Chemoenzymatic Synthesis of Functional Sialyl Lewis ${ }^{\mathbf{X}}$ Mimetics with a Heteroaromatic Core

Claudine Schlemmer, ${ }^{[a]}$ Christine Wiebe, ${ }^{[a]}$ Dorota Ferenc, ${ }^{[a]}$ Danuta Kowalczyk, ${ }^{[a]}$ Stefanie Wedepohl, ${ }^{[b]}$ Patrick Ziegelmüller, ${ }^{[\mathrm{c}]}$ Jens Dernedde, ${ }^{[b]}$ and Till Opatz ${ }^{*[a]}$
In memory of Alan R. Katritzky

Abstract

Functional mimetics of the sialyl Lewis ${ }^{\mathrm{X}}$ tetrasaccharide were prepared by the enzymatic sialylation of a 1,3-diglycosylated indole and a glycosyl azide, which was subsequently transformed into a 1,4-diglycosylated 1,2,3-triazole, by using the trans-sialidase of Trypanosoma cruzi. These com-

Abstract

pounds inhibited the binding of E-, L-, and P-selectin-coated nanoparticles to polyacrylamide-bound sialyl-Lewis ${ }^{\mathrm{X}}$ -

Keywords: cell adhesion • enzyme catalysis • heterocycles • oligosaccharides • saccharide mimetics
containing neighboring sulfated tyrosine residues ($\mathrm{sTyr} / \mathrm{sLe}^{\mathrm{x}}$-PAA) at low or sub-millimolar concentrations. Except for E-selectin, the mimetics showed higher activities than the natural tetrasaccharide.

Introduction

Cell-cell interactions are a prerequisite for the functioning of multicellular organisms. Besides protein-protein interactions, the recognition of glycostructures on the cell surface by cognate (glyco)protein receptors-lectins-is one of the two major mechanisms of cell adhesion. ${ }^{[1]}$ In humans and animals, the attractive interactions between leukocytes, which patrol the bloodstream, and the activated endothelium of blood vessels, which indicates tissue inflammation, play a key role in the inflammatory cascade, which is an im-
[a] Dr. C. Schlemmer, Dr. C. Wiebe, D. Ferenc, D. Kowalczyk, Prof. Dr. T. Opatz
Institut für Organische Chemie
Johannes Gutenberg-Universität
Duesbergweg 10-14, 55128 Mainz (Germany)
Fax: (+49) 6131-3922338
E-mail: opatz@uni-mainz.de
[b] Dr. S. Wedepohl, Dr. J. Dernedde
Institut für Laboratoriumsmedizin, Klinische Chemie und Pathobiochemie
Charité-Universitätsmedizin Berlin, CVK Augustenburger Platz 1, 13353 Berlin (Germany)
[c] Dr. P. Ziegelmüller
Institut für Biochemie und Molekularbiologie
Universität Hamburg
Martin-Luther-King-Platz 6, 20146 Hamburg (Germany)Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/asia.201402118.
©f © 2014 The Authors. Published by Wiley-VCH Verlag GmbH \& Co. KGaA.
This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
portant part of the immune response against pathogenic microbes. Recognition of the tetrasaccharide sialyl Lewis ${ }^{\mathrm{X}}$ (sLe ${ }^{\mathrm{X}}, \quad \alpha$-Neup $5 \mathrm{Ac}-(2 \rightarrow 3)-\beta$-d-Gal $p-(1 \rightarrow 4)-[\alpha-$-L-Fucp- $(1 \rightarrow$ 3)]-d-GlcpNAc, 1; Scheme 1) by endothelial (E-), platelet (P-), and lymphocyte ($\mathrm{L}-$)selectin constitutes the initial step in this physiological process. ${ }^{[2]}$

Scheme 1. Structures of the sialyl Lewis ${ }^{\mathrm{X}}$ tetrasaccharide and mimetic 2.

The excessive accumulation of leukocytes in an inflamed tissue, initiated by exaggregated leukocyte adhesion to activated vascular endothelia, is thought to be the main cause of secondary tissue destruction in various chronic diseases, such as asthma, ${ }^{[3]}$ psoriasis, ${ }^{[4]}$ and rheumatoid arthritis. ${ }^{[5]} \mathrm{Se}$ -lectin-based cell adhesion is also involved in pathomechanisms, such as tumor metastasis ${ }^{[6]}$ or the reperfusion syndrome, ${ }^{[7]}$ which is observed upon restoring circulation after a period of ischemia in a diverse range of tissues and can contribute to complications in the transplantation of organs. In all of these cases, inhibition of the sLe ${ }^{\mathrm{x}}$-selectin interactions is desirable. To achieve this inhibition, numerous mimetics of the $\mathrm{sLe}^{\mathrm{X}}$ molecule have been synthesized that are
capable of competing with their natural antetype for the binding site in the C-type lectin domain of the selectins. ${ }^{[77,8]}$ These mimetics belong to various structural classes, ranging from all-carbohydrate compounds to peptides and N -heterocycles. ${ }^{[9]}$
The crystal structures of complexes of sLe ${ }^{\mathrm{X}}$ with E - and P-selectin show that, among all four saccharide units, the GlcNAc residue has the weakest interactions with both receptors. ${ }^{[2]}$ In previously reported mimetics, the GlcNAc residue has been substituted by cyclic and acyclic 1,2-diols to imitate the relative arrangement of the 3 -sialylated galactose residue and the fucose moiety in sLe ${ }^{\mathrm{X} .[8]}$ In particular, $(1 R, 2 R)$-cyclohexanediol was found to be a well-suited GlcNAc surrogate (see mimetic 2; Scheme 1), whereas the use of more flexible or improperly aligning spacer units resulted in a loss of affinity towards E-selectin. ${ }^{[10]}$ We wanted to investigate the possibility of replacing GlcNAc by a rigid heterocycle, which ideally should: 1) simplify the preparation of the respective mimetic; 2) permit the late-stage variation of the fucose moiety; and 3) use N - or C -glycosidic bonds to attach the pending hexose units to prevent enzymatic cleavage, whilst 4) retaining or even improving the affinity of the native tetrasaccharide.

Results and Discussion

Attempts to bring the galactose and fucose moieties into similar spatial proximity as in $\mathrm{sLe}^{\mathrm{x}}$ by preparing diglycosylacetylenes and subjecting them to 1,3-dipolar cycloaddition or by transforming them into 2,3-diglycosylquinoxalines through oxidation into 1,2 -diones and subsequent reaction with o-phenylenediamine met with little success. In contrast, C,N-diglycosylated o-alkynylbenzamides of type $\mathbf{5}$ could be readily prepared from glycosylamines by amide formation with 2-iodobenzoyl chloride; subsequent Sonogashira reaction with glycosylacetylenes to provide the starting materials for a Larock iodocyclization has been reported to furnish isoindolinones of type 7 (Scheme 2). ${ }^{[11]}$
Although the reaction products exhibited spectroscopic properties that were very similar to literature data, the structural assignment of the known iodocyclization products was found to have been wrong and that isobenzofurans of type 6 were formed instead. ${ }^{[12]}$ These latter products should not only provide a less-suitable spatial arrangement of the glycosyl moieties, but their structure also explains the observed instability towards the conditions for protectinggroup removal.

The copper- $(\mathrm{CuAAC})^{[13]}$ or ruthenium-catalyzed (RuAAC) ${ }^{[14]}$ 1,3-dipolar cycloaddition ${ }^{[15]}$ of glycosylazides to glycosylacetylenes provided the expected 1,4- and 1,5-diglycosylated 1,2,3-triazoles, respectively, in appreciable yields. ${ }^{[11 a]}$ In particular, the CuAAC reaction was highly reliable and largely insensitive towards steric hindrance. Moreover, both types of triazoles were stable towards the hydrogenolytic removal of benzyl protecting groups on the glycosylacetylene moiety. Selective enzymatic sialylation of the 3-

Scheme 2. Diglycosylated heterocycles as potential core structures.

OH group of the galactopyranose unit was employed to transform β-d-galactopyranosylazide (8) into disaccharide azide 10. This reaction uses the readily available p-nitrophenylsialoside 9 as the sialyl donor and is catalyzed by the trans-sialidase of Trypanosoma cruzi, the causal agent of Chagas disease (Scheme 3). ${ }^{[16]}$ Subsequent CuAAC reaction

Scheme 3. Chemoenzymatic synthesis of mimetic 13.
with fucosylacetylene $\mathbf{1 1}$ furnished C-fucoside 12, which was subsequently debenzylated to yield mimetic $\mathbf{1 3}$ (Scheme 3).

The specific role of the α-L-fucopyranosyl unit within the $\mathrm{sLe}^{\mathrm{X}}$ tetrasaccharide is the complexation of a selectin-bound Ca^{2+} ion by the hydroxy groups at the 2-, 3-, and 4-positions. ${ }^{[2,17]} \alpha$-D-Mannopyranosides present the same spatial arrangement of their three secondary alcohol functions with the axial $2-\mathrm{OH}$-group of mannose being equivalent to the 4 OH -group of fucose. Based on this analogy, various functional mannose-derived sLe ${ }^{\mathrm{X}}$ mimetics were prepared. ${ }^{[18]}$ To test whether the activity of mimetic $\mathbf{1 3}$ could be retained or

Scheme 4. Synthesis of C-mannoside $\mathbf{1 6}$
even improved in a similar fashion, the mannose analogue of compound 13, C-mannoside 16, was prepared accordingly from mannosylacetylene $\mathbf{1 4}$ (Scheme 4).

1,3-Diglycosylindoles are another class of potential trisaccharide mimetics and present the same relative arrangement of the two pendant glycosyl moieties as in 1,4-diglycosyl-$1,2,3$-triazoles. Although the installation of 1,3- and 2,3-diglycosylation patterns on the indole core has already been established, ${ }^{[19]}$ the former compound class is particularly attractive, owing to the possibility of introducing both carbohydrate substituents in a straightforward sequential manner. The result of scaffold hopping from 1,2,3-triazole to indole on mimetic $\mathbf{1 6}$ is C-mannoside 21, which could be prepared by the reaction of D -galactose with indoline and subsequent dehydrogenation of the resulting β - N -galactoside with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), ${ }^{[20]}$ followed by O-acetylation to afford protected 1-glycosylindole 17. $\alpha-$ Selective C-glycosylation at the 3-position with peracetylated mannosyl trichloroacetimidate $\mathbf{1 8}$ produced 1,3-diglycosylindole 19, which was deacetylated under Zemplén conditions to give trisaccharide mimetic $\mathbf{2 0}$. The enzymatic sialylation reaction proceeded with complete regioselectivity and furnished sLe ${ }^{\mathrm{x}}$ mimetic 21 as the sole product in 13% yield (24% based on recovered starting materials; Scheme 5).

Scheme 5. Chemoenzymatic synthesis of mimetic 21.

Evaluation of Selectin Inhibition

The binding of the prepared $\mathrm{sLe}^{\mathrm{x}}$ mimetics to the selectins was studied by using a competitive inhibition assay. In this assay, potential inhibitors compete with the binding of L-, P, or E-selectin to the synthetic sulfo-tyrosine/sLe ${ }^{\mathrm{X}}$ biligand under flow conditions. ${ }^{[21]}$ Mimetics $\mathbf{1 3}, \mathbf{1 6}$, and $\mathbf{2 1}$ were compared to the performance of the sLe ${ }^{\mathrm{X}}$ tetrasaccharide in this assay (Figure 1). Binding of L- and P -selectin is not inhibited by the natural sLe ${ }^{\mathrm{X}}$ ligand within the tested concentration range since additional binding sites on these selectins

Figure 1. Performance of mimetics $\mathbf{1 3}, \mathbf{1 6}, \mathbf{2 1}$, and $\mathrm{sLe}^{\mathrm{x}}$ in a competitive selectin-inhibition assay, expressed as a plot of relative binding versus concentration.

Table 1. IC_{50} values $\left[\mathrm{mM}\right.$] of the $\mathrm{sLe}^{\mathrm{x}}$ mimetics, as calculated from the dose-response curves.

Compound		IC_{50} value	
	L-selectin	P-selectin	E-selectin
$\mathbf{1 3}$	2.3	2.2	-
$\mathbf{1 6}$	1.8	-	-
$\mathbf{2 1}$	1.8	0.7	7.4
$\mathbf{s L e}^{\mathrm{x}}$	-	-	0.7

need to be addressed. However, E-selectin is inhibited, with an IC_{50} value of about 0.7 mm (Table 1). In contrast, mimetic 13 shows inhibition of L - and P -selectin, with IC_{50} values of $2.2-2.3 \mathrm{~mm}$, but no significant inhibition of E-selectin binding within the tested concentration range. Mimetic 16 only shows inhibition of L -selectin, with IC_{50} values within the same concentration range as for mimetics $\mathbf{1 3}$ and 21. Indolebased mimetic 21 can inhibit all three selectins, with IC_{50} values from 0.7 mm (P-selectin) to 7.4 mm (E-selectin), and is as effective for L-selectin inhibition as the other two mimetics.
Thus, the mimetics tested show selectivity towards the three selectins: Whereas sLe ${ }^{\mathrm{X}}$ is the best inhibitor of E -selectin and does not affect the other selectins within the tested concentration range, compound $\mathbf{2 1}$ is the best inhibitor of P-selectin and shows lower potency towards L- and Eselectin. Compound $\mathbf{1 3}$ inhibits P - and L-selectin in a similar manner and compound $\mathbf{1 6}$ shows a clear preference for L-selectin.

Conclusions

In summary, three heteroarene-based mimetics of sialyl Lewis ${ }^{\mathrm{X}}$ were synthesized by using chemoenzymatic methods. All three compounds were found to be better inhibitors than the native tetrasaccharide for at least one of the three selectins, with E-selectin the weakest binding partner in all cases. Whereas triazole-based C-mannoside $\mathbf{1 6}$ only showed appreciable binding to L -selectin, the analogous C -fucoside (13) inhibited P - and L -selectin binding with similar potency. The most-active compound was indole-based mimetic 21, which affected all three selectins. Mimetic 21 showed a clear preference for P- over L-selectin and had less effect on Eselectin binding, thereby resulting in an IC_{50} value about one order of magnitude higher than that of $\mathrm{sLe}^{\mathrm{x}}$. However, the binding of L - and P -selectin was even more effectively inhibited than by the natural tetrasaccharide.
Interestingly, scaffold hopping from 1,2,3-triazole to indole on mimetic $\mathbf{1 6}$ generated high affinity for P-selectin whilst retaining the same activity for L-selectin. These results demonstrate that functional sLe ${ }^{\mathrm{X}}$ mimetics can be obtained without any particular relative preorganization of the 3-sialylgalactose unit with the fucose moiety or a suitable substitute through an exo-anomeric effect. Substitution of the GlcNAc portion of $\operatorname{sLe}^{\mathrm{X}}$, the impact of which on the overall conformation of the tetrasaccharide has been thor-
oughly investigated, ${ }^{[22]}$ by two simple heteroarenes even leads to compounds with improved affinity for P - and/or Lselectin without the need to address distal binding pockets. ${ }^{[23]}$ Although the metabolic stability of the as-prepared mimetics has not yet been tested, complete inertness of the two modified glycosidic bonds against degrading glycosidases is to be expected because the essential structural features for the action of these enzymes are missing. It is likely that heteroarene-based glycomimetics can also be used to target further carbohydrate-binding proteins, which may constitute an interesting opportunity for drug development.

Experimental Section

For materials and methods, see the Supporting Information.
Expression and Purification of Trans-sialidase
T. cruzi trans-sialidase, ${ }^{[16 c, 25]}$ which contained a hexahistidine tag, was expressed in E. coli M15 pRep4 cells (Qiagen) in terrific broth medium at $18^{\circ} \mathrm{C}$ for 16 h and 120 rpm . The cells were harvested, re-suspended in 50 mm sodium phosphate buffer (pH 8.0) that contained 0.3 m NaCl and 0.05% Lubrol, and sonicated. After centrifugation, the supernatant was applied onto a His-Trap matrix (GE Healthcare) and washed with 50 mm sodium phosphate buffer (pH 8.0) that contained 0.3 m NaCl . Trans-sialidase was eluted with 50 mm sodium phosphate buffer (pH 8.0) that contained 250 mm imidazole with a purity of 95% and dialyzed against 20 mm Tris buffer (pH 7.6) that contained 30 mm NaCl .

Competitive Selectin-Inhibition Assay

Sialyl Lewis ${ }^{X}$ mimetics were tested for their ability to inhibit selectinmediated binding by using a competitive SPR assay, as described by Enders et al. ${ }^{[21]}$ Briefly, recombinant selectin Fc-chimeras (R\&D Systems) were coupled to gold nanoparticles that were coated with protein A (15 nm average, Aurion) in running buffer (20 mm HEPES $\mathrm{pH} 7,4$; $150 \mathrm{~mm} \mathrm{NaCl}, 1 \mathrm{~mm} \mathrm{CaCl} 2$) and passed over the surface of a sensor chip of a BIAcore X device (GE Healthcare). The sensor-chip surface was divided into two flow cells: a measurement cell, which was functionalized with $\mathrm{sLe}^{\mathrm{x}}$ and sulfated tyrosine coupled to a polyacrylamide backbone, and a reference cell, which displays the non-binding LacNAc polymer in a similar manner. Both conjugates were immobilized onto the streptavidin sensor chip by using biotin. The unspecific binding signal from the reference cell was subtracted during the measurements. An aliquot $(35 \mu \mathrm{~L})$ of the selectin-coupled gold particles with the buffer or inhibitors was injected at a flow rate of $20 \mu \mathrm{Lmin}^{-1}$; the dissociation phase was 120 s . The data points were collected by using the difference of the binding signal immediately before injection (baseline) and at the end of the dissociation phase. All of the measurements were performed at least three times and averaged. The inhibitors were incubated for 18 min with the selectin gold particles prior to injection. The resulting reduced binding signal was divided by the binding values without the inhibitor (100%) at each corresponding point, which was calculated by linear regression of the 100% values taken before and after each series of measurements. The data were plotted as the percentage relative binding versus the concentration of inhibitor. The IC_{50} values were calculated by using a dose-response curve fit (log inhibitor versus normalized responsevariable slope) in GraphPad Prism 5.

3-O-(5-Acetamido-3,5-didesoxy-D-glycero- α-D-galactonon-2-ulopyranosyl)- β-D-galactopyranosyl azide (10)

The title compound was prepared according to a method reported by Neubacher et al. ${ }^{[166]}$ Azide $\mathbf{8}^{[26]}(400 \mathrm{mg}, 1.95 \mathrm{mmol})$ and 4-nitrophenyl- α sialoside $\mathbf{9}^{[27]}(492 \mathrm{mg}, 1.10 \mathrm{mmol})$ were dissolved in Tris-HCl-buffer $(8 \mathrm{~mL}, 100 \mathrm{~mm}, \mathrm{pH} 7.9)$. The mixture was cooled to $13^{\circ} \mathrm{C}$ by using a cryostat and an aqueous solution of recombinant trans-sialidase ($4 \mathrm{~mL}, c=$ $0.93 \mathrm{mg} \mathrm{mL}^{-1}$) was added. The mixture was kept at that temperature for

3 days. The enzyme was denatured by the addition of $\mathrm{EtOH}(10 \mathrm{~mL})$ and the mixture was centrifuged. The supernatant was removed and the solvent was evaporated by lyophilization. The lyophilisate was purified by flash chromatography on silica gel (cyclohexane/EtOAc, 3:1 $\rightarrow \mathrm{EtOAc} /$ $\mathrm{MeOH}, 10: 1 \rightarrow \mathrm{MeOH})$. The product contained remaining TRIS-buffer ($13 \mathrm{~mol} \%$ as judged by NMR spectroscopy), which could neither be removed by the weakly acidic cation-exchange resin Amberlite IRC-86 nor by repeated chromatography. Yield: 257 mg ($0.518 \mathrm{mmol}, 47 \%$); colorless solid; $R_{\mathrm{f}}=0.12\left(\mathrm{BuOH} / \mathrm{AcOH} / \mathrm{H}_{2} \mathrm{O}, 5: 2: 2\right)$; m.p. $175.0-176.0^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}^{24}= \pm 0.0\left(c=0.40, \mathrm{CD}_{3} \mathrm{OD}\right) ;{ }^{1} \mathrm{H}$ NMR (COSY, $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=4.49\left(\mathrm{~d},{ }^{3} J_{1,2}=8.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-1^{\text {gal }}\right), 4.04\left(\mathrm{dd},{ }^{3} J_{2,3}=9.6 \mathrm{~Hz},{ }^{3} J_{3,4}=2.7 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H} ; \mathrm{H}-3^{\text {gal }}\right), 3.95\left(\mathrm{~d},{ }^{3} J_{3,4}=2.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-4^{\text {gal }}\right), 3.86-3.59\left(\mathrm{~m}, 9 \mathrm{H} ; \mathrm{H}-5^{\text {gal }}\right.$, $\mathrm{H}-6 \mathrm{a} / \mathrm{b}^{\text {gal }}, \mathrm{H}-4^{\text {sia }}, \mathrm{H}-5^{\text {sia }}, \mathrm{H}-6^{\text {sia }}, \mathrm{H}-8^{\text {sia }}, \mathrm{H}-9 \mathrm{a} / \mathrm{b}^{\text {sia }}$), 3.55 (pseudo-t, ${ }^{3} J_{1,2}=$ $\left.{ }^{3} J_{2,3}=9.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2^{\text {gal }}\right), 3.50\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H}-7^{\text {sia }}\right), 2.84\left(\mathrm{dd},{ }^{2} J=11.8 \mathrm{~Hz}\right.$, $\left.{ }^{3} J_{3,4}=3.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3 \mathrm{a}^{\text {sia }}\right), 2.01\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}^{\text {NHAc }}\right.$), $1.76-1.70 \mathrm{ppm}(\mathrm{m}, 1 \mathrm{H}$; $\left.\mathrm{H}-3 \mathrm{~b}^{\text {sia }}\right) ;{ }^{13} \mathrm{C}$ NMR, HSQC ($\left.100.6 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right): \delta=175.5\left(2 \mathrm{C} ; \mathrm{C}=\mathrm{O}^{\text {sia }}\right.$, $\left.\mathrm{C}=\mathrm{O}^{\mathrm{NHAc}}\right), 101.1\left(\mathrm{C}-2^{\text {sia }}\right), 92.3\left(\mathrm{C}-1^{\text {gal }}\right), 77.7\left(\mathrm{C}-3^{\text {gal }}\right), 70.3\left(\mathrm{C}-2^{\text {gal }}\right), 70.0(\mathrm{C}-$ $\left.7^{\text {sia }}\right), 78.9,74.9,72.9,69.3\left(\mathrm{C}-5^{\text {gal }}, \mathrm{C}-4^{\text {sia }}, \mathrm{C}-6^{\text {sia }}, \mathrm{C}-8^{\text {sia }}\right), 68.9\left(\mathrm{C}-4^{\text {gal }}\right), 64.4$ $\left(\mathrm{C}-6^{\text {gal }}\right), 62.7\left(\mathrm{C}-9^{\text {sia }}\right), 53.9\left(\mathrm{C}-5^{\text {sia }}\right), 42.0\left(\mathrm{C}-3^{\text {sia }}\right), 22.6 \mathrm{ppm}\left(\mathrm{CH}_{3}{ }^{\text {NHAc }}\right)$; MS (ESI): m / z (\%): $519.1[M+N \mathrm{Na}]^{+}$(100); HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{~N}_{4} \mathrm{O}_{13}+\mathrm{Na}\right]^{+}: 519.1551$ [M+Na] ${ }^{+}$; found: 519.1546.

1-(3-O-(5-Acetamido-3,5-didesoxy-D-glycero- α-D-galactonon-2-ulopyranosyl))- β-D-galactopyranosyl-4-(2,3,4-tri-O-benzyl- α-L-fucopyranosyl)-1 H-1,2,3-triazole (12)

The title compound was prepared according to a method reported by Dondoni and Marra. ${ }^{[28]}$ Fucosylacetylene $11^{[29]}(82 \mathrm{mg}, 0.19 \mathrm{mmol})$ and azide $\mathbf{1 0}(91 \mathrm{mg}, 0.18 \mathrm{mmol})$ were dissolved in dry DMF (4 mL). N, N-Diisopropylethylamine (DIPEA, $64 \mu \mathrm{~L}$) and $\mathrm{CuI}(7 \mathrm{mg}, \quad 0.04 \mathrm{mmol}$, $20 \mathrm{~mol} \%$) were added in a countercurrent of argon gas and the mixture was stirred for 15 h at $70^{\circ} \mathrm{C}$. The solvent was removed in vacuo and the residue was co-evaporated three times with toluene (5 mL each). The crude product was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 4: 1 \rightarrow 2: 1\right)$ to yield the title compound $(94 \mathrm{mg}$, $0.10 \mathrm{mmol}, 55 \%$ yield) as a light-yellow oil. $[\alpha]_{\mathrm{D}}^{24}=-51.6 \quad(c=0.6$, MeOH) ; ${ }^{1} \mathrm{H}$ NMR (COSY, $600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=8.20$ (s, $1 \mathrm{H} ; \mathrm{H}-5$), $7.41-7.40(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{Ph}), 7.37-7.22(\mathrm{~m}, 13 \mathrm{H} ; \mathrm{Ph}), 5.65\left(\mathrm{~d},{ }^{3} J_{1,2}=8.9 \mathrm{~Hz}\right.$, $1 \mathrm{H} ; \mathrm{H}-1^{\text {gal }}$), $5.24\left(\mathrm{~d},{ }^{3} J_{1.2}=5.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-1^{\text {fuc }}\right), 4.85\left(\mathrm{~d},{ }^{2} J=11.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$; $\left.\mathrm{CH}_{2}-\mathrm{Ph}\right), 4.79\left(\mathrm{~d},{ }^{2} J=11.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{Ph}\right), 4.77\left(\mathrm{~d},{ }^{2} J=11.5 \mathrm{~Hz}, 1 \mathrm{H}\right.$; $\left.\mathrm{CH}_{2}-\mathrm{Ph}\right)$, 4.64-4.58 (m, $\left.3 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{Ph}\right), 4.27\left(\mathrm{dd},{ }^{3} J_{2,3}=9.6 \mathrm{~Hz},{ }^{3} J_{3,4}=\right.$ $\left.2.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3^{\mathrm{fuc}}\right), 4.21-4.18\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-2^{\text {gal }}, \mathrm{H}-2^{\mathrm{fuc}}\right), 4.09\left(\mathrm{~d},{ }^{3} J_{3,4}=\right.$ $2.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-4^{\mathrm{gal}}$), 4.06 (dd, ${ }^{3} J_{2,3}=8.9 \mathrm{~Hz},{ }^{3} J_{3,4}=2.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3^{\text {gal }}$), 3.89-3.70 (m, 9H; H-5 $5^{\text {gal }}$, H-6a ${ }^{\text {gal }}$, H-4 ${ }^{\text {fuc }}$, H- $5{ }^{\text {fuc }}$, H- $5^{\text {sia }}$, H- $6^{\text {sia }}$, H- 8 sia,$~ H-9 a / ~$ $\left.\mathrm{b}^{\text {sia }}\right), 3.63-3.60\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-6 \mathrm{~b}^{\text {bal }}, \mathrm{H}-4^{\text {sia }}\right), 3.51\left(\mathrm{~d},{ }^{3} \mathrm{~J}=8.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-7^{\text {sia }}\right)$, $2.90\left(\mathrm{dd},{ }^{2} J=13.1 \mathrm{~Hz},{ }^{3} J_{3,4}=3.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3 \mathrm{a}^{\text {sia }}\right), 2.01$ ($\mathrm{s}, 3 \mathrm{H} ; \mathrm{CH}_{3}{ }^{\text {NHAc }}$), $1.80-1.79$ ($\left.\mathrm{m}, 1 \mathrm{H} ; \mathrm{H}^{2} 3 \mathrm{~b}^{\text {sia }}\right), 1.19 \mathrm{ppm}\left(\mathrm{d},{ }^{3} J_{5, \mathrm{CH} 3}=6.4 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{3}{ }^{\text {fuc }}\right)$; ${ }^{13} \mathrm{C}$ NMR (HSQC, HMBC, $150.9 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=175.5$ (2C; C=O ${ }^{\text {sia }}$, $\left.\mathrm{C}=\mathrm{O}^{\mathrm{NHAc}}\right), 140.1(3 \mathrm{C} ; \mathrm{C}-4,2 \times \mathrm{Cq}-\mathrm{Ph}), 139.6(\mathrm{Cq}-\mathrm{Ph}), 129.4(4 \mathrm{C}), 129.34$ (2C), 129.27 (2C), 129.2 (2C), 129.0 (2C), 128.79, 128.77, 128.67 (Ph), 124.4 ($\left.2 \mathrm{C} ; \mathrm{C}-5, \mathrm{C}-2^{\text {sia }}\right)$, $90.0\left(\mathrm{C}-1^{\text {gal }}\right), 79.9,78.3,72.9,70.8,69.4$ (C-5 ${ }^{\text {gal }}, \mathrm{C}-$ $\left.4^{\text {fuc }}, \mathrm{C}-5^{\text {fuc }}, ~ C-6^{\text {sia }}, \mathrm{C}-8^{\text {sia }}\right), 79.3\left(\mathrm{C}-3^{\text {gil }}\right), 78.0\left(\mathrm{C}-3^{\text {fuc }}\right), 76.9$ (C-2 $\left.2^{\text {fuc }}\right), 75.5$, 74.2, $73.2\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 75.0\left(\mathrm{C}-4^{\text {sia }}\right), 70.0\left(\mathrm{C}-7^{\text {sia }}\right), 69.8\left(\mathrm{C}-1^{\mathrm{fuc}}\right), 69.6\left(\mathrm{C}-2^{\text {gal }}\right)$, 69.2 (C-4 $\left.4^{\text {gal }}\right)$, 64.5 (C-6 $\left.6^{\text {gal }}\right)$, 62.7 (C-9 $\left.{ }^{\text {sia }}\right), 54.0\left(\mathrm{C}-5^{\text {sia }}\right), 42.0\left(\mathrm{C}-\mathrm{C}^{\text {sia }}\right), 22.6$ $\left(\mathrm{CH}_{3}{ }^{\text {NHAc }}\right), 16.5 \mathrm{ppm}\left(\mathrm{CH}_{3}{ }^{\text {fuc }}\right)$; MS (ESI): $\mathrm{m} / \mathrm{z}(\%): 939.5[M+\mathrm{H}]^{+}(100)$; HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{46} \mathrm{H}_{58} \mathrm{~N}_{4} \mathrm{O}_{17}+\mathrm{Na}\right]^{+}$: $961.3695[M+\mathrm{Na}]^{+}$; found: 961.3692

1-(3-O-(5-Acetamido-3,5-didesoxy-d-glycero- α - d-galactonon-2-ulopyranosyl))- β - d-galactopyranosyl-4-(α-l-fucopyranosyl)-1 H-1,2,3triazole (13)

Triazole $12(100 \mathrm{mg}, 110 \mu \mathrm{~mol})$ was dissolved in $\mathrm{MeOH}(5 \mathrm{~mL})$. The solution was degassed by ultrasonication under an argon atmosphere before $\mathrm{Pd}(\mathrm{OH})_{2}$ on charcoal ($45 \mathrm{mg}, 20 \mathrm{wt} \%$) was added. After a second degassing cycle, the argon atmosphere was replaced with hydrogen (balloon). After stirring for 3 days at RT, another portion of the catalyst (45 mg) was added, the hydrogen pressure was increased to 3.5 bar (Parr bomb), and the suspension was stirred for a further 5 days at RT. The catalyst was removed by filtration over Celite and thoroughly washed with MeOH . The solvent was removed in vacuo and the crude product was
purified by preparative HPLC (ACE- $\mathrm{C}_{18}-\mathrm{PFP}$) to yield the title com pound ($24 \mathrm{mg}, 36 \mu \mathrm{~mol}, 33 \%$ yield) as a colorless oil. $[\alpha]_{D}^{24}=-39.1$ ($c=$ $0.5, \mathrm{D}_{2} \mathrm{O}$) ; ${ }^{1} \mathrm{H}$ NMR (COSY, NOESY, ROESY, $600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=8.36$ (s, 1H; H-5), $5.78\left(\mathrm{~d},{ }^{3} J_{1,2}=8.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-1^{\text {gal }}\right), 5.30\left(\mathrm{~d},{ }^{3} J_{1,2}=6.6 \mathrm{~Hz}, 1 \mathrm{H} ;\right.$ $\mathrm{H}-\mathrm{f}^{\text {fuc }}$), 4.32 (dd, ${ }^{3} J_{2,3}=9.7 \mathrm{~Hz},{ }^{3} J_{3,4}=3.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3^{\text {gal }}$), 4.27 (pseudo-t, $\left.{ }^{3} J_{1,2}=8.9 \mathrm{~Hz},{ }^{3} J_{2,3}=9.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2^{\mathrm{ga}}\right), 4.19\left(\mathrm{dd},{ }^{3} J_{1,2}=6.6 \mathrm{~Hz},{ }^{3} J_{2,3}=\right.$ $\left.10.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2^{\text {fuc }}\right), 4.08-4.05\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-4^{\mathrm{gal}}, \mathrm{H}-3^{\text {fuc }}\right), 3.98\left(\mathrm{t},{ }^{3} J_{5,6}=\right.$ $\left.6.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-5^{\mathrm{gal}}\right), 3.89-3.80\left(\mathrm{~m}, 5 \mathrm{H} ; \mathrm{H}-4^{\text {fuc }}, \mathrm{H}-5^{\text {fuc }}, \mathrm{H}-5^{\text {sia }}, \mathrm{H}-6^{\text {sia }}, \mathrm{H}-\right.$ $\left.9 \mathrm{a}^{\text {sia }}\right), 3.73\left(\mathrm{~d},{ }^{3} J_{5,6}=6.1 \mathrm{~Hz}, 2 \mathrm{H} ; \mathrm{H}^{\text {gal }}\right), 3.68-3.66\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H}-4^{\text {sia }}\right), 3.61-$ 3.58 (m, 2H, H-8 ${ }^{\text {sia }} ;$ H-9b $^{\text {sia }}$), 3.56 (dd, $\left.{ }^{3} J=9.1 \mathrm{~Hz},{ }^{3} J=1.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-7^{\text {sia }}\right)$, 2.73 (dd, $\left.{ }^{2} J=12.4 \mathrm{~Hz},{ }^{3} J_{3,4}=4.8 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3 \mathrm{a}^{\text {sia }}\right), 1.99\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}{ }^{\text {NHAc }}\right)$, 1.80 (pseudo-t, ${ }^{2} J=12.4 \mathrm{~Hz},{ }^{3} J_{3,4}=12.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3 \mathrm{~b}^{\text {sia }}$), 1.14 ppm (d, ${ }^{3} J_{5, \mathrm{CH} 3}=6.5 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{3}{ }^{\text {fuc }}$); ${ }^{13} \mathrm{C}$ NMR (HSQC, $\mathrm{HMBC}, 150.9 \mathrm{MHz}$, $\left.\mathrm{D}_{2} \mathrm{O}\right): \delta=174.9\left(\mathrm{C}=\mathrm{O}^{\text {NHAc }}\right), 173.8\left(\mathrm{C}=\mathrm{O}^{\text {sia }}\right), 143.3(\mathrm{C}-4) 124.8(\mathrm{C}-5), 99.9$ $\left(\mathrm{C}-2^{\text {sia }}\right), 87.6\left(\mathrm{C}-1^{\text {gal }}\right), 78.0\left(\mathrm{C}-5^{\text {gal }}\right), 75.7\left(\mathrm{C}-3^{\text {gal }}\right), 72.8\left(\mathrm{C}-8^{\text {sia }}\right), 71.7\left(\mathrm{C}-6^{\text {sia }}\right)$, 71.6 (C-4 $\left.4^{\text {fuc }}\right), 70.5\left(\mathrm{C}-{ }^{\text {fuc }}\right), 70.1\left(\mathrm{C}-3^{\text {fuc }}\right), 69.3$ (C-5 $\left.5^{\text {fuc }}\right), 68.3$ (C-4 $\left.{ }^{\text {sia }}\right), 68.0$ $\left(\mathrm{C}-7^{\text {sia }}\right), 67.9\left(\mathrm{C}-2^{\text {gal }}\right), 67.6\left(\mathrm{C}-4^{\text {gal }}\right), 67.2\left(\mathrm{C}-2^{\text {fuc }}\right), 62.5\left(\mathrm{C}-9^{\text {sia }}\right), 60.8\left(\mathrm{C}-6^{\text {gal }}\right)$, $51.6\left(\mathrm{C}-5^{\text {sia }}\right), 39.4\left(\mathrm{C}-3^{\text {sia }}\right), 22.0\left(\mathrm{CH}_{3}{ }^{\mathrm{NHAc}}\right), 15.6 \mathrm{ppm}\left(\mathrm{CH}_{3}{ }^{\text {fuc }}\right)$; MS (ESI) $m / z(\%): 691.3[M+N a]^{+}(100), 669.3[M+\mathrm{H}]^{+}(89)$; HRMS (ESI): m/z calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{17}+\mathrm{Na}\right]^{+}$: $691.2286[M+\mathrm{Na}]^{+}$; found: 691.2283; $t_{\mathrm{r}}=$ $2.1 \mathrm{~min}\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}, 98: 2 \rightarrow 98: 2(5 \mathrm{~min}) \rightarrow 80: 20(15 \mathrm{~min}) ;\right.$ flow rate $=$ $38.00 \mathrm{~mL} \mathrm{~min}^{-1}$)

1-(3-O-(5-Acetamido-3,5-didesoxy-D-glycero- α-D-galactonon-2-ulopyranosyl))- β-D-galactopyranosyl-4-(2,3,4,6-tetra-O-benzyl- α-D-mannopyranosyl)-1 H-1,2,3-triazole (15)

The title compound was prepared according to a procedure reported by Dondoni and Marra. ${ }^{[28]}$ Mannosylacetylene $\mathbf{1 4}^{[29]}(55.0 \mathrm{mg}, 0.1 \mathrm{mmol})$ and azide $10(50.0 \mathrm{mg}, 0.10 \mathrm{mmol})$ were dissolved in dry DMF (2 mL). DIPEA ($35 \mu \mathrm{~L}$) and CuI ($4.00 \mathrm{mg}, 0.01 \mathrm{mmol}, 10 \mathrm{~mol} \%$) were added in countercurrent of argon gas and the mixture was stirred for 15 h at $70^{\circ} \mathrm{C}$. The solvent was removed in vacuo and the residue was co-evaporated three times with toluene (5 mL each). The crude product was purified by flash chromatography on silica gel $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 2: 0.2+0.1 \%\right.$ $\left.\mathrm{AcOH} \rightarrow \mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 1: 1+0.1 \% \mathrm{AcOH}\right)$ to yield the title compound ($82.0 \mathrm{mg}, 78.0 \mu \mathrm{~mol}, 78 \%$ yield) as a light-yellow oil. $R_{\mathrm{f}}=0.57\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ $\mathrm{MeOH} \quad 1: 1+0.1 \% \mathrm{AcOH}) ; \quad[\alpha]_{\mathrm{D}}^{20}=+2.5 \quad(c=1.0, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}$ NMR (COSY, $400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=8.16$ (s, $1 \mathrm{H} ; \mathrm{H}-5$), 7.39-7.37 (m, 2 H ; $\mathrm{Ph}), 7.33-7.22(\mathrm{~m}, 16 \mathrm{H} ; \mathrm{Ph}), 7.18-7.15(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{Ph}), 5.66\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{1,2}=\right.$ $\left.9.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-1^{\mathrm{gal}}\right), 5.30\left(\mathrm{~d},{ }^{3} J_{1,2}=3.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-1^{\text {man }}\right), 4.75\left(\mathrm{~d},{ }^{2} J=\right.$ $\left.11.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{Ph}\right), 4.70\left(\mathrm{~d},{ }^{2} J=12.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{Ph}\right), 4.69\left(\mathrm{~d},{ }^{2} J=\right.$ $\left.11.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{Ph}\right), 4.61\left(\mathrm{~d},{ }^{2} \mathrm{~J}=11.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{Ph}\right), 4.59-4.52(\mathrm{~m}$, $2 \mathrm{H} ; \mathrm{CH}_{2}-\mathrm{Ph}$), 4.51-4.49 (m, 2H; $\mathrm{CH}_{2}-\mathrm{Ph}$), 4.43 (pseudo-t, ${ }^{3} J_{1,2}={ }^{3} J_{2,3}=$ $3.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2^{\mathrm{man}}$), 4.28 (dd, ${ }^{3} J_{2,3}=9.3 \mathrm{~Hz},{ }^{3} J_{3.4}=2.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3^{\mathrm{gal}}$), 4.22 (pseudo-t, $\left.{ }^{3} J_{1,2}={ }^{3} J_{2,3}=9.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2^{\text {gal }}\right), 4.09\left(\mathrm{~d},{ }^{3} J_{3,4}=2.6 \mathrm{~Hz}, 1 \mathrm{H}\right.$; $\mathrm{H}-4^{\text {gal }}$), 3.99 (pseudo-t, ${ }^{3} J_{3,4}={ }^{3} J_{4,5}=8.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-4^{\mathrm{man}}$), 3.95 (dd, ${ }^{3} J_{2,3}=$ $\left.3.3 \mathrm{~Hz},{ }^{3} J_{3,4}=8.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3^{\text {man }}\right), 3.86-3.59\left(\mathrm{~m}, 12 \mathrm{H} ; \mathrm{H}-5^{\mathrm{gal}}, \mathrm{H}-6 \mathrm{a} / \mathrm{b}^{\text {gal }}\right.$, H-5 $5^{\text {man }}, \mathrm{H}-6 \mathrm{a} / \mathrm{b}^{\text {man }}, \mathrm{H}-4^{\text {sia }}, \mathrm{H}-5^{\text {sia }}, \mathrm{H}-\mathrm{b}^{\text {sia }}, \mathrm{H}-8^{\text {sia }}, \mathrm{H}-9 \mathrm{a} / \mathrm{b}^{\text {sia }}$), 3.52 (dd, ${ }^{3} \mathrm{~J}=$ $\left.8.9 \mathrm{~Hz},{ }^{3} J=1.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-7^{\text {sia }}\right), 2.89\left(\mathrm{dd},{ }^{2} J=12.7 \mathrm{~Hz},{ }^{3} J_{3.4}=4.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$; $\left.\mathrm{H}-3 \mathrm{a}^{\text {sia }}\right), 2.03\left(\mathrm{~s}, 3 \mathrm{H} ; \mathrm{CH}_{3}{ }^{\mathrm{NHAc}}\right), 1.82-1.76 \mathrm{ppm}\left(\mathrm{m}, 1 \mathrm{H} ; \mathrm{H}-3 \mathrm{~b}^{\text {sia }}\right) ;{ }^{13} \mathrm{C}$ NMR (HSQC, $100.6 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=175.5$ ($\left.2 \mathrm{C} ; \mathrm{C}=\mathrm{O}^{\text {sia }}, \mathrm{C}=\mathrm{O}^{\text {NHAc }}\right), 146.2$ C-4), 139.8, 139.7, 139.6, 139.5 ($4 \times \mathrm{Cq}-\mathrm{Ph}$), 129.43 (2C), 129.41 (4 C), 129.33 (2C), 129.25 (2C), 129.2 (2C), 129.1 (2C), 129.0 (2C), 128.8 (2C), 128.7, $128.6(\mathrm{Ph}), 123.6\left(2 \mathrm{C} ; \mathrm{C}-5, \mathrm{C}-2^{\text {sia }}\right), 90.0\left(\mathrm{C}-1^{\mathrm{gal}}\right), 79.9\left(\mathrm{C}-3^{\mathrm{man}}\right), 77.9$ $\left(\mathrm{C}-3^{\text {gal }}\right), 76.6\left(\mathrm{C}-2^{\text {man }}\right), 76.0\left(\mathrm{C}-4^{\text {man }}\right), 75.3,74.3,73.3,73.1\left(\mathrm{CH}_{2}-\mathrm{Ph}\right), 70.8$ $\left(\mathrm{C}-1^{\mathrm{man}}\right), 70.1\left(\mathrm{C}-6^{\mathrm{man}}\right), 70.0\left(\mathrm{C}-7^{\text {sia }}\right), 69.6\left(\mathrm{C}-2^{\mathrm{gal}}\right), 69.3\left(\mathrm{C}-4^{\mathrm{gal}}\right), 79.8,75.7$, $74.9,72.9,69.2\left(\mathrm{C}-5^{\text {gal }}, \mathrm{C}-5^{\text {man }}, \mathrm{C}-4^{\text {sia }}, \mathrm{C}-6^{\text {sia }}, \mathrm{C}^{\text {s. }}{ }^{\text {sia }}\right), 64.4$ (C-6 $\left.{ }^{\text {gal }}\right), 62.6$ (C$\left.9^{\text {sia }}\right), 54.0\left(\mathrm{C}-5^{\text {sia }}\right), 41.8\left(\mathrm{C}-3^{\text {sia }}\right), 22.6 \mathrm{ppm}\left(\mathrm{CH}_{3}^{\mathrm{NHAc}}\right)$; MS (ESI): $\mathrm{m} / \mathrm{z}(\%):$ $045.5[M+\mathrm{H}]^{+}(70)$; HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{53} \mathrm{H}_{65} \mathrm{~N}_{4} \mathrm{O}_{18}+\mathrm{H}\right]^{+}$: $1045.4294[\mathrm{M}+\mathrm{H}]^{+}$; found: 1045.4319.

1-(3-O-(5-Acetamido-3,5-didesoxy-D-glycero- α-D-galactonon-2-ulopyranosyl))- β-D-galactopyranosyl-4-(α-D-mannopyranosyl)-1 H-1,2,3riazole (16)

Triazole 15 ($155 \mathrm{mg}, 148 \mu \mathrm{~mol}$) was dissolved in $\mathrm{MeOH}(7 \mathrm{~mL})$ and the solution was degassed by ultrasonication under an argon atmosphere. Then, Pd on charcoal ($50 \mathrm{mg}, 10 \mathrm{wt} \%$) was added and, after a second de gassing cycle, the argon atmosphere was replaced by hydrogen (balloon). After stirring for 1 day at RT, no conversion was observed by TLC.
$\mathrm{Pd}(\mathrm{OH})_{2}$ on charcoal ($40 \mathrm{mg}, 20 \mathrm{wt} \%$) was added and the mixture was stirred for 4 days at RT under a hydrogen atmosphere; then, the catalyst was removed by filtration through Celite and thoroughly washed with MeOH . The solvent was removed in vacuo and the crude product was purified by preparative HPLC (ACE- $\mathrm{C}_{18}-\mathrm{PFP}$) to yield the title compound $(63.0 \mathrm{mg}, 92 \mu \mathrm{~mol}, 62 \%$ yield $)$ as a colorless oil. $[\alpha]_{\mathrm{D}}^{24}=+5.4(c=$ $1.25, \mathrm{D}_{2} \mathrm{O}$); ${ }^{1} \mathrm{H}$ NMR (COSY, $400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$): $\delta=8.33(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{H}-5), 5.80$ $\left(\mathrm{d},{ }^{3} J_{1,2}=9.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-1^{\mathrm{gal}}\right), 5.24\left(\mathrm{~d},{ }^{3} J_{1,2}=1.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-1^{\mathrm{man}}\right), 4.55-4.54$ $\left(\mathrm{m}, 1 \mathrm{H} ; \mathrm{H}-2^{\text {man }}\right), 4.33\left(\mathrm{dd},{ }^{3} J_{2,3}=9.6 \mathrm{~Hz},{ }^{3} J_{3,4}=2.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3^{\text {gal }}\right), 4.28$ (pseudo-t, ${ }^{3} J_{1,2}=9.0 \mathrm{~Hz},{ }^{3} J_{2,3}=9.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2{ }^{\text {gal }}$), $4.09\left(\mathrm{~d},{ }^{3} J_{3,4}=2.9 \mathrm{~Hz}\right.$, $\left.1 \mathrm{H} ; \mathrm{H}-4^{\text {gal }}\right), 4.00\left(\mathrm{t},{ }^{3} J_{5,6}=6.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-5^{\text {gal }}\right), 3.88-3.81$ (m, 5H; H-6a/ $b^{\text {gal }}$, H-3 $\left.^{\text {man }}, \mathrm{H}-5^{\text {sia }}, \mathrm{H} 9 \mathrm{a}^{\text {sia }}\right), 3.78-3.73\left(\mathrm{~m}, 4 \mathrm{H} ; \mathrm{H}-4^{\text {man }}, \mathrm{H}-6 \mathrm{a} / \mathrm{b}^{\text {man }}, \mathrm{H}-8^{\text {sia }}\right)$, $3.70-3.66\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H}-4^{\text {sia }}\right), 3.63-3.57\left(\mathrm{~m}, 3 \mathrm{H} ; \mathrm{H}-5^{\text {man }}, \mathrm{H}-6^{\text {sia }}, \mathrm{H}-9 \mathrm{~b}^{\text {sia }}\right), 3.44-$ $3.41\left(\mathrm{~m}, 1 \mathrm{H} ; \mathrm{H}-7^{\text {sia }}\right), 2.75\left(\mathrm{dd},{ }^{2} J=12.5 \mathrm{~Hz},{ }^{3} J_{3,4}=4.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3 \mathrm{a}^{\text {sia }}\right)$, 2.01 (s, $3 \mathrm{H} ; \mathrm{CH}_{3}{ }^{\text {NHAc }}$), $1.83-1.79 \mathrm{ppm}$ (pseudo-t, ${ }^{2} J=12.5 \mathrm{~Hz},{ }^{3} J_{3,4}=$ $\left.12.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3 \mathrm{~b}^{\text {sia }}\right) ;{ }^{13} \mathrm{C}$ NMR (HSQC, $\left.100.6 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta=175.0(\mathrm{C}=$ $\left.\mathrm{O}^{\text {NHAc }}\right), 173.8\left(\mathrm{C}=\mathrm{O}^{\text {sia }}\right), 144.1$ (C-4), 123.6 (C-5), 100.0 (C-2 $\left.{ }^{\text {sia }}\right), 87.7$ (C$\left.1^{\text {gal }}\right), 78.0\left(\mathrm{C}-5^{\mathrm{gal}}\right), 75.7\left(\mathrm{C}-3^{\text {gal }}\right), 75.4\left(\mathrm{C}-7^{\text {sia }}\right), 72.8\left(2 \mathrm{C} ; \mathrm{C}-1^{\text {man }}, \mathrm{C}-5^{\mathrm{man}}\right)$, 71.7 (C-3 $\left.3^{\text {man }}\right), 70.7$ (C-4 $\left.4^{\text {man }}\right), 69.9\left(\mathrm{C}-2^{\text {man }}\right), 68.3$ (C-4 $\left.{ }^{\text {sia }}\right), 68.0\left(\mathrm{C}-\mathrm{C}^{\text {sia }}\right), 67.9$ $\left(\mathrm{C}-2^{\text {gal }}\right), 67.6\left(\mathrm{C}-4^{\text {gal }}\right), 67.1\left(\mathrm{C}-8^{\text {sia }}\right), 62.5\left(\mathrm{C}-9^{\text {sia }}\right), 60.84\left(\mathrm{C}-6^{\text {man }}\right), 60.76(\mathrm{C}-$ $\left.6^{\text {gal }}\right)$, $51.6\left(\mathrm{C}-5^{\text {sia }}\right), 39.4\left(\mathrm{C}-3^{\text {sia }}\right), 22.0 \mathrm{ppm}\left(\mathrm{CH}_{3}{ }^{\text {NHAc }}\right)$; MS (ESI): $m / z(\%):$ $707.3[M+\mathrm{Na}]^{+}(100), 685.2[M+\mathrm{H}]^{+}(51)$; HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{18}+\mathrm{Na}\right]^{+}$: $707.2235[M+\mathrm{Na}]^{+}$; found: $707.2232 ; t_{\mathrm{r}}=2.0 \mathrm{~min}$ $\left(\mathrm{H}_{2} \mathrm{O} / \mathrm{MeCN}, \quad 98: 2 \rightarrow 98: 2 \quad(5 \mathrm{~min}) \rightarrow 80: 20 \quad(15 \mathrm{~min}) ; \quad\right.$ flow rate $=$ $38.00 \mathrm{~mL} \mathrm{~min}^{-1}$).

1-(β-D-Galactopyranosyl)-3-(α-D-mannopyranosyl)-indole (20)

To a solution of the peracetylated diglycosylindole $\mathbf{1 9}^{[11 a, 19]}$ (26 mg , $33 \mu \mathrm{~mol}$) in $\mathrm{MeOH}(5 \mathrm{~mL})$ was added NaOMe until the pH value reached 8.5-9.0. The mixture was stirred at RT for 18 h , neutralized with AcOH , and the solvent was removed in vacuo. The residue was purified by flash chromatography on silica gel ($\mathrm{EtOAc} / \mathrm{MeOH}, 20: 1 \rightarrow 3: 1 \rightarrow 2: 1$) to yield the title compound ($14 \mathrm{mg}, 32 \mu \mathrm{~mol}, 95 \%$ yield) as a colorless oil. $R_{\mathrm{f}}=0.45$ (1-butanol $\left./ \mathrm{H}_{2} \mathrm{O} / \mathrm{AcOH}, 5: 2: 2\right) ;[\alpha]_{\mathrm{D}}^{22}=+61.0(c=1.00, \mathrm{MeOH})$; ${ }^{1} \mathrm{H}$ NMR (COSY, HSQC, $\mathrm{HMBC}, 300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=7.84$ (dd, ${ }^{4} \mathrm{~J}_{4,6}=$ $\left.1.1 \mathrm{~Hz},{ }^{3} J_{4.5}=7.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-4^{\text {Indol }}\right), 7.58\left(\mathrm{dt},{ }^{4} J_{7.5}=0.8 \mathrm{~Hz},{ }^{3} J_{7.6}=8.4,1 \mathrm{H}\right.$; $\left.\mathrm{H}-7^{\text {Indol }}\right), 7.48\left(\mathrm{~d},{ }^{4} J_{2,1-\mathrm{Man}}=1.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2^{\text {Indol }}\right), 7.18\left(\mathrm{ddd},{ }^{4} J_{6,4}=1.3 \mathrm{~Hz}\right.$, ${ }^{3} J_{6,5}=7.1 \mathrm{~Hz},{ }^{3} J_{6,7}=8.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-6^{\text {Indol }}$), 7.08 (ddd, ${ }^{4} J_{5,7}=0.8 \mathrm{~Hz},{ }^{3} J_{5,6}=$ $\left.7.1 \mathrm{~Hz},{ }^{3} J_{5,4}=7.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}_{-2}^{\text {Indol }}\right), 5.41\left(\mathrm{~d},{ }^{3} J_{1,2}=9.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-1^{\text {Gal }}\right), 5.34$ (pseudo-t, $J_{\text {app. 1,2-Indol }}=1.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-1^{\text {Man }}$), $4.51\left(\mathrm{dd},{ }^{3} J_{2,3}=3.3 \mathrm{~Hz},{ }^{3} J_{2,1}=\right.$ $2.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2^{\mathrm{Man}}$), 4.22 (pseudo-t, $J_{\text {app }}=9.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2^{\mathrm{Gal}}$), 4.03 (dd, $J=3.2,0.9 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-4^{\mathrm{Gal}}$), 3.98 (dd, ${ }^{3} J_{3,2}=3.3 \mathrm{~Hz},{ }^{3} J_{3,4}=9.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-$ $\left.3^{\text {Man }}\right), 3.69-3.86\left(\mathrm{~m}, 7 \mathrm{H} ; \mathrm{H}-3^{\mathrm{Gal}}, \mathrm{H}-5^{\mathrm{Gal}}, \mathrm{H}-6^{\mathrm{Gal}}, \mathrm{H}-4^{\mathrm{Man}}, \mathrm{H}-6^{\mathrm{Man}}\right), 3.26 \mathrm{ppm}$ (ddd, ${ }^{3} J_{5,6}=2.9 \mathrm{~Hz},{ }^{3} J_{5,6}=4.0 \mathrm{~Hz},{ }^{3} J_{5,4}=9.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-5{ }^{\text {Man }}$); ${ }^{13} \mathrm{C}$ NMR (DEPT, HSQC, HMBC, $75 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$): $\delta=138.4$ (C-7a ${ }^{\text {Indol }}$), 129.1 $\left(\mathrm{C}-3 \mathrm{a}^{\text {Indol }}\right), 125.0\left(\mathrm{C}-2^{\text {Indol }}\right), 123.3\left(\mathrm{C}-6^{\text {Indol }}\right), 121.5\left(\mathrm{C}-4^{\text {Indol }}\right), 121.2\left(\mathrm{C}-5^{\text {Indol }}\right)$, $113.4\left(\mathrm{C}-3^{\text {Indol }}\right), 111.6\left(\mathrm{C}-7^{\text {Indol }}\right), 87.2\left(\mathrm{C}-1^{\mathrm{Gal}}\right), 79.2\left(\mathrm{C}-5^{\mathrm{Gal}}\right), 76.3\left(\mathrm{C}-1^{\mathrm{Man}}\right)$, $75.9,75.8\left(\mathrm{C}-3^{\mathrm{Gal}}, \mathrm{C}-5^{\mathrm{Man}}\right), 73.5\left(\mathrm{C}-3^{\mathrm{Man}}\right), 72.1\left(\mathrm{C}-2^{\mathrm{Man}}\right), 71.1\left(\mathrm{C}-2^{\mathrm{Gal}}\right), 70.5$ $\left(\mathrm{C}-4^{\mathrm{Gal}}\right), 69.3\left(\mathrm{C}-4^{\mathrm{Man}}\right), 62.8,62.6 \mathrm{ppm}\left(\mathrm{C}-6^{\mathrm{Gal}}, \mathrm{C}-6^{\mathrm{Man}}\right)$; MS (ESI): m/z (\%): $464.0 \quad[M+\mathrm{Na}]^{+}$(100); HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{10}+\mathrm{Na}\right]^{+}: 464.1533$; found: 464.1543; m/z calcd for $[M+\mathrm{Na}+\mathrm{H}]^{+}: 464.1611$; found: 464.1615 ; IR (film): $\tilde{v}=3271,2929,1705$, $1558,1461,1407,1272,1221,1064,1016,918,880,794,743,653 \mathrm{~cm}^{-1}$

1-[3-O-(5-Acetamido-3,5-didesoxy-D-glycero- α-D-galacto-non-2-ulopyranosyl)- β-D-galactopyranosyl)]-3-(β-D-mannopyranosyl)-indole (21)

4-Nitrophenyl- α-sialoside $9(25 \mathrm{mg}, 56 \mu \mathrm{~mol}$) and diglycosylindol 20 ($50 \mathrm{mg}, 113 \mu \mathrm{~mol}$) were dissolved in degassed Tris- HCl buffer (2 mL , $100 \mathrm{~mm}, \mathrm{pH} 7.5)$. After the addition of an aqueous solution of recombinant trans-sialidase ($400 \mu \mathrm{~L}, c=0.5 \mathrm{mg} \mathrm{mL}^{-1}$), the mixture was incubated at RT for 24 h . Another portion (25 mg) of compound 9 was added and the mixture was stirred for a further 48 h . The reaction was stopped by the addition of $\mathrm{EtOH}(1.5 \mathrm{~mL})$. The solution was centrifuged for 30 min and the supernatant was removed and lyophilized. The crude product was purified by preparative HPLC (Luna-C18; $t_{\mathrm{r}}=20-25 \mathrm{~min} ; \mathrm{H}_{2} \mathrm{O} /$ $\mathrm{MeCN}, 95: 5(60 \mathrm{~min}) \rightarrow 80: 20$; flow rate $=50 \mathrm{~mL} \mathrm{~min}^{-1}$) to furnish the title compound ($11 \mathrm{mg}, 15 \mu \mathrm{~mol}, 13 \%$ yield) as a yellowish solid. The HPLC separation also yielded unreacted acceptor $\mathbf{2 0}(22 \mathrm{mg}, 50 \mu \mathrm{~mol})$, thus indi-
cating that the yield of the enzymatic reaction was 24% (brsm). $[\alpha]_{\mathrm{D}}^{22}=$ $+81.6\left(c=1.00, \mathrm{D}_{2} \mathrm{O}\right)$; ${ }^{1} \mathrm{H}$ NMR (COSY, TOCSY, $\left.600 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta=$ $7.83\left(\mathrm{~d},{ }^{3} J_{4,5}=8.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-4^{\text {Indol }}\right), 7.58\left(\mathrm{~d},{ }^{3} J_{7,6}=8.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-7^{\text {Indol }}\right)$, $7.51\left(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{H}-2^{\text {Indol }}\right), 7.29$ (pseudo-t, ${ }^{3} J_{6.5 / 7}=7.7 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-6^{\text {Indol }}$), 7.18 (pseudo-t, ${ }^{3} J_{5,4 / 6}=7.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-5^{\text {Indol }}$), $5.62\left(\mathrm{~d},{ }^{3} J_{1,2}=8.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-1^{\mathrm{Gal}}\right.$), $5.34\left(\mathrm{~s}, 1 \mathrm{H} ; \mathrm{H}-1^{\text {Man }}\right), 4.55\left(\mathrm{dd},{ }^{3} J_{2,1}=2.3 \mathrm{~Hz},{ }^{3} J_{2,3}=3.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-2^{\text {Man }}\right.$), $4.27-4.32\left(\mathrm{~m}, 2 \mathrm{H} ; \mathrm{H}-2^{\mathrm{Gal}}, \mathrm{H}-3^{\mathrm{Gal}}\right), 4.08\left(\mathrm{~d},{ }^{3} J_{4,3}=2.6 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-4^{\mathrm{Gal}}\right), 4.02$ (dd, ${ }^{3} J_{3,2}=3.4 \mathrm{~Hz},{ }^{3} J_{3,4}=9.2 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3^{\mathrm{Man}}$), 3.94-3.97 (m, $\left.1 \mathrm{H} ; \mathrm{H}-5^{\mathrm{Gal}}\right)$, 3.84 (ddd, ${ }^{3} J_{8,9 \mathrm{a}}=2.5 \mathrm{~Hz},{ }^{3} J_{8,9 \mathrm{~b}}=6.4 \mathrm{~Hz},{ }^{3} J_{8,7}=9.1 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-8^{\mathrm{Sia}}$), $3.78-$ 3.81 (m, 2H; H-5 $\left.{ }^{\text {Sia }}, \mathrm{H}-9 \mathrm{a}^{\text {Sia }}\right), 3.63-3.72\left(\mathrm{~m}, 6 \mathrm{H} ; \mathrm{H}-4^{\text {Man }}, \mathrm{H}-6^{\mathrm{Man}}, \mathrm{H}-4^{\text {Sia }}, \mathrm{H}-\right.$ $\left.6^{\text {Gal }}\right), 3.61\left(\mathrm{dd},{ }^{3} J_{6,7}=1.6 \mathrm{~Hz},{ }^{3} J_{6,5}=10.5 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-6^{\mathrm{Sia}}\right), 3.56\left(\mathrm{dd},{ }^{3} J_{9 b, 8}=\right.$ $\left.6.4 \mathrm{~Hz},{ }^{3} J_{9 \mathrm{~b}, 9 \mathrm{a}}=12.0 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-9 \mathrm{~b}^{\text {Sia }}\right), 3.52\left(\mathrm{dd},{ }^{3} J_{7.6}=1.6 \mathrm{~Hz},{ }^{3} J_{7.8}=9.1 \mathrm{~Hz}\right.$, $1 \mathrm{H} ; \mathrm{H}-7^{\text {Sia }}$), $3.23\left(\mathrm{ddd},{ }^{3} J_{5,6}=2.8 \mathrm{~Hz},{ }^{3} J_{5,6}=5.6 \mathrm{~Hz},{ }^{3} J_{5,4}=9.4 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-\right.$ $\left.5^{\text {Man }}\right), 2.72\left(\mathrm{dd},{ }^{3} J_{\text {Зäqu, } 2}=4.6 \mathrm{~Hz},{ }^{2} J_{\text {Зäqu,3ax }}=12.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3_{\text {äqu }}{ }^{\text {Sia }}\right), 1.96(\mathrm{~s}$, $\left.3 \mathrm{H} ; \mathrm{COCH}_{3}\right), 1.80 \mathrm{ppm}\left(\mathrm{t},{ }^{2} J_{\text {3ax,3äqu }}=12.3 \mathrm{~Hz}, 1 \mathrm{H} ; \mathrm{H}-3_{\text {ax }}{ }^{\text {Sia }}\right) ;{ }^{13} \mathrm{C}$ NMR (HSQC, HMBC, $\left.151 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): ~ \delta=174.9(\mathrm{C}=\mathrm{O}), 136.6\left(\mathrm{C}-7 \mathrm{a}^{\text {Indol }}\right)$, 127.0 (C-3a $\left.^{\text {Indol }}\right), 123.7\left(\mathrm{C}-2^{\text {Indol }}\right), 123.1\left(\mathrm{C}-6^{\text {Indol }}\right), 120.8\left(\mathrm{C}-5^{\text {Indol }}\right), 120.5(\mathrm{C}-$ $\left.4^{\text {Indol }}\right), 112.1\left(\mathrm{C}^{\text {3 }} 3^{\text {Indol }}\right), 110.2\left(\mathrm{C}-7^{\text {Indol }}\right), 99.8\left(\mathrm{C}-1^{\text {Gal }}\right), 77.0\left(\mathrm{C}-5^{\text {Gal }}\right), 76.4(\mathrm{C}-$ $\left.3^{\mathrm{Gal}}\right), 74.4\left(\mathrm{C}-1^{\mathrm{Man}}\right), 74.3\left(\mathrm{C}-5^{\mathrm{Man}}\right), 72.8\left(\mathrm{C}-6^{\mathrm{Sia}}\right), 71.5\left(\mathrm{C}-8^{\mathrm{Sia}}\right), 71.3\left(\mathrm{C}-3^{\mathrm{Man}}\right)$, $70.0\left(\mathrm{C}-2^{\mathrm{Man}}\right), 68.1\left(\mathrm{C}-7^{\mathrm{Sia}}\right), 68.0,67.7,67.6\left(\mathrm{C}-4^{\mathrm{Gal}}, \mathrm{C}-4^{\mathrm{Man}}, \mathrm{C}-4^{\mathrm{Sia}}\right), 67.4(\mathrm{C}-$ $\left.2^{\text {Gal }}\right), 62.5\left(\mathrm{C}-9^{\text {Sia }}\right), 60.8,60.6\left(\mathrm{C}-6^{\mathrm{Gal}}, \mathrm{C}-6^{\mathrm{Man}}\right), 51.5\left(\mathrm{C}-5^{\text {Sia }}\right), 39.3\left(\mathrm{C}-3^{\text {Sia }}\right)$, $21.9 \mathrm{ppm}\left(\mathrm{COCH}_{3}\right)$; MS (ESI): $m / z(\%): 755.3[M+\mathrm{Na}]^{+}(100)$; HRMS (ESI): m / z calcd for $\left[\mathrm{C}_{31} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{18}+\mathrm{Na}\right]^{+}: 755.2487$; found: 755.2514.

Acknowledgements

This work was supported by the German Federal Ministry for Education and Research (T.O., grant no. 0315139) and by the Deutsche Forschungsgemeinschaft (J.D., SFB765). We thank Dr. J. C. Liermann (Mainz) for performing the NMR spectroscopy and Prof. Thorsten Hoffmann (Mainz) for performing the HRMS analyses.
[1] B. M. Gumbiner, Cell 1996, 84, 345-357.
[2] W. S. Somers, J. Tang, G. D. Shaw, R. T. Camphausen, Cell 2000, 103, 467-479.
[3] M. L. K. Tang, L. C. Fiscus, Pulm. Pharmacol. Ther. 2001, 14, 203210.
[4] M. P. Schon, C. Drewniok, W. H. Boehncke, Inflamm. Allergy Drug Targets 2004, 3, 163-168.
[5] C. F. Mojcik, E. M. Shevach, Arthritis Rheum. 1997, 40, 991-1004.
[6] H. Läubli, L. Borsig, Semin. Cancer Biol. 2010, 20, 169-177.
[7] a) J. H. Musser, M. B. Anderson, D. E. Levy, Curr. Pharm. Des. 1995, 1, 221-232; b) A. M. Lefer, A. S. Weyrich, M. Buerke, Cardiovasc. Res. 1994, 28, 289-294.
[8] a) N. Kaila, B. E. Thomas, Med. Res. Rev. 2002, 22, 566-601; b) E. E. Simanek, G. J. McGarvey, J. A. Jablonowski, C.-H. Wong, Chem. Rev. 1998, 98, 833-862.
[9] a) N. Kaila, K. Janz, A. Huang, A. Moretto, S. DeBernardo, P. W. Bedard, V. C. Steve Tam, J. C. Keith, D. H. H. Tsao, N. Sushkova, G. D. Shaw, R. T. Camphausen, R. G. Schaub, Q. Wang, J. Med. Chem. 2007, 50, 40-64; b) N. Kaila, W. S. Somers, B. E. Thomas, P. Thakker, K. Janz, S. DeBernardo, S. Tam, W. J. Moore, R. Yang, W. Wrona, P. W. Bedard, D. Crommie, J. C. Keith, D. H. H. Tsao, J. C. Alvarez, H. Ni, E. Marchese, J. T. Patton, J. L. Magnani, R. T. Camphausen, J. Med. Chem. 2005, 48, 4346-4357; c) S. Hanessian, V. Mascitti, O. Rogel, J. Org. Chem. 2002, 67, 3346-3354; d) C.-Y. Tsai, X. Huang, C.-H. Wong, Tetrahedron Lett. 2000, 41, 9499-9503; e) S. Hanessian, G. V. Reddy, H. K. Huynh, J. Pan, S. Pedatella, B. Ernst, H. C. Kolb, Bioorg. Med. Chem. Lett. 1997, 7, 2729-2734; f) B. Dupré, H. Bui, I. L. Scott, R. V. Market, K. M. Keller, P. J. Beck, T. P. Kogan, Bioorg. Med. Chem. Lett. 1996, 6, 569-572; g) W. Stahl, U. Sprengard, G. Kretzschmar, H. Kunz, Angew. Chem. Int. Ed. Engl. 1994, 33, 2096-2098; Angew. Chem. 1994, 106, $2186-$ 2188. For glycomimetics, see: h) D. C. Koester, A. Holkenbrink, D. B. Werz, Synthesis 2010, 3217-3242; i) B. Ernst, J. L. Magnani, Nat. Rev. Drug Discovery 2009, 8, 661-677; j) P. V. Murphy, Eur. J.

Org. Chem. 2007, 4177-4187; k) P. Sears, C.-H. Wong, Angew. Chem. Int. Ed. 1999, 38, 2300-2324; Angew. Chem. 1999, 111, 24462471.
[10] a) K. E. Norman, G. P. Anderson, H. C. Kolb, K. Ley, B. Ernst, Blood 1998, 91, 475-483; b) M. J. Bamford, M. Bird, P. M. Gore, D. S. Holmes, R. Priest, J. C. Prodger, V. Saez, Bioorg. Med. Chem. Lett. 1996, 6, 239-244; c) T. Uchiyama, V. P. Vassilev, T. Kajimoto, W. Wong, C.-C. Lin, H. Huang, C.-H. Wong, J. Am. Chem. Soc. 1995, 117, 5395-5396; d) H. Huang, C.-H. Wong, J. Org. Chem. 1995, $60,3100-3106$.
[11] a) C. Wiebe, C. Schlemmer, S. Weck, T. Opatz, Chem. Commun. 2011, 47, 9212-9214, see also: C. Wiebe, C. Schlemmer, S. Weck, T. Opatz, Chem. Commun. 2013, 49, 11814-11815; b) T. Yao, R. C. Larock, J. Org. Chem. 2005, 70, 1432-1437.
[12] a) C. Schlemmer, L. Andernach, D. Schollmeyer, B. F. Straub, T. Opatz, J. Org. Chem. 2012, 77, 10118-10124; b) S. Mehta, T. Yao, R. C. Larock, J. Org. Chem. 2012, 77, 10938-10944.
[13] a) V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem. Int. Ed. 2002, 41, 2596-2599; Angew. Chem. 2002, 114, 2708-2711; b) C. W. Tornøe, C. Christensen, M. Meldal, J. Org. Chem. 2002, 67, 3057-3064.
[14] L. Zhang, X. Chen, P. Xue, H. H. Y. Sun, I. D. Williams, K. B. Sharpless, V. V. Fokin, G. Jia, J. Am. Chem. Soc. 2005, 127, 15998-15999.
[15] R. Huisgen, R. Knorr, L. Möbius, G. Szeimies, Chem. Ber. 1965, 98, 4014-4021.
[16] a) A. Schroven, S. Meinke, P. Ziegelmueller, J. Thiem, Chem. Eur. J. 2007, 13, 9012-9021; b) B. Neubacher, D. Schmidt, P. Ziegelmueller, J. Thiem, Org. Biomol. Chem. 2005, 3, 1551-1556; c) M. L. Cremona, O. Campetella, D. O. Sánchez, A. C. C. Frasch, Glycobiology 1999, 9, 581-587.
[17] S. Bouyain, S. Rushton, K. Drickamer, Glycobiology 2001, 11, 989 996.
[18] a) T. Ikeda, T. Kajimoto, H. Kondo, C.-H. Wong, Bioorg. Med. Chem. Lett. 1997, 7, 2485-2490; b) N. Kaila, L. Chen, B. E. I. V. Thomas, D. Tsao, S. Tam, P. W. Bedard, R. T. Camphausen, J. C. Alvarez, G. Ullas, J. Med. Chem. 2002, 45, 1563-1566.
[19] C. Wiebe, S. Fusté de la Sotilla, T. Opatz, Synthesis 2012, 44, 13851397.
[20] S. Y. Melnik, A. A. Bakhmedova, L. D. Garaeva, O. V. Goryunova, T. D. Miniker, I. L. Plikhtyak, L. V. Ektova, T. P. Ivanova, I. V. Yartseva, Bioorg. Khim. 1996, 22, 458.
[21] S. Enders, G. Bernhard, A. Zakrzewicz, R. Tauber, Biochim. Biophys. Acta Gen. Subj. 2007, 1770, 1441-1449.
[22] a) G. Thoma, J. L. Magnani, J. T. Patton, B. Ernst, W. Jahnke, Angew. Chem. Int. Ed. 2001, 40, 1941-1945; Angew. Chem. 2001, 113, 1995-1999; b) A. Titz, J. Patton, M. Smiesko, Z. Radic, O. Schwardt, J. L. Magnani, B. Ernst, Bioorg. Med. Chem. 2010, 18, 19 27; c) A. Titz, A. Marra, B. Cutting, M. Smieško, G. Papandreou, A. Dondoni, B. Ernst, Eur. J. Org. Chem. 2012, 5534-5539; d) F. P. C. Binder, K. Lemme, R. C. Preston, B. Ernst, Angew. Chem. Int. Ed. 2012, 51, 7327-7331; Angew. Chem. 2012, 124, 7440-7444.
[23] a) K. Baumann, D. Kowalczyk, T. Gutjahr, M. Pieczyk, C. Jones, M. K. Wild, D. Vestweber, H. Kunz, Angew. Chem. Int. Ed. 2009, 48, 3174-3178; Angew. Chem. 2009, 121, 3220-3224; b) A. Leppänen, P. Mehta, Y.-B. Ouyang, T. Ju, J. Helin, K. L. Moore, I. van Die, W. M. Canfield, R. P. McEver, R. D. Cummings, J. Biol. Chem. 1999, 274, 24838-24848.
[24] It has been observed that polyanionic structures, such as fragments of ion-exchange resins, exhibit a high affinity towards selectins; thus, many of the prior results of bioassays are questionable: G. Kretzschmar, A. Toepfer, C. Hills, M. Krause, Tetrahedron 1997, 53, 24852494. No ion-exchange resins were used for the synthesis and purification of the mimetics discussed herein.
[25] P. Scudder, J. P. Doom, M. Chuenkova, I. D. Manger, M. E. Pereira, J. Biol. Chem. 1993, 268, 9886-9891.
[26] V. Vicente, J. Martin, J. Jiménez-Barbero, J. L. Chiara, C. Vicent, Chem. Eur. J. 2004, 10, 4240-4251.
[27] V. Eschenfelder, R. Brossmer, Carbohydr. Res. 1987, 162, 294-297.
[28] A. Dondoni, A. Marra, J. Org. Chem. 2006, 71, 7546-7557.
[29] A. Dondoni, G. Mariotti, A. Marra, J. Org. Chem. 2002, 67, 44754486.

Received: February 25, 2014
Published online: May 30, 2014

