The Q-value was determined using the ChIP-Atlas database (https://chip-atlas.org/; [152]), where each gene was analyzed for the presence of peaks within ± 10 kb

from the transcription start site (TSS).
c ERα binding is positive (+) when the Q-value of E2+ is bigger than that of E2-.
d The integrative genomics viewer (IGV) was used to visualize the results of ChIP-seq, where each gene was analyzed for the presence of peaks within ± 10 kb from the

TSS. Then, the S/N ratio was calculated, where the average of E2+/ERβ ChIP-seq values, rep 1 and 2, was used as S, and the E2+/input value was used as N.
e ERβ binding is positive (+) when the S/N ratio is bigger than 1.0.

https://doi.org/10.1371/journal.pone.0273164.t002
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B4GALT1, RAB26, RAP1GAP,MATN2, CYP1A1, and CCDC68), and other types (ZNF521,
IGSF1, and CRISP3) (Fig 5).

Discussion

ERGs for the evaluation of estrogenic activity

Estrogen is a hormone that regulates the female reproductive system and the physiological,

neurological, and behavioral activities of females and, to some extent, males. Estrogen action is

regulated and mediated by various genes and their protein products, including ERGs. Thus,

ERGs can represent various estrogenic cell functions, and therefore, have been used as markers

for estrogenic activity (reviewed in Kiyama & Zhu, 2014 [4]). Previously, specific ERGs were

used as markers for gene expression or used as reporter-genes, which were later replaced by a

set of ERGs in more statistically reliable transcriptomic assays such as DNA microarray assays

and RNA-seq. A small number of ERGs, tens to hundreds, were enough for statistical stability,

and including the genes without any response would increase the noise level. However, the

quality of ERGs has not been extensively explored. Here, we found a set of 300 ERGs newly

identified by six sets of RNA-seq data obtained from E2-treated and control MCF-7 cells (Figs

1 and 2). A set of the 30 genes with best statistical stability were further evaluated quantitatively

by RT-PCR (Fig 3), and then qualitatively by a functional analysis using the GO and KEGG

databases (Fig 4) and by a mechanistic analysis using ChIP-seq data (Fig 5). Since the 30 ERGs

identified here exhibited alterations in gene expression at significant levels, they are associated

with various cell functions and cell signaling pathways. How the genes are functionally associ-

ated with estrogen action and how they respond to estrogen are the questions that need to be

examined further.

Fig 5. ER subtype-specific interaction of ERGs.

https://doi.org/10.1371/journal.pone.0273164.g005
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Functional significance of ERGs

The 30 ERGs analyzed here can be classified into several functional categories. Firstly, the

genes that encode enzymes, including enzyme activators and inhibitors, such as metabolic

enzymes, proteases, and protein kinases. The genes encoding metabolic enzymes are: ACOX2
encoding branched-chain acyl-CoA oxidase, a peroxisomal enzyme involved in the metabo-

lism of branched-chain fatty acids and bile acid intermediates [45]; B4GALT1 encoding β-

1,4-galactosyltransferase 1, which transfers galactose in a β-1,4-linkage to N-acetylglucosa-

mine, glucose, and xylose to form a lactosamine or lactose [46]; CYP1A1 encoding a cyto-

chrome P450 family 1A enzyme with monooxygenase or oxidoreductase activity [47, 48];

FDFT1 encoding farnesyl-diphosphate farnesyltransferase 1, or squalene synthase, which cata-

lyzes the conversion of trans-farnesyl-diphosphate to squalene, the first specific step in choles-

terol biosynthesis [49]; LOXL2 encoding a lysyl oxidase or protein lysin 6-oxidase, which

catalyzes cross-linking collagen and elastin in the extracellular matrix [50–52]. The genes asso-

ciated with proteolytic activity are as follows: CRISP3 encoding a protein with homology to

plant defense proteins with lytic activity against infectious pathogens [53]; CSTA encoding

cystatin A, a cysteine proteinase inhibitor that belongs to a large family of the cystatin super-

family [54]; CTSD encoding cathepsin D, a lysosomal aspartic protease with many additional

functions such as those in cell proliferation, invasion, metastasis, and angiogenesis of cancers

[55]; TMPRSS3 encoding a Type II transmembrane serine protease, a membrane-bound pro-

teolytic enzyme that is associated with biological processes such as poor prognosis in patients

with breast cancer [56, 57]. The genes associated with protein kinase activity and related cellu-

lar signaling are: PKIB encoding a protein acting as a competitive inhibitor of the cAMP-

dependent protein kinase, which plays important roles in cell signaling in diseases such as the

down-regulation of Akt signaling in irritable bowel syndrome [58], preeclampsia [59], and

cancers [60–62]; PKIB encoding a competitive inhibitor of cAMP-dependent protein kinase

involved in breast cancer development by enhancing ERα action [63]; RAB26 encoding a

RAB-family small GTPase that regulates intercellular vesicle trafficking, including exocytosis,

endocytosis, and recycling [64]; RAP1GAP encoding a GTPase-activating protein (GAP) that

promotes the hydrolysis of GTP in RAP1-GTP and inactivates RAP1, which plays important

roles in the regulation of cell adhesion and migration and in the progression and metastasis of

several types of cancer [65]; RAPGEFL1 encoding a protein with predicted guanyl-nucleotide

exchange factor (GEF) activity, which promotes RAP1 to load GTP and acquire the active

GTP-bound status [66]; RAPGEFL1, a gene found in several types of cancer, acting as an estro-

gen-regulated gene in breast cancer cells [67]; SRGAP3 encoding a protein highly expressed in

the brain, with structural characteristics of BAR/Rac1 GAP/SH3 domains and considered to

be a tumor suppressor in breast cancer [68].

Secondly, the genes that are related to specific cell functions and cancer are included in

the 30 ERGs. CRISP3 protein has been known for its androgen-responsive gene expression

[69], which can help to avoid apoptosis induced by estrogen deficiency in epithelial cells in

the salivary gland [70]. Cathepsins are lysosomal cysteine proteases, and their aberrant

expression is related to the malignancy of tumors, and thus, the inhibition of cathepsins by

CSTA expression has been considered to be a target for cancer treatment [71]. Down-regula-

tion of CSTA expression after the treatment of E2 in ERα-positive breast cancer cells were

reported [71, 72]. CTSD is an ERG and has been used as a marker of estrogen response [12].

The inhibition of CTSD activity is one of the targets for cancer treatment by controlling the

expression of CSTA [71]. CTSD is also considered to be a target in antibody-based therapy

for the treatment of triple-negative breast cancer due to its correlation with poor prognosis

of breast cancer and providing a tumor-specific extracellular target [73, 74]. DOK7 is
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associated with congenital myasthenic syndromes, a group of neuromuscular disorders

caused by impaired neuromuscular transmission, and encodes an adaptor protein which

mediates tyrosine kinase signaling to form the neuromuscular synapse [75, 76]. DOK7 is also

associated with malignancy of several types of cancer, including breast cancer, where DOK7
can inhibit cell proliferation, migration, and invasion of breast cancer by mediating signals

through the PI3K/PTEN/AKT pathway, and thus, may act as a tumor suppressor gene [77].

IGSF1 encodes a transmembrane immunoglobulin superfamily glycoprotein highly

expressed in the hypothalamus and in pituitary cells, and has roles in thyroid hormone bio-

synthesis [78], follicle-stimulating hormone biosynthesis [79], and growth hormone secre-

tion [80]. Although its cellular function has not been clarified, IGSF1mutations affecting the

symptoms and disease pathologies revealed that extracellular ligands are crucial for its func-

tion [81]. IL20 encodes a proinflammatory cytokine involved in the pathogenesis of inflam-

matory diseases, such as psoriasis, rheumatoid arthritis, and atherosclerosis, by inducing

factors such as TNF-α, IL-1β, MMP-1/13, and MCP-1, and plays important roles in regulat-

ing angiogenesis, osteoblastogenesis, and osteoclastogenesis [82, 83]. IL20 was found to be

an ERG [84], and its expression at the mRNA and protein levels in breast cancer cells was

up-regulated by estrogen treatment [85]. INSYN1 encodes an inhibitory postsynaptic density

protein involved in postsynaptic inhibition by decreasing inhibitory currents and increasing

excitability in the hippocampus [86].MATN2 encodes matrilin-2, a member of the matrilin

subfamily of extracellular matrix proteins containing von Willebrand factor A and epidermal

growth factor-like domains [87]. MATN2 is localized downstream of several growth factor

receptors, such as IGF-1R, GPER, and TGFβ1, and involved in tumor progression by stimu-

lating the growth, chemotaxis, and migration of cancer cells [88, 89]. PDLIM3 encodes a pro-

tein containing a PDZ and LIM domain, which are used to bind to the actin cytoskeleton,

and localizing at the Z-line of mature muscle fibers, and thus, the gene is likely involved in

the development and maintenance of muscle cells [90, 91]. SUSD3 encodes a cell surface pro-

tein with the sushi domain, a structure with a characteristic sandwich arrangement of β-

strands, and has been known as an ERG [92]. The possibility of SUSD3 as a prognostic and

diagnostic marker of breast cancer was investigated in several studies, including a DNA

microarray analysis [93], a pathological study [94] and an epidemiological study [95].

Additionally, several genes are considered to be tumor suppressor genes. CCDC68 is a puta-

tive tumor suppressor gene in several types of cancer [96], partly through regulating the cell

cycle by controlling the degradation of CDK4 [97]. FRY encodes an evolutionary conserved

protein with diverse functions, such as those controlling cell growth and morphogenesis

through FRY-NDR kinase signaling, in invertebrates and vertebrates [98]. In mammals, FRY

suppresses nuclear localization of YAP, a transcriptional coactivator with a role in promoting

cell proliferation, and thus, may act as a tumor suppressor [99]. FRY is required for mammary

gland development and may have a role in the suppression of breast cancer cell growth and

proliferation [100].

Moreover, the genes associated with breast cancer are included in the 30 ERGs. The expres-

sion of B4GALT1 has been known to quickly respond to estrogen treatment [6, 101], and the

ERα-dependent activation of cell proliferation through membrane B4GALT1 implicated its

crucial role in breast cancer development [102]. CYP1A1 is involved in estradiol metabolism

by the hydroxylation of estradiol to 2-hydroxyestradiol, which may contribute to the anti-

estrogenic effects of aryl hydrocarbon receptor ligands such as TCDD [103]. Due to the con-

nection of cholesterol metabolism to cancer, FDFT1 has been considered as a cancer prognos-

tic marker and a target for anticancer therapy [104]. The involvement of FDFT1 in breast

cancer progression through interaction with PGRMC1, a key protein in lipid metabolism, is

considered to be a potential basis for breast cancer treatment [105]. LOXL2 stimulates the
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proliferation of breast cancer cells and contributes to their oncogenic transformation and

pathogenesis, suggesting that the development of LOXL2 inhibitors is an effective therapeutic

strategy [106]. SYNE1 encodes nesprin-1, a member of the spectrin family of structural pro-

teins that links the plasma membrane to the actin cytoskeleton [107]. Since SYNE1 is located

19 kb downstream of ESR1 (the ERα gene), its association with estrogen action in ovarian can-

cer [108], endometrial cancer [109], and endometriosis [110] has been reported. TMPRSS3
was identified as an ERG by DNA microarray analysis, and its transcription level was increased

after treatment with E2 in MCF-7 cells with the help of cohesin, a protein complex that may

connect distant transcriptional regulatory elements with gene promoters [111]. Furthermore,

among 150 breast cancer risk regions identified by genome-wide association studies [112], sev-

eral ERGs identified in this study (BARX2, CBX6, KCNN4,MYEOV, PDZK1 in 300 ERGs)

were included as the targets for cancer drivers, transcription factors, and signaling proteins.

We also found that some of the ERGs identified here are included in the genes listed in cancer

genomics databases such as The Cancer Genome Atlas (TCGA; portal.gdc.cancer.gov) and

International Cancer Genome Consortium (ICGC; dcc.icgc.org) (12 genes found in TCGA

and 29 genes in ICGC; see S5 Table).

Thirdly, several ERGs are associated with transcriptional regulation. BARX2 was identified

as a homeodomain transcription factor that binds to the transcriptional regulatory regions in

the genes encoding cell adhesion molecules (CAMs) [113] and may have important roles in

skeletal muscle development, such as digit chondrogenesis, by controlling the expression of

CAMs [114]. The coordination of BARX2 with ER was suggested to regulate the growth, sur-

vival, and invasion of breast cancer cells [115]. EGR3 encodes a transcription factor belonging

to a family (the early growth response family) of proteins characterized by conserved zinc fin-

ger motifs, which are associated with various roles such as the development of muscle spindles

[116], the suppression of excessive immune response [117], and the progression of breast can-

cer [118]. EGR3, known as an ERG [119], has been used for evaluation of estrogenic activity

of the constituents in foods and medicines [120]. GATA4 encodes a transcription factor that

binds to the GATA motif as a cis-element and transactivates the genes for various cell func-

tions such as the development of heart, liver, lung, and urogenital cells [121, 122]. Due to its

suppressive effects against ovarian and colorectal cancer cell proliferation, GATA4 is consid-

ered to act as a potential tumor suppressor gene [123, 124]. GATA4 is also associated with

bone differentiation through the signaling pathways such as the ERα and TGFβ pathways

[125, 126]. SPOCD1 encodes a TFIIS-family transcription factor and has been reported to pro-

mote the progression and metastasis of several types of cancer, including bladder and ovarian

cancers, and osteosarcoma and glioblastoma, by activating signaling pathways such as the

EGFR and VEGFR pathways [127–130]. ZNF521 encodes a zinc-finger transcription factor

that has roles in various biological processes involving stem cells, such as erythroid/myeloid/

adipocyte/osteoblast differentiation, neural development, and bone formation, and is also

implicated in diseases such as pancreatic, hepatic, gastric, bladder, breast, and ovarian cancers

[131]. The role of ZNF521 in ER-positive breast cancer was indicated to be the expressional

regulation of ZNF423, a homolog of ZNF521, which forms a heterodimer with ZNF521,

through the transcriptional regulation involving ERGs [132].

Fourthly, the ERGs that are explicitly known for estrogen responsiveness include

B4GALT1, CSTA, CTSD, CYP1A1, EGR3, IL20, PKIB, RAPGEFL1, SUSD3, and TMPRSS3 (for

CTSD and EGR3, see Kiyama et al., 2014 [12]). Additionally, the genes known for the associa-

tion with estrogen signaling and function (some of which are discussed above) are: BARX2
(breast cancer), B4GALT1 (breast cancer), CTSD (triple-negative breast cancer), CYP1A1
(estradiol metabolism), DOK7 (breast cancer), EGR3 (breast cancer), FRY (breast cancer),

GATA4 (bone differentiation), IL20 (breast cancer and epigenetic regulation), LOXL2 (breast
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cancer),MATN2 (GPER signaling), PKIB (breast cancer), RAB26 (breast cancer), RAP1GAP
(GPER signaling), SUSD3 (breast cancer), SYNE1 (breast cancer), TMPRSS3 (breast cancer),

and ZNF521 (breast cancer).

Functions of ERGs through ER-binding

A genome-wide analysis of ERs and RNA polymerase II binding sites by ChIP-seq analysis

has revealed a new paradigm of estrogen-mediated gene expression. For example, ChIP-seq

analysis revealed the master transcriptional regulator, which may be the best cancer thera-

peutic target [133]. The mechanisms identified by ChIP-seq include the transcriptions of the

genes with E2-regulated promoters and enhancers, miRNAs, enhancer RNAs, long-ncRNAs,

and anti-sense RNAs [134]. The cistrome, or the genome-wide binding landscape, identified

by ChIP-seq using ERα phosphorylated at serine 118 revealed the involvement of this site in

a genome-wide transcriptional regulation, such as that by the transcription factor GRHL2, in

estrogen action [135]. Such cistromic studies can be applied to develop breast cancer treat-

ment [136].

About one third of the ERGs contained functional ERα-binding sites near their transcrip-

tion start sites [137]. ChIP-seq analysis along with functional annotations of the genes in the

vicinity of ERα-binding sites using databases, such as the GO, KEGG, and GeneGo databases,

revealed that the genes with specific functions, such as biological regulation, cellular processes,

and developmental processes, are the targets of ERα [138]. Furthermore, specific regulatory

networks consisting of transcription factors, modulators, and targets, such as GRHL2,

RUNX1, SRC1/SRC2/SRC3, and ERβ, have been identified as potential ER signaling regulators

[135, 139–141]. In our study, the ER-subtype specificity among 29 ERGs was 10 ERα-specific,

2 ERβ-specific, and 14 ERα/β-specific genes, along with 3 genes classified as other types

(Table 2). Thus, more than 80% of the identified ERGs are ERα-dependent. Interestingly, the

ERα non-genomic network is more reliable than the genomic network [141], and thus, may be

predominant in MCF-7 cells.

Three ERGs identified here (ZNF521, IGSF1, and CRISP3) were found to be ERα/β-inde-

pendent, suggesting that they are involved in other signaling pathways. The expression of

ZNF521 is known to potentially be controlled by ZNF423, an ERα-dependent ERG [132], and

thus, its regulation may be indirect, as observed here. On the other hand, the expressions of

IGSF1 and CRISP3 are known to be androgen receptor (AR)-dependent [142] and characteris-

tic in prostate cancer cells [143]. The expression and transcriptional regulation of the AR in

breast cancer cells, including MCF-7 cells, has been known [144, 145], and the crosstalk

between ERα and the AR in breast cancer progression [146, 147] is a likely mechanism of tran-

scriptional regulation of these two genes.

Based on ChIP-seq data, a total of 80,000 potential ERα-binding sites were classified into

four groups based on the variations of the presence or absence of both estrogen-responsive ele-

ments and the treatment with E2 [148], which indicates that some ERα-binding sites are not

E2-dependent. Evidently, ERα is present prior to ligand activation in the majority of the bind-

ing sites [148]. An independent study also revealed the presence of estrogen-independent ER

activity such as enhancer activity and the associated activity of histone modifications and

enhancer RNA transcription [149]. Additionally, there are differences in ChIP-seq data for

ERα-binding sites detected after the treatment with different ligands, E2, tamoxifen, and ICI

182,780, suggesting the mechanistic differences of ligand actions [150]. Thus, the ERα/β-inde-

pendent ERGs may represent the types of transcriptional regulation with more complex mech-

anisms of estrogen action.
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Conclusions

In this paper, we identified the ERGs that show statistical stability based on the CV values. We

evaluated their usefulness as markers for estrogenic activity by examining the stability of the

data when compared with correlation analysis, RT-PCR, and functional association with estro-

gen action through database searches. The ERGs identified here have been known for (1) the

enzymes, such as metabolic enzymes, proteases, and protein kinases, (2) the genes with specific

cell functions, such as cell-signaling mediators, tumor-suppressors, and roles in breast cancer,

(3) the association with transcriptional regulation, and (4) estrogen-responsiveness. The top

30 ERGs were further classified as ERα-binding, ERβ-binding, ERα/β-binding, or ER-inde-

pendent types based on ChIP-seq data. Therefore, the ERGs identified here represent various

cell functions and cell signaling pathways, including estrogen signaling, and thus, may be use-

ful for evaluations of estrogenic activity.

Supporting information

S1 Table. List of the primers for real-time RT-PCR analysis for the top 30 ERGs.

(XLSX)

S2 Table. Correlation analysis of RNA-seq datasets.

(DOCX)

S3 Table. List of 300 ERGs stably responding to E2 and their expression data. A total of 300

ERGs containing 150 up- and 150 down-regulated genes among ERGs stably responding to E2.

(XLSX)

S4 Table. Functional analysis of ERGs. (A) up-regulated genes in GO analysis; (B) down-reg-

ulated genes in GO analysis; (C) up-regulated genes in KEGG analysis; (D) down-regulated

genes in KEGG analysis.

(XLSX)

S5 Table. List of 30 or 300 ERGs listed in the TGCA and ICGC databases.

(DOCX)

S1 Raw images.

(PDF)

Author Contributions

Conceptualization: Ryoiti Kiyama.

Data curation: Kentaro Nishi, Wenqiang Fu, Ryoiti Kiyama.

Formal analysis: Kentaro Nishi, Wenqiang Fu, Ryoiti Kiyama.

Funding acquisition: Ryoiti Kiyama.

Investigation: Kentaro Nishi, Wenqiang Fu, Ryoiti Kiyama.

Methodology: Kentaro Nishi, Wenqiang Fu, Ryoiti Kiyama.

Project administration: Ryoiti Kiyama.

Resources: Kentaro Nishi, Ryoiti Kiyama.

Software: Kentaro Nishi, Ryoiti Kiyama.

Supervision: Ryoiti Kiyama.

PLOS ONE Novel estrogen-responsive genes

PLOS ONE | https://doi.org/10.1371/journal.pone.0273164 August 17, 2022 16 / 24

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0273164.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0273164.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0273164.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0273164.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0273164.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0273164.s006
https://doi.org/10.1371/journal.pone.0273164


Validation: Kentaro Nishi, Wenqiang Fu, Ryoiti Kiyama.

Visualization: Kentaro Nishi, Ryoiti Kiyama.

Writing – original draft: Kentaro Nishi, Ryoiti Kiyama.

Writing – review & editing: Ryoiti Kiyama.

References

1. Kiyama R, Wada-Kiyama Y. Estrogenic endocrine disruptors: Molecular mechanisms of action. Envi-

ron Int. 2015; 83:11–40. https://doi.org/10.1016/j.envint.2015.05.012 PMID: 26073844

2. Kiyama R. Nutritional implications of ginger: chemistry, biological activities and signaling pathways. J

Nutr Biochem. 2020; 86:108486. https://doi.org/10.1016/j.jnutbio.2020.108486 PMID: 32827666

3. Tanji M, Kiyama R. Expression profiling of estrogen responsive genes using genomic and proteomic

techniques for the evaluation of endocrine disruptors. Curr Pharmacogenomics. 2004; 2(3):255–266.

https://doi.org/10.2174/1570160043377529

4. Kiyama R, Zhu Y. DNA microarray-based gene expression profiling of estrogenic chemicals. Cell Mol

Life Sci. 2014; 71(11):2065–82. https://doi.org/10.1007/s00018-013-1544-5 PMID: 24399289

5. Ikeda K, Horie-Inoue K, Inoue S. Identification of estrogen-responsive genes based on the DNA bind-

ing properties of estrogen receptors using high-throughput sequencing technology. Acta Pharmacol

Sin. 2015; 36(1):24–31. https://doi.org/10.1038/aps.2014.123 PMID: 25500870

6. Inoue A, Yoshida N, Omoto Y, Oguchi S, Yamori T, Kiyama R, et al. Development of cDNA microarray

for expression profiling of estrogen-responsive genes. J Mol Endocrinol. 2002; 29(2):175–92. https://

doi.org/10.1677/jme.0.0290175 PMID: 12370120

7. Lobenhofer EK, Bennett L, Cable PL, Li L, Bushel PR, Afshari CA. Regulation of DNA replication fork

genes by 17β-estradiol. Mol Endocrinol. 2002; 16(6):1215–29. https://doi.org/10.1210/mend.16.6.

0858 PMID: 12040010

8. Terasaka S, Aita Y, Inoue A, Hayashi S, Nishigaki M, Aoyagi K, et al. Using a customized DNA micro-

array for expression profiling of the estrogen-responsive genes to evaluate estrogen activity among

natural estrogens and industrial chemicals. Environ Health Perspect. 2004; 112(7):773–81. https://doi.

org/10.1289/ehp.6753 PMID: 15159206

9. Cicatiello L, Scafoglio C, Altucci L, Cancemi M, Natoli G, Facchiano A, et al. A genomic view of estro-

gen actions in human breast cancer cells by expression profiling of the hormone-responsive transcrip-

tome. J Mol Endocrinol. 2004; 32(3):719–75. https://doi.org/10.1677/jme.0.0320719 PMID: 15171711

10. Lin CY, Ström A, Vega VB, Kong SL, Yeo AL, Thomsen JS, et al. Discovery of estrogen receptor α tar-

get genes and response elements in breast tumor cells. Genome Biol. 2004; 5(9):R66. https://doi.org/

10.1186/gb-2004-5-9-r66 PMID: 15345050

11. Fujimoto N, Igarashi K, Kanno J, Inoue T. Identification of estrogen-responsive genes in the GH3 cell

line by cDNA microarray analysis. J Steroid Biochem Mol Biol. 2004; 91(3):121–9. https://doi.org/10.

1016/j.jsbmb.2004.02.006 PMID: 15276619

12. Kiyama R, Zhu Y, Kawaguchi K, Iitake N, Wada-Kiyama Y, Dong S. Estrogen-responsive genes for envi-

ronmental studies. Environ Technol Innov. 2014; 1–2:16–28. https://doi.org/10.1016/j.eti.2014.09.001

13. Inoue A, Tanji M, Kiyama R. Focused microarray analysis: characterization of phenomes by gene

expression profiling. Curr Pharmacogenomics 2006; 4:245–260.

14. van ’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AA, Mao M, et al. Gene expression profiling pre-

dicts clinical outcome of breast cancer. Nature. 2002; 415(6871):530–6. https://doi.org/10.1038/

415530a PMID: 11823860

15. Terasaka S, Inoue A, Tanji M, Kiyama R. Expression profiling of estrogen-responsive genes in breast

cancer cells treated with alkylphenols, chlorinated phenols, parabens, or bis- and benzoylphenols for

evaluation of estrogenic activity. Toxicol Lett. 2006; 163(2):130–41. https://doi.org/10.1016/j.toxlet.

2005.10.005 PMID: 16280211

16. Marguerat S, Bähler J. RNA-seq: from technology to biology. Cell Mol Life Sci. 2010; 67(4):569–79.

https://doi.org/10.1007/s00018-009-0180-6 PMID: 19859660

17. Conesa A, Madrigal P, Tarazona S, Gomez-Cabrero D, Cervera A, McPherson A, et al. A survey of

best practices for RNA-seq data analysis. Genome Biol. 2016; 17:13. https://doi.org/10.1186/s13059-

016-0881-8 PMID: 26813401

18. Xu J, Gong B, Wu L, Thakkar S, Hong H, Tong W. Comprehensive Assessments of RNA-seq by the

SEQC Consortium: FDA-Led Efforts Advance Precision Medicine. Pharmaceutics. 2016; 8(1):8.

https://doi.org/10.3390/pharmaceutics8010008 PMID: 26999190

PLOS ONE Novel estrogen-responsive genes

PLOS ONE | https://doi.org/10.1371/journal.pone.0273164 August 17, 2022 17 / 24

https://doi.org/10.1016/j.envint.2015.05.012
http://www.ncbi.nlm.nih.gov/pubmed/26073844
https://doi.org/10.1016/j.jnutbio.2020.108486
http://www.ncbi.nlm.nih.gov/pubmed/32827666
https://doi.org/10.2174/1570160043377529
https://doi.org/10.1007/s00018-013-1544-5
http://www.ncbi.nlm.nih.gov/pubmed/24399289
https://doi.org/10.1038/aps.2014.123
http://www.ncbi.nlm.nih.gov/pubmed/25500870
https://doi.org/10.1677/jme.0.0290175
https://doi.org/10.1677/jme.0.0290175
http://www.ncbi.nlm.nih.gov/pubmed/12370120
https://doi.org/10.1210/mend.16.6.0858
https://doi.org/10.1210/mend.16.6.0858
http://www.ncbi.nlm.nih.gov/pubmed/12040010
https://doi.org/10.1289/ehp.6753
https://doi.org/10.1289/ehp.6753
http://www.ncbi.nlm.nih.gov/pubmed/15159206
https://doi.org/10.1677/jme.0.0320719
http://www.ncbi.nlm.nih.gov/pubmed/15171711
https://doi.org/10.1186/gb-2004-5-9-r66
https://doi.org/10.1186/gb-2004-5-9-r66
http://www.ncbi.nlm.nih.gov/pubmed/15345050
https://doi.org/10.1016/j.jsbmb.2004.02.006
https://doi.org/10.1016/j.jsbmb.2004.02.006
http://www.ncbi.nlm.nih.gov/pubmed/15276619
https://doi.org/10.1016/j.eti.2014.09.001
https://doi.org/10.1038/415530a
https://doi.org/10.1038/415530a
http://www.ncbi.nlm.nih.gov/pubmed/11823860
https://doi.org/10.1016/j.toxlet.2005.10.005
https://doi.org/10.1016/j.toxlet.2005.10.005
http://www.ncbi.nlm.nih.gov/pubmed/16280211
https://doi.org/10.1007/s00018-009-0180-6
http://www.ncbi.nlm.nih.gov/pubmed/19859660
https://doi.org/10.1186/s13059-016-0881-8
https://doi.org/10.1186/s13059-016-0881-8
http://www.ncbi.nlm.nih.gov/pubmed/26813401
https://doi.org/10.3390/pharmaceutics8010008
http://www.ncbi.nlm.nih.gov/pubmed/26999190
https://doi.org/10.1371/journal.pone.0273164


19. Lamas A, Regal P, Vázquez B, Miranda JM, Franco CM, Cepeda A. Transcriptomics: A powerful tool

to evaluate the behavior of foodborne pathogens in the food production chain. Food Res Int. 2019;

125:108543. https://doi.org/10.1016/j.foodres.2019.108543 PMID: 31554082

20. Niazian M. Application of genetics and biotechnology for improving medicinal plants. Planta. 2019; 249

(4):953–973. https://doi.org/10.1007/s00425-019-03099-1 PMID: 30715560

21. Wang S, Li X, Zhang W, Gao Y, Zhang K, Hao Q, et al. Genome-wide investigation of genes regulated

by ERα in breast cancer cells. Molecules. 2018; 23(10):2543. https://doi.org/10.3390/

molecules23102543 PMID: 30301189

22. Hahm ER, Kim SH, Mathan SV, Singh RP, Singh SV. Mechanistic targets of diallyl trisulfide in human

breast cancer cells identified by RNA-seq analysis. J Cancer Prev. 2021; 26(2):128–136. https://doi.

org/10.15430/JCP.2021.26.2.128 PMID: 34258251

23. Li H, An X, Li Q, Yu H, Li Z. Construction and analysis of competing endogenous RNA network of

MCF-7 breast cancer cells based on the inhibitory effect of 6-thioguanine on cell proliferation. Oncol

Lett. 2021; 21(2):104. https://doi.org/10.3892/ol.2020.12365 PMID: 33376537

24. Lin KH, Huang MY, Cheng WC, Wang SC, Fang SH, Tu HP, et al. RNA-seq transcriptome analysis of

breast cancer cell lines under shikonin treatment. Sci Rep. 2018; 8(1):2672. https://doi.org/10.1038/

s41598-018-21065-x PMID: 29422643

25. Men X, Ma J, Wu T, Pu J, Wen S, Shen J, et al. Transcriptome profiling identified differentially

expressed genes and pathways associated with tamoxifen resistance in human breast cancer Onco-

target. 2017; 9(3):4074–4089. https://doi.org/10.18632/oncotarget.23694 PMID: 29423105

26. Wang J, Yu H, Yili A, Gao Y, Hao L, Aisa HA, et al. Identification of hub genes and potential molecular

mechanisms of chickpea isoflavones on MCF-7 breast cancer cells by integrated bioinformatics analy-

sis. Ann Transl Med. 2020; 8(4):86. https://doi.org/10.21037/atm.2019.12.141 PMID: 32175379

27. Ferraro L, Ravo M, Nassa G, Tarallo R, De Filippo MR, Giurato G, et al. Effects of oestrogen on micro-

RNA expression in hormone-responsive breast cancer cells. Horm Cancer. 2012; 3(3):65–78. https://

doi.org/10.1007/s12672-012-0102-1 PMID: 22274890

28. Li MX, Wang HY, Yuan CH, Ma ZL, Jiang B, Li L, et al. Establishment of a macrophage phenotypic

switch related prognostic signature in patients with pancreatic cancer. Front Oncol. 2021; 11:619517.

https://doi.org/10.3389/fonc.2021.619517 PMID: 33747931

29. Hah N, Murakami S, Nagari A, Danko CG, Kraus WL. Enhancer transcripts mark active estrogen receptor

binding sites. Genome Res. 2013; 23(8):1210–23. https://doi.org/10.1101/gr.152306.112 PMID:

23636943

30. Coscujuela Tarrero L, Ferrero G, Miano V, De Intinis C, Ricci L, Arigoni M, et al. Luminal breast can-

cer-specific circular RNAs uncovered by a novel tool for data analysis. Oncotarget. 2018; 9

(18):14580–14596. https://doi.org/10.18632/oncotarget.24522 PMID: 29581865
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