
METHODS ARTICLE
published: 30 July 2014

doi: 10.3389/fninf.2014.00067

Pydpiper: a flexible toolkit for constructing novel
registration pipelines
Miriam Friedel1*, Matthijs C. van Eede1, Jon Pipitone2, M. Mallar Chakravarty2,3,4 and Jason P. Lerch1,5

1 Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada
2 Kimel Family Translational Imaging-Genetics Research Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
3 Department of Psychiatry, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
4 Rotman Research Institute, Toronto, ON, Canada
5 Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada

Edited by:

John Van Horn, University of
California, Los Angeles, USA

Reviewed by:

Shantanu H. Joshi, University of
California, Los Angeles, USA
Satrajit S. Ghosh, Massachusetts
Institute of Technology, USA

*Correspondence:

Miriam Friedel, Mouse Imaging
Centre, Hospital for Sick Children,
25 Orde Street, Toronto,
ON M5T 3H7, Canada
e-mail: mfriedel@mouseimaging.ca

Using neuroimaging technologies to elucidate the relationship between genotype and
phenotype and brain and behavior will be a key contribution to biomedical research in the
twenty-first century. Among the many methods for analyzing neuroimaging data, image
registration deserves particular attention due to its wide range of applications. Finding
strategies to register together many images and analyze the differences between them
can be a challenge, particularly given that different experimental designs require different
registration strategies. Moreover, writing software that can handle different types of image
registration pipelines in a flexible, reusable and extensible way can be challenging. In
response to this challenge, we have created Pydpiper, a neuroimaging registration toolkit
written in Python. Pydpiper is an open-source, freely available software package that
provides multiple modules for various image registration applications. Pydpiper offers five
key innovations. Specifically: (1) a robust file handling class that allows access to outputs
from all stages of registration at any point in the pipeline; (2) the ability of the framework
to eliminate duplicate stages; (3) reusable, easy to subclass modules; (4) a development
toolkit written for non-developers; (5) four complete applications that run complex image
registration pipelines “out-of-the-box.” In this paper, we will discuss both the general
Pydpiper framework and the various ways in which component modules can be pieced
together to easily create new registration pipelines. This will include a discussion of the
core principles motivating code development and a comparison of Pydpiper with other
available toolkits. We also provide a comprehensive, line-by-line example to orient users
with limited programming knowledge and highlight some of the most useful features of
Pydpiper. In addition, we will present the four current applications of the code.

Keywords: neuroimaging, pipeline, image registration, software, Python

1. INTRODUCTION
Understanding the relationship between genotype and pheno-
type and brain and behavior is a core biomedical research
challenge in the twenty-first century (Henkelman, 2010; Paus,
2010). Key recent developments have relied on three-dimensional
neuroimaging in humans and animal models to aid in this
endeavor. Part of the challenge of using neuroimaging to pro-
vide insight into neuroscience questions is quantitatively assess-
ing large amounts of data in an automated, accurate and high
throughput manner. Typically, a single study will produce any-
where from twenty to hundreds of images, where the end goal is
the assessment of differences in neuroanatomy due to factors such
as genotype, behavioral training, environment and disease.

Multipe algorithms have been developed for the analysis of
neuroimaging data, ranging from tissue classification (Zijdenbos
et al., 2002) to computational geometry (Fischl and Dale,
2000; Macdonald, 2000; Kim et al., 2005) to image registration
and automatic segmentation (Collins et al., 1995; Heckemann

et al., 2006; Chakravarty et al., 2013) or combinations thereof
(Ashburner and Friston, 2000; Good et al., 2001). Image reg-
istration in particular will be the primary focus of this work,
given its wide range of applications in humans (Gogtay et al.,
2004; Joshi et al., 2007, 2012; Hyde et al., 2009; Klein et al.,
2009; Durrleman et al., 2013) and animal models (Spring et al.,
2007; Lau et al., 2008; Lerch et al., 2008; Maheswaran et al., 2009;
Ellegood et al., 2013). Image registration determines the trans-
formation mapping one image into the space of another, where
the difference between these two images is thus encoded in that
transformation. The analysis of those transformations, termed
alternately Deformation Based Morphometry (DBM) or Tensor
Based Morphometry (TBM), then produces global and local mea-
sures of changes in volume, position, and shape (Chung et al.,
2001; Lepore et al., 2006).

Given that neuroimaging studies consist of more than just two
images, strategies are needed to analyze entire datasets to iden-
tify shape or volume differences and provide a common space

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 67 | 1

NEUROINFORMATICS

http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/editorialboard
http://www.frontiersin.org/Neuroinformatics/about
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org/journal/10.3389/fninf.2014.00067/abstract
http://community.frontiersin.org/people/u/104775
http://community.frontiersin.org/people/u/152412
http://community.frontiersin.org/people/u/34099
http://community.frontiersin.org/people/u/5101
mailto:mfriedel@mouseimaging.ca
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedel et al. Pydpiper

for performing analyses. There are a number of such image reg-
istration paradigms currently in use. One common approach is
to align all images in a study to a common coordinate system,
such as Talairach or MNI space (Evans et al., 2012). Alternatively,
additional power to identify shape differences can be gained when
all subjects in a study are aligned toward a single template that is
representative of the population being studied (Mazziotta et al.,
2001; Fonov et al., 2011). In the event that such a template does
not exist, a study-specific template can be created from all sub-
jects in the study (Guimond et al., 2000). One way to do this
is through iterative, group-wise registration. In this procedure,
all scans are aligned to a common target, then resampled with
the resulting transforms into the target space. These resampled
images are then averaged, creating a target for a subsequent align-
ment (Kovačević et al., 2005). The final average is then used as

common space from which to analyze shape differences in the
population.

The image registration processes described above are
extremely effective when sufficient homology between all sub-
jects in the study exist so that they can be registered to a common
coordinate system. However, there are experiments where this
is not possible (see Figure 1). This can be particularly true for
longitudinal studies, where the same subject is scanned at mul-
tiple time points. In the case of early brain growth (Studholme,
2011; Szulc et al., 2013) or the growth of a tumor (Gazdzinski
and Nieman, 2014), the anatomy of the brain changes to such
an extent that insufficient homology exists to accurately register
early time points to late ones. In spite of these difficulties, it is
often possible to accurately register adjacent time points together
if the time-series was densely sampled (Lerch et al., Manuscript

FIGURE 1 | Overview of registration scenarios. In the case of
aligning cross-sectional adult mouse brains full homology exists
between any pair of brains. Human longitudinal data, on the other
hand, has full homology between scans of the same subject but
more limited homology between different subjects. In the case of

pathology, such as brain tumor growth, homology can only be found
with a sufficiently sampled time-series, but is lost due to idiosyncratic
tumor growth across subjects. (Tumor data courtesy Lisa Gazdzinski
and Brian Nieman, The Hospital for Sick Children; see Gazdzinski and
Nieman, 2014).

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 67 | 2

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedel et al. Pydpiper

in preparation). The resulting transforms can be concatenated
and used to calculate shape changes from a common coordinate
space.

A hybrid of the two registration paradigms mentioned above
can provide additional power to detect shape differences. Here
longitudinally acquired scans from the same subject are aligned
to each other, a per subject average image generated from those
registrations, and these average images are then aligned across all
subjects. This process allows for high fidelity registrations within
subjects; after early brain development is complete and absent
severe disease processes, homology across time within subjects
is much higher than homology across subjects. This is particu-
larly true with regards to ideosyncratic cortical folding patterns
(Mangin et al., 2010). The second step of registering the per
subject average images together then provides a common coor-
dinate space so that the longitudinal data can be analyzed across
the study population and, in so far as homology exists, shape
differences across subjects computed.

Underlying the different types of image registration described
above are many common features. The most obvious of these is
the ability to align two brains to a common space, often in a
multi-step procedure, and subsequently make use of the result-
ing output transform in a meaningful way. These transforms
must be concatenated appropriately so that deformation fields
can be calculated, regardless of the type of registration or com-
mon space. Moreover, as part of the registration process, brains
must be resampled, derivatives calculated from the transforms,
and segmented atlases brought into the common space of each
study, to cite a few examples. Finally, in order for a registra-
tion to be successful, an underlying framework must be present
to run each command in the appropriate order, keep track of
dependencies (e.g., transforms must exist before they can be con-
catenated), output useful log files in case debugging is needed,
and save the necessary files for statistical analysis in an organized
fashion.

In this paper, we present Pydpiper: the computational frame-
work we have developed to address these registration challenges.
We wrote this toolkit with the following principles as paramount:
(1) high-level coding should be as simple as possible for those
with less coding experience (advanced users can still easily get
“under-the-hood” to create new modules); (2) individual build-
ing blocks of code should be as modular as possible, easy to
subclass, and geared toward a range of biologically relevant appli-
cations; (3) complete, runnable pipelines containing thousands
of stages and addressing the registration scenarios described
above should be available “out-of-the-box”; (4) at the end of any
pipeline, there should be an option to calculate the derived vol-
umes necessary for TBM based statistics, using a module that
contains all of the required stages; (5) we should include a robust
file handling class to keep track of naming schemes and file inter-
actions across many modules in a single application. This class
not only simplifies coding, but also allows seamless access to
files created at any point in the pipeline. These principles influ-
enced design choices all the way through our code hierarchy,
including mechanisms of creating and combining pipelines as
well as providing high level access to multiple image registration
routines.

The rest of this paper is structured as follows. First, we will
discuss existing neuroimaging software toolkits and describe and
how Pydpiper fits into this space. Then, we will describe the
underlying, application-independent pipelining framework that
comprises Pydpiper; next, we will discuss the main levels of
Pydpiper class structure, and how different classes may be pieced
together to create new classes and applications; finally, we will
describe in more detail the applications we have written to address
four different registration challenges. To augment these sections,
we include a worked example in section 5 that compares a reg-
istration pipeline written in Pydpiper with the corresponding
code as it would be run manually on the command line. Finally,
we conclude by highlighting the innovations Pydpiper brings
to the existing space of pipelining frameworks used to solve
neuroimaging problems.

2. MOTIVATION AND EXISTING SOLUTIONS
As described in the previous section, there are a number of
commonalities that underlie seemingly disparate image registra-
tion strategies, all of which are frequently used in our group,
and we wanted a toolkit to address all of them in a seamless
way, focusing on the four core design principles listed above.
Moreover, we found ourselves in a position that is common
among many labs: frequently, a single executable and its related
functions and libraries are coded to run one type of registra-
tion protocol and are not easily adaptable to other applications.
In our case, we have used a highly successful pipeline envi-
ronment, MICe-build-model (see https://wiki.mouseimaging.ca/
display/MICePub/MICe-build-model), to do iterative, group-
wise registration (Lerch et al., 2011), described both above and
more fully in section 4.2. Unfortunately, using this tool to cre-
ate any of the other types of pipelines was cumbersome, time-
consuming and in many instances, was not fully-automated or
required too many manual, intermediate steps. What’s more,
modification of code like this (whether written by us or others)
can be prohibitively time consuming for neuroimaging students
and post-docs who do not have an extensive computer science
background. Finally, in our work on registration sensitivity (van
Eede et al., 2013), we developed a set of optimized registration
parameters for our iterative group-wise registration procedure.
We wanted to adapt these and flexibly share them among different
registration modules, but our existing tools did not allow for this.

There are a number of different software packages currently
available for executing pipelines and building complex workflows,
including VisTrails (Callahan et al., 2006), Taverna (Oinn et al.,
2006), and Kepler (Ludäscher et al., 2006). Each of these pack-
ages provides both a comprehensive underlying framework and a
graphical user interface (GUI) for constructing workflows; how-
ever, their aim is not to tackle problems specific to neuroimaging
and they do not provide the extensive modules and support
offered in other packages. This is in direct contrast to Pydpiper:
here, the vast majority of our efforts were in constructing modules
that are useful for solving neuroimaging registration challenges.
The underlying framework, while a robust and necessary part of
the toolkit, is not the main focus of Pydpiper.

Several frameworks have been written specifically to
address the needs of the neuroimaging community. PSOM

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 67 | 3

https://wiki.mouseimaging.ca/display/MICePub/MICe-build-model
https://wiki.mouseimaging.ca/display/MICePub/MICe-build-model
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedel et al. Pydpiper

(Bellec et al., 2012), written for Octave and Matlab, provides a
pipelining overlay to direct scripting level programming, making
complicated mathematical and statistical analyses easy to merge
with pre-processing. The AIR (Woods et al. 1998a,b) package,
written in C, provides source code and examples for running
image registrations both within and across subjects and imaging
modalities. LONI Pipeline (Dinov et al., 2010) is an extensive
pipelining framework that, in addition to its robust underlying
architecture, provides an elegant and user-friendly graphi-
cal user interface (GUI) for constructing pipelines. Another
comprehensive and highly successful neuroimaging toolkit is
Nipype (Gorgolewski et al. 2011), a Python-based, open-source
software package. Both LONI and Nipype provide interfaces
to many common neuorimaging tools such as SPM, FSL, and
Freesurfer. These interfaces provide a powerful means for
facilitating interactions between these packages. Comprehensive
documentation and example scripts are also provided with
both, so that users may construct and execute their own
workflows.

Although the frameworks described above offer solutions to
neuroimaging analysis problems, none of them addressed all of
the design principles described in the previous section. For exam-
ple, while both PSOM and AIR have functionality that overlaps
with Pydpiper, PSOM is explicitly intended for developers and
if one wants to utilize the source code directly, AIR requires a
significant amount of user input and coding in order to execute
complex, multi-step registrations1. This is in contrast to Pydpiper,
which was designed to be accessible to researchers with little cod-
ing experience and runs four different types of pipelines upon
installation. The GUIs offered by Taverna, VisTrails, Kepler, and
LONI mitigate this issue to a degree, though users must still con-
struct their workflows via “box and arrow” graph representations,
and with the exception of LONI, were not written explicitly for
neuroimaging applications. Even though each framework allows
multistage pipelines to be combined into modules, this could still
be cumbersome for pipelines with tens of thousands of stages.
With Pydpiper, the existing building blocks are structured such
that these dependencies are already built into the code, as will
be discussed more in the following sections. In addition, because
one of our goals was to create a toolkit that would enable non-
programmers to write modules, we declined to write a GUI,
which, in our experience, tends to dissuade people from exploring
the code underneath.

In many ways, Nipype accomplishes much of what we intend
to do with Pydpiper, is also written in Python and allows users
to write their own code without needing to worry about the
underlying architecture. It also provides additional functionality
and interfacing that is not included in Pydpiper. As appropriate
throughout this manuscript, we provide comparisons between
Pydpiper and Nipype. We believe the two toolkits can provide
complementary approaches for solving various image processing
challenges. In the Discussion section, we outline both scenarios
in which Pydpiper might be the preferred toolkit and scenarios
where one would prefer Nipype.

1We note there that AIR is a module that can be used within LONI. In this
instance, we are talking about compiling and using the source.

Using the aforementioned design principles, Pydpiper was
written with four specific applications in mind: (1) iterative,
group-wise registration to create a study-specific average; (2) reg-
istration of adjacent time points in a chain-like fashion when all
subjects cannot be registered together; (3) two-level registration
for longitudinal studies where both subject-specific and study-
specific averages are created; and (4) an automated multi-atlas
label generation procedure. To assist in reusability, Pydpiper pro-
vides class types to manage distinct aspects of pipeline creation:
“atoms” wrap distinct operations (e.g., registering two images),
“modules” link together atoms into reusable processing subunits,
and “applications” provide a command-line interface allowing
users to drive a particular pipeline. In addition, we created a
comprehensive file handling framework to simplify future code
development and usage of these atoms and modules. All of this
was done with the overarching goal that atoms and modules
could be easily combined to create entirely new types of regis-
tration pipelines. Moreover, Pydpiper is specifically designed to
take advantage of grid computing environments and automati-
cally calculates stage dependencies, decreasing the time necessary
for both coding and execution.

In addition to the aforementioned design considerations, we
wanted Pydpiper to be a tool that is freely available to the
community, with low barriers for adaptation and usage by oth-
ers. This not only has the effect of continually improving upon
Pydpiper, but also increases both transparency and reproducibil-
ity of results obtained by using it (Ince et al., 2012). It is
distributed under the Modified BSD license, which allows free
copying, modification and distribution of the code and is freely
available on github (https://github.com/mfriedel/pydpiper). This
distributed version control system (git) allows for the tracking
of all changes, a complete history of the source code, and the
ability to flag issues and discuss them with other developers.
As a companion to this paper, a public wiki is also available
and contains more detailed information about development,
usage and applications. (https://wiki.mouseimaging.ca/display/
MICePub/Pydpiper) A virtual machine for code testing and
example workflow diagrams are included as well. Additionally,
Pydpiper is written in Python and uses the Pyro (https://pypi.
python.org/pypi/Pyro4) and NetworkX (http://networkx.github.

io/) libraries, all of which are freely available, straightforward to
install and enjoy broad support and usage. Pydpiper has been
developed for the Linux operating system, the most popular plat-
form currently in use by the neuroimaging community (Hanke
and Halchenko, 2011). Finally, we wanted to create a toolkit that
could be easily used without extensive programming knowledge.
While we welcome and encourage contributions to Pydpiper from
expert developers, we structured the classes and example applica-
tions such that someone with only a basic knowledge of Linux,
Python and Object Oriented Programming could create a pipline
specific to their needs.

3. DESIGN AND IMPLEMENTATION
3.1. GENERAL PIPELINE AND APPLICATION STRUCTURE
The core Pydpiper framework that serves as the base for all
applications was designed to be as modular and reusable as
possible. It is also completely independent of the application

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 67 | 4

https://github.com/mfriedel/pydpiper
https://wiki.mouseimaging.ca/display/MICePub/Pydpiper
https://wiki.mouseimaging.ca/display/MICePub/Pydpiper
https://pypi.python.org/pypi/Pyro4
https://pypi.python.org/pypi/Pyro4
http://networkx.github.io/
http://networkx.github.io/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedel et al. Pydpiper

being executed. Although we have written this toolkit with an
image registration focus, the framework that manages pipeline
construction and execution could be used for any type of soft-
ware engineering paradigm that follows a similar design pattern.
This framework is encapsulated in five core classes: PipelineStage,
CmdStage, Pipeline, AbstractApplication, and pipelineExecutor.
Taken together, they act in concert to construct pipelines with
one or more stages, connect them through a series of interde-
pendencies, execute each stage in the appropriate order via thread
pool and encapsulate each pipeline into a larger application that
is executed on the command line.

PipelineStage is the primary base class upon which all addi-
tional executable classes are built. It was designed to contain all
of the underlying framework necessary to successfully integrate a
single stage into a larger pipeline. This framework includes iden-
tifying inputs and outputs, creating and writing to a log file, and
keeping track of both stage status (e.g., running, finished, failed)
and the amount of memory and processors required for execu-
tion. PipelineStage also contains the functions that get and set
the amount of memory and processors needed for a particular
stage as well as those needed for setting the status of a stage (e.g.,
running, finished, or failed).

The command stage (CmdStage) class inherits directly from
PipelineStage. The primary difference between CmdStage and
PipelineStage is that pipeline stages can run arbitrary pieces of
Python code, while command stages are designed to execute
individual command line programs. Although our current appli-
cations rely heavily on the CmdStage functionality, we explicitly
wrote PipelineStage as the base class, so that Pydpiper users can
include pieces of code that don’t necessarily require command
line execution.

The arguments necessary for running a command, as well as
the command itself, are passed to CmdStage as an array, appro-
priately parsed. The command is then executed at the appropriate
time using the Python function call. Any command line exe-
cutable that is called as part of a larger pipeline must be an
instance of CmdStage and each command stage can run only a
single command line executable. Although many command stages
are subclassed, as will be described further in section 3.2, they can
also be constructed on the fly. If there is a command-line exe-
cutable that is used only once (and therefore does not warrant its
own subclass of CmdStage) an array of input and output files can
easily be converted to a command stage as shown in Figure 2.

FIGURE 2 | Example of how to construct an executable Pydpiper stage

using the CmdStage class. The example command used to construct this
stage is xfminvert, which takes a transform between two subjects and
inverts it. (xfminvert is part of the MINC toolkit, described more fully in
section 3.2. A more complete usage example is also provided in section 5).
After instantiating the class, it is added to the pipeline via the addStage

function. Note that InputFile and OutputFile are themselves classes,
designed to indicate to CmdStage the required inputs and outputs for stage
interdependencies.

A pipeline (Pipeline) is composed of any number of pipeline
and/or command stages, and as such, the Pipeline class tracks
dependencies between stages and keeps a queue of runnable stages
and stage state. One of the most critical features of this class is that
it infers stage interdependencies based on stage inputs and out-
puts. That is, if one or more output files from stage A are required
for stages B and C, Pipeline keeps track of this dependency, and
does not add stages B and C to its queue of runnable stages until
stage A is complete. Conversely, stages may be executed in any
order once all of their dependencies have been satisfied. To cap-
ture stage connectivity, the NetworkX library (http://networkx.
lanl.gov/) is used to implement Pydpiper pipelines as a directed
graph. In addition to the addStage command shown as part
of Figure 2, Pipeline also provides a function called addPipeline
allowing pipelines to be combined, increasing the ease with which
modular code can be written. When stages are added to a pipeline,
they are skipped if they already exist. This not only shortens run
times, but makes Pydpiper code itself easier to write and read. An
example of this type of coding can be found in section 3.2.

In addition to maintaining a queue of runnable stages, Pipeline
tracks the state of each of its stages (running, finished, or failed).
The Pipeline class also uses the Python pickling mechanism, a
standard means of object serialization, to save essential pipeline
features after each completed stage. This allows an unfinished
pipeline to easily be restarted from pickled backup files. The
following data is pickled: the directed graph describing stage
interdependencies; an array of pipeline stages; the current stage
counter; a hash uniquely identifying each stage; a hash of out-
put files for each stage; and an array containing the statuses
of each stage. To restart a pipeline, one would simply specify
--restart as a command line option when launching pipeline
executors, as described below. The --restart option will then
load the pickled data into the appropriate variables before starting
the pipeline. The graph heads and edges can be quickly recon-
structed by iterating through the saved and reloaded directed
graph, and all stages with “finished” status are not re-run.

Because of the directed graph architecture of pipelines like
this, many stages can be run in parallel, provided their prede-
cessor stages have completed successfully. To run these stages
most efficiently, we created the pipelineExecutor class. Pipeline
executors are managed as a thread pool, with each thread execut-
ing individual stages from the pipeline’s runnable stages queue.
These executors effectively act as clients to the pipeline, which
functions as a server. The number of executors required, threads
per executor and memory necessary for each process are specified
on the command line. Executors can be launched independently,
as a stand alone command, or they can be launched as part of
an application itself. The values chosen with respect to memory
and processors will vary both with an application and available
computational resources. Each executor is then initialized as a
client of the pipeline server. This client/server architecture is
implemented using the Python Remote Objects (PYRO) library
(https://pypi.python.org/pypi/Pyro4), and support is included
for running on clusters with both the pbs and sge queueing sys-
tems. By specifying either --queue=pbs or --queue=sge,
Pydpiper will create a script with the appropriate syntax and
automatically submit it to the requested queue. For example, by

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 67 | 5

http://networkx.lanl.gov/
http://networkx.lanl.gov/
https://pypi.python.org/pypi/Pyro4
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedel et al. Pydpiper

including --queue=pbs --ppn=8 --num-executors
=1 --proc=8 --time=18:00:00, Pydpiper will create
and submit a pbs script requesting a single node with 8 proces-
sors (via --ppn). Once running, this script will launch a single
executor with eight threads that will run for a maximum of 18 h.

One of the most salient features of pipeline executors is how
they interact with the pipeline. Each executor can consist of one
or more threads. In turn, each thread will poll the server to get the
next available stage from the pipeline’s queue of runnable stages.
If enough memory and processors are available to run that stage,
the thread will execute the stage. Otherwise, it will sleep for a
specified interval before re-polling the server. Once a stage has
finished running (or failed to complete), the thread will release
the memory and processors used and poll the server again for
the next available stage to run. This happens repeatedly by all
threads until all stages in the pipeline have finished. Alternatively,
if there are failed stages, the pipeline will shut itself down once
no more stages can be run. (In this instance, debugging will be
necessary before restarting the pipeline). In addition, if an insuf-
ficient number of executors were launched, additional executors
may be launched at any time via the command line. This may be
done whether running locally, or if using an sge or pbs supported
cluster.

To tie together command stages, pipelines and pipeline execu-
tors into a single runnable program, we created the abstract
application (AbstractApplication) class. This is the base class for all
applications written within the Pydpiper framework. Each class
that inherits from AbstractApplication will itself be a command
line executable that, when launched with the appropriate argu-
ments, will run an entire pipeline from start to finish. This class
sets up command line options that are required for all subclasses,
initializes the pipeline (or restarts it from backup files) and sets up
a logger. It also launches the pipeline daemon, which is where the
pipeline is initialized as a server. If the appropriate command line
options are specified, subclasses of AbstractApplication will launch
executors, so that they may begin running immediately. When
writing a new application that inherits from AbstractApplication,
one only needs to extend a few functions without having to worry
about the underlying framework. These functions are shown
in Figure 6. A more complete example of a Pydpiper applica-
tion that inherits from AbstractApplication is included in the
section 5.

3.2. CLASS HIERARCHY AND FILE HANDLING
As noted in the Introduction, Pydpiper supports three main “lev-
els” of classes that are built on top of the core Pydpiper framework
described above: atoms, modules and applications. In addition,
there is a file handling framework to help simplify their usage.
All of the initial classes we developed extend the Pydpiper frame-
work to support files and pipelines that use the Medical Imaging
NetCDF (MINC) file format. MINC is a comprehensive med-
ical imaging data format and an associated set of tools and
libraries. It was initially developed at the Montreal Neurological
Institute (MNI) and is freely available online. (http://www.bic.
mni.mcgill.ca/ServicesSoftware/MINC, http://en.wikibooks.org/
wiki/MINC). In addition, we make use of pyminc, a Python
interface to the MINC2 library (https://github.com/mcvaneede/

pyminc). We expect that as development continues (by both us
and other members of the community) other file formats will be
supported as well.

Pydpiper atoms inherit directly from CmdStage and act as
wrappers around frequently used MINC tools. Each atom has
at least one required argument, an input MINC file, which may
be passed as a string or a file handler. Additionally, most atoms
require a second argument, a target MINC file, which must
be passed in the same format (e.g., string or file handler) as
the input MINC file. As is noted in the Introduction, image
registration determines the transformation mapping one image
(source) into the space of another (target), and Pydpiper’s atomic
structure reflects this. All atoms have multiple optional argu-
ments which are either specified directly or make use of the

**kwargs functionality built directly into Python. The choice
of optional arguments, and their defaults, were selected based
on the most common ways in which we use the MINC tools.
An example of minc atom usage is shown in Figure 3. This fig-
ure depicts two different ways to call the mincANTS atom. This
atom calls the command-line program of the same name, the
MINC-based implementation of the Advanced Normalization
Tools (ANTs) (Avants et al., 2008), a diffeomorphic image reg-
istration software package. Whether only two file handlers are
specified or the entire list of optional arguments is included,
the atom will handle putting together the command to be exe-
cuted and, because it inherits from CmdStage, all of the attributes
necesssary to seamlessly integrate it into an existing pipeline are
present.

As discussed above, a critical component of running any type
of pipeline is keeping track of stage dependencies, inputs and out-
puts. As is typical of the neuroimaging pipelines that formed the
motivation for Pydpiper, each input image in a pipeline is related
to others via a series of registrations, transforms and resampling.
In addition to stage interdependencies, one also needs to keep
track of, for example, the most recent transform between any
two images. Or, if a file has been resampled, it may be neces-
sary at a later point to access the original version of the file.
Keeping track of these files can be cumbersome, particularly for
novice developers, and doing so without resorting to unnecessar-
ily repetitive code can be a challenge. To address this challenge,
we have created the RegistrationPipeFH class, and its parent class,
RegistrationFHBase. Each input scan used in a pipeline (typically
read in as a command line argument) can be initialized as a file
handler (i.e., as an instance of the RegistrationPipeFH class). A
more complete discussion of how file handlers are instantiated is
included in section 5. Although this is not a requirement for using
Pydpiper, by using file handlers, all future use of a given input is
dramatically simplified. In addition, this class makes it easier to
identify the appropriate inputs and outputs to individual stages
when constructing new command stages and atoms.

One of the key features of file handlers is the way that they
allow access to the state of an image at any stage in the pipeline,
and various transforms or resampled files can be retrieved at any
time for later use. As a more specific example this, consider the
minctracc atom, which registers two files based on a specified
set of parameters. This atom serves as a wrapper for minc-
tracc, the implementation of the ANIMAL non-linear registration

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 67 | 6

http://www.bic.mni.mcgill.ca/ServicesSoftware/MINC
http://www.bic.mni.mcgill.ca/ServicesSoftware/MINC
http://en.wikibooks.org/wiki/MINC
http://en.wikibooks.org/wiki/MINC
https://github.com/mcvaneede/pyminc
https://github.com/mcvaneede/pyminc
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedel et al. Pydpiper

FIGURE 3 | Simplified call of the mincANTS atom (left) and a call that

includes all arguments (right). The call on the left requires only an input and
target file handler, and uses default arguments as mincANTS parameters. On
the right is a mincANTS call that includes specific arguments as parameters,

overriding the defaults. These arguments correspond to various command
line options required by mincANTS and they are discussed in more detail in
section 5. We also refer the reader to Avants et al. (2008) and references
therein for a complete discussion.

method (Collins et al., 1994, 1995). Although an extensive num-
ber of optional minctracc arguments exist, the only requirements
for this atom are an input and target. If this input and target
are file handlers, minctracc will retrieve the appropriately blurred
version of this file (created previously and saved in a dictionary by
the file handling class), and set the output transform as the sub-
sequent last transform between input and target, so it can easily
be retrieved later if desired. Moreover, if several minctracc calls
are made in succession on the same two files, the file handling
class will keep track of all previous transforms while still “know-
ing” which one was the most recent. This results in increasingly
simple function calls, particularly within more complex mod-
ules. Additionally, any of these transforms can be retrieved at any
point in the registration process. An example of this is shown in
Figure 4.

Modules are perhaps the most flexible and essential compo-
nent of the Pydpiper toolkit. A module can be composed of a
multiple atoms and command stages or a combination of atoms
and other modules. Existing modules were designed such that
they can be easily pieced together and used in multiple types
of pipelines, even for applications that at first glance seem to
have quite different architecture. A good example of a Pydpiper
module is the HierarchicalMinctracc class pictured in Figure 5.
This class calls both atoms and other modules and can be eas-
ily subclassed or called as is. Including HierarchicalMinctracc
in a larger pipeline is as simple as instantiating this class as
part of a larger module or application (hm = Hierarchical
Minctracc(inputFH, targetFH)) and adding it to the
existing pipeline (p.addPipeline(hm.p)). Additional argu-
ments (as shown in the __init__ in Figure 5) can be included
when the class is called, but are not required.

We noted in section 3.1 that coding with Pydpiper can be
done in a non-linear fashion, such that stages in the pipeline
are skipped if they already exist. One example of this is depicted
in Figure 5. On lines 52–53 of the code, we blur the images
associated with inputFH and targetFH. This is done once

for each of the blurs specified in the non-linear protocol
(self.nlin_protocol), itself defined in the __init__
function. These blurred images are then registered together, by
the minctracc call on line 58. (The rationale for blurring is
described in more detail in the following section). It is often
the case, however, that HierarchicalMinctracc is called
in a loop, once for many different input images (each with their
own file handler, inputFH) all registered toward the same tar-
get (targetFH). Because the same set of blurs is often used,
this means that line 53 will construct the exact same pipeline
stage multiple times. However, within addStage, there is a
check to see if the pipeline already contains an instance of this
stage. If it does, the stage is not added again to the pipeline.
This results in code that is easy to read (it is conceptually sim-
ple to understand why one would want to execute the same
command on both an input and target) and write (the pro-
grammer does not need to keep track of whether or not the
target file has already been blurred in a previous instantiation of
HierarchicalMinctracc).

Applications build on both atoms and modules to provide a
complete implementation of a single pipeline. The essential fea-
ture of an application is that it is a command line executable
that inherits from the AbstractApplication class described in sec-
tion 3.1. In theory, an application can be as simple as a single
pipeline stage, or one with thousands of stages that are con-
structed through multiple atoms and modules. Although the
complete pipeline for a given application can be extremely com-
plex, at its highest level the application code was designed to be
quite simple. This is shown in Figure 6. A more detailed descrip-
tion of each of Pydpiper’s current main applications is included
in the following section.

4. EXAMPLE APPLICATIONS
In section 1, we briefly introduced the scientific rationale for
the applications that motivated the development of Pydpiper. As
is noted there, different experimental designs require different

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 67 | 7

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedel et al. Pydpiper

FIGURE 4 | The buildPipeline function that is part of one of the

Pydpiper modules (top) and a portion of the highlighted minctracc

class (bottom). The minctracc class (1), called multiple times in the
for loop, is expanded to show details about how the file handling classes
operate. Each time minctracc is called, getLastXfm (2) finds the last
transform between input and target and uses it as the input transform
for the current function call. If no previous transform exists, an
appropriate default is set based on the specified registration parameters.

If an output transform is not specified as an argument when minctracc
is called (as in this example), registerVolume (3) creates the output
file name based on a set of defaults that includes the input and target
names and whether or not a previous transform exists between these
files. If an output transform is specified, addAndSetXfmToUse (4) adds
this transform to the dictionary of transforms between input and target.
If the blurs, gradient, step and simplex are not specified when minctracc
is called, defaults will be used.

registration paradigms. This is particularly true when consider-
ing whether and how a common space for all subjects should be
created. Nevertheless, commonalities that underlie seemingly dis-
parate registration strategies are largely what shaped the design
and development of Pydpiper. In this section, we will describe
these common features in more detail and then discuss how
they are combined in various ways to address specific image
registration challenges.

4.1. ESSENTIAL REGISTRATION MODULES
4.1.1. LSQ6
Each input image in a given study is scanned in a slightly differ-
ent coordinate system, and prior to more precise alignment, it
is beneficial if all scans are in the same coordinate system. This
happens by applying translations and rotations to each image
to align them toward a common target. This common target
can be one of the input images, or a specified initial model that
is in the desired coordinate system. Because this type of align-
ment involves six degrees of freedom (three translations and
three rotations), we refer to it as LSQ6. For each brain, LSQ6
involves the following steps: (1) blur each input image with a

specified Gaussian smoothing kernel (necessary so as not to overly
weight singularities or extreme inhomogeneties in an image) (2)
align, with a specified registration algorithm, each of the blurred
images (3) repeat steps 1 and 2, if desired, for a series of differ-
ent blurs and (4) resample each input brain with the transform
generated from stage 3. The Pydpiper LSQ6 module wraps all of
these stages (each of which is its own minc atom) inside a sin-
gle class. This class takes an array of file handlers (one for each
input image in the study) and applies this alignment to each
of them.

4.1.2. LSQ12
Whether or not an LSQ6 alignment is required, the next step
(or first step) in registering images is often to create an affine
alignment between a source and target. This typically involves
aligning the source and target via a series of translations, rota-
tions, scales and shears. Because each of these deformations
contributes three degrees of freedom, we call this stage of regis-
tration LSQ12. Depending on the type of registration pipeline,
LSQ12 can be used in different ways. If all subjects in a study
are being registered together, it can be beneficial to do an LSQ12

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 67 | 8

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedel et al. Pydpiper

FIGURE 5 | Code snapshot of the HierarchicalMinctracc class. In this class, there are calls to both atoms (e.g., blur and minctracc) and modules
(LSQ12). Note that minctracc is called iteratively, as is shown in Figure 4, but is using a different subset of arguments.

registration between all pairs of subjects in the study (Kovačević
et al., 2005) immediately following the LSQ6 alignment. This pro-
ceeds similarly to LSQ6: a single LSQ12 call between two brains
involves a series of blurs and alignments, with a final resam-
pling of each subject at the end. The goal of this procedure is
the creation of an average of all subjects in LSQ12 space. In
other types of pipelines, a full pairwise LSQ12 registration is not
appropriate due to insufficient homology among subjects, but an
LSQ12 alignment between specific sets of subject/template pairs

can improve registration accuracy. The Pydpiper LSQ12 module
handles both of these instances from a common class.

4.1.3. NLIN
In many ways, the most critical step of image registration is non-
linear alignment. This is typically the final stage of image registra-
tion, and involves non-uniform deformation of a source image to
a target, optimized via a particular metric. In contrast to the LSQ6
and LSQ12 modules previously described, in which all voxels

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 67 | 9

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedel et al. Pydpiper

FIGURE 6 | Example of Pydpiper application code. Along with the
required import statements (omitted from this figure for brevity), the .py

file necessary to create an executable for a given application is extremely
simple. This example is for the RegistrationChain application described in
section 4.3 and is representative of how to construct an application that
inherits from AbstractApplication. There are three functions included
in RegistrationChain: setup_options, setup_appName, and run.
run is the function that calls a unique combination of Pydpiper atoms and
modules to construct the appropriate pipeline and in spite of the complexity
inherent in this type of registration, this function is less than 100 lines of
code. At the end of the file the if __name__ = "__main__" clause is
required so that this code can be executed directly from the command line.
In section 5, we show a complete example, albeit for a different application,
of these functions.

are deformed in a uniform, global way, non-linear registration
induces non-uniform deformations. When all scans in a study can
be registered together, non-linear registration may happen itera-
tively, toward an evolving target. After each subject is registered
to an initial target (for instance, the LSQ12 average), all subjects
are resampled, a new average is created, and alignment proceeds
to this new average. Alternatively, a single subject/template pair
could be non-linearly aligned with either a single or multi-stage
call, but without iterating toward an evolving target. Examples
of this include the registration chain paradigm (described in sec-
tion 4.3) and multiple automated template generation (section
4.5). One of the design goals of Pydpiper was to create a series
of non-linear modules that handle either of these registration
scenarios in a straightforward way. Moreover, there are multiple
different types of non-linear registration metrics that are avail-
able (Klein et al., 2009), including Advanced Normalization Tools
(ANTs) (Avants et al., 2008) and Automatic non-linear Image
Matching and Anatomical Labeling (ANIMAL) (Collins et al.,
1994, 1995), the two algorithms we have utilized in Pydpiper.
Although they differ significantly “under the hood,” (elastic vs.
diffeomorphic optimization, completely different command line
options) one of our goals was to implement them such that their
usage at a high level is nearly identical. The ANTs toolkit itself
provides a number of helpful bash scripts for various types of
image alignments, including the type of iterative model building
described in section 4.2. However, by incorporating this same

paradigm directly into the Pydpiper framework, we have greater
flexiblity to use it in conjunction with other Pydpiper modules.
In addition, our file handling framework makes it easier to access
files created throughout the entire registration process, something
that would require additional scripting if using the ANTs toolkit
as a stand-alone package.

4.1.4. Pre-processing
In addition to the LSQ6 and LSQ12 modules, there are sev-
eral pre-processing steps that often need to be included before
proceeding with non-linear registration. The most important of
these is applying a non-uniformity correction to each image to
account for smooth intensity variations that are often present in
MR imaging of homogenous tissue (Sled et al., 1998). Another
pre-processing stage is intensity normalization, which addresses
interslice intensity variations (Zijdenbos et al., 1995). Although
each of these steps are most sensibly applied prior to non-linear
registration, our goal was to code them such that they could be
called at any stage of any type of pipeline. In addition to both of
these steps, another step that may be critical to a successful regis-
tration is masking. MRI scanning, particularly when done ex-vivo,
can result in images where a non-negligible amount of tissue is
present around the outside of the brain. In order to speed up the
registration process and increase its accuracy, a region of interest
is defined that encompases the entire brain, and image alignment
only occurs within this region. Defining and keeping track of
masks and using them when appropriate was also a key feature
included in our design and development of Pydpiper, particularly
with respect to the file handling class described previously.

4.1.5. Statistics
Finally, the end-goal of performing statistical analysis based on
the results of a registration, regardless of type, factored heav-
ily into the design of Pydpiper. For many types of registrations,
all statistical analysis must be done from a common space, but
how this common space is constructed varies with the type of
pipeline. Once a common space has been identified, the full trans-
form from this common space back to each individual subject
is used to calculate a deformation field. After smoothing and
taking the Jacobian determinant of this deformation field (a mea-
sure of the volume expansion or contraction at each voxel) we
can use DBM to calculate neuroanatomical differences due to
genotype, gender, environmental factors, etc. In particular, the
statistics module of Pydpiper was designed with two paradigms
in mind: the first was that once the appropriate transform was
identified, the calculation of the associated deformation field and
Jacobian determinants would proceed as uniformly as possible;
the second was that the transform concatenation often necessary
to get the appropriate average-to-subject transform would hap-
pen in a modular way, independent of determinant calculation,
to increase code reusability. This was motivated in part by dif-
ferences between iterative group-wise registration (section 4.2)
and the registration chain (section 4.3). In the latter, deforma-
tion fields can be calculated both from a space common to all
subjects, or between individual subject pairs, and we wanted code
that would handle both in a seamless fashion, particularly at the
highest levels.

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 67 | 10

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedel et al. Pydpiper

4.2. ITERATIVE GROUP-WISE REGISTRATION
Our previous implementation of iterative group-wise registration
is described in more detail in Lerch et al. (2011). In Pydpiper, we
utilized the same underlying logic and theoretical framework for
this application, but implemented it in a much more streamlined
and extensible fashion. Briefly, this iterative, group-wise registra-
tion proceeds as follows: we first bring all subjects into a common
space using the LSQ6 module. Then, following non-uniformity
correction and intensity normalization, we perform a pairwise
registration of all subjects in the study using the LSQ12 module.
This creates the best possible linear model for this data set. Using
the LSQ12 average as a starting template, we then locally deform
each scan toward this template, using either an elastic (minc-
tracc, Collins et al., 1994, 1995) or diffeomorphic (mincANTS,
Avants et al., 2008) registration algorithm. After this initial align-
ment, another average is created, and this is used as a template for
subsequent non-linear generations. This entire multi-generation
procedure is encapsulated in the non-linear (NLIN) registration
module. Once a final non-linear average is created, the appropri-
ate transforms are concatenated and used to create deformation
fields from this template to each individual subject. These defor-
mation fields are subsequently used in DBM. A schematic of this
registration process is depicted in Figure 7. A corresponding code
diagram is shown in Figure 8 and the annotated code itself is
provided in Figure 9.

One notable feature of our implementation of iterative group-
wise registration is that, at a high level, the code is deliberately
sparse. The goal of this design was to make each stage (e.g., LSQ6,
LSQ12, NLIN, statistics calculations) an independent entity, to
aid in both readability and provide a more direct correspon-
dence between the theoretical framework and the code itself. As
an example of the size of one of these pipelines, consider an

image registration with 10 mutants and 10 wild type mice, the
minimum number we typically use for a two group compari-
son. This pipeline would have a total of 2169 pipeline stages
encapsulated into four modules: LSQ6 (including intensity nor-
malization and pre-processing), LSQ12, NLIN and Statistics. For
larger studies and the alternate strategies described below, (partic-
ularly MAGeT), pipelines can often consist of tens of thousands
of stages; however, because of the modular nature of the code,
applications remain uncluttered and easy to read.

The modular nature of Pydpiper applications also makes it
easier to assess where changes to the pipeline should occur. For
example, one might want to proceed directly to non-linear regis-
tration after having performed the LSQ6 stage–this could be done
quite simply by removing only a few lines of code in the existing
application. In addition, each of these modules has a default set
of registration parameters that are based on the detected input
file resolution. Alternate parameters may be deliniated in a .csv
file that is specified on the command line when the application
is launched. This makes it simple to flexibly adjust parameters as
needed while avoiding hard coded values that are only appropri-
ate for a handful of cases. Another advantage of this modular code
is that it is simple to implement alternate registration strategies.
For example, the non-linear modules (NLIN) for both minctracc
and mincANTS registrations inherit from a common base, which
could easily be further subclassed to create an alternate non-linear
registration strategy.

4.3. REGISTRATION CHAIN
There are numerous scenarios where the iterative group-wise
registration paradigm described in the preceeding section is inap-
propriate, and alternative registration and analysis strategies must
be employed. This is particularly true in the case of specific types

FIGURE 7 | Schematic of iterative group-wise registration. This schematic depicts a registration scenario where all subjects, each scanned at one or
multiple time points, can be registered to a consensus average.

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 67 | 11

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedel et al. Pydpiper

FIGURE 8 | Code diagram to complement Figures 7, 9. This figure
illustrates the modular nature of how Pydpiper executes each of the
stages in this pipeline. Diagramatically, each of the code blocks

highlighted in Figure 9 is indicated here as a single unit. One of the
non-linear stages is expanded to show the complexity of the pipeline
that underlies it.

of longitudinal studies, where scans from early time points cannot
necessarily be registered to scans at later timepoints, even when
doing intra-subject registration. This makes the strategy of reg-
istering all brains together in an iterative fashion ineffective. As
noted in the Introduction, two examples of this type of study
include both tumor growth and normal development. Although
it is not possible to register together early and late time points in
these types of studies, adjacent time points can often be accurately
registered.

In order to address this type of longitudinal study, we have cre-
ated the registration chain application, schematically depicted in
Figure 10. This pipeline works as follows: Each subject is first lin-
early and then non-linearly registered to the next scan in the time
series for that mouse. This is done first through an LSQ12 reg-
istration from source (timepoint i) to target (timepoint i + 1),
followed immediately by a non-linear registration from source (i)
to target (i + 1). Once this has been done for all subjects, one time
point is chosen as the common time point for the registration. All
scans at this timepoint are then registered together via the iterative
procedure described previously. This creates the common space
required for statistical analysis. The appropriate transforms from
this common space to each individual scan are then concatenated
and deformation fields calculated.

The code used to accomplish this type of registration has
many parallels to the example shown in Figure 9. Like itera-
tive group-wise registration, the registration chain is composed
of a number of smaller modules, making the application easy
to read. The main registration loop, which aligns scan i to
i + 1 for each subject, is extremely compact: choosing minc-
tracc results in a call to HierarchicalMinctracc, shown

in Figure 5, and choosing mincANTS calls a very similar function
(LSQ12ANTSNlin), which uses the LSQ12 module in combi-
nation with the mincANTS atom to appropriately align input
to target. To create a common space for analysis, all subjects at a
specified timepoint are then registered together using the iterative
procedure described in section 4.2. Deformation fields are calcu-
lated from the common space via a subclass of the CalcStats
class highlighted in Figure 9.

4.4. TWO-LEVEL REGISTRATION
Two-level registration is a registration paradigm that creates both
subject and population averages. It is appropriate for data sets
where all subjects are scanned multiple times, but in contrast to
the types of longitudinal registration described in section 4.3,
all timepoints for a given subject can be registered together.
This is done using iterative group-wise registration to create
a subject-specific average, enabling meaningful statistical com-
parison among all timepoints for a given subject. All of these
subject-specific averages are then registered together, again using
the iterative group-wise procedure, to create a population aver-
age. Transform concatenation can then be used to calculate the
appropriate transform from the population average to each sub-
ject specific average, and subsequently to each individual scan.
This allows for inter-subject comparison at each of the timepoints
in the study. A schematic of this is shown in Figure 11.

4.5. MULTIPLE AUTOMATICALLY GENERATED TEMPLATES (MAGeT)
Of particular interest in the neuroimaging community is the
ability to match MRI volumes to expertly labeled atlases, as struc-
tural segmentations are a powerful tool for enhancing analyses

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 67 | 12

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedel et al. Pydpiper

FIGURE 9 | run() function in the iterative group-wise registration application. This piece of code illustrates how an extremely complex pipeline can be
built up from smaller modules making it simple to read at the application level.

(Nieman et al., 2007; Dorr et al., 2008). Unfortunately, creating
accurate atlases, particularly across the whole brain, can be chal-
lenging. While manual segmentation is often considered the “gold
standard” for atlas creation (see e.g., Burk et al., 2004), it is too

time-consuming and subjective for the ever-increasing amount of
structural MRI data that must be analyzed. As such, automated
atlas creation is a powerful and necessary tool and one that we
wanted to include in Pydpiper.

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 67 | 13

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedel et al. Pydpiper

FIGURE 10 | Schematic of the registration chain pipeline. In this
schematic, each subject is scanned at a series of timepoints. The arrows
indicate that, within each subject, timepoint i is registered to timepoint i + 1.

All subject scans at timepoint n are then iteratively registered together,
creating a common space among all subjects and timepoints. Alternatively, a
different timepoint could be chosen as the common space.

FIGURE 11 | Schematic of the two-level pipeline.

The creation of multiple automatically generated templates
from a single labeled brain (MAGeT Brain), as introduced
in (Chakravarty et al., 2013), is an example of a multi-atlas based,
label fusion technique that produces accurate atlases without
the need for manual segmentation. Briefly, it works as follows:
using an input template with a set of pre-defined labels, this
brain is non-linearly aligned to another subject or set of subjects.
Typically, this proceeds first with an LSQ12 alignment, followed
by a non-linear registration from source (template) to target (sub-
ject). The resulting transforms are then applied to the template

labels, such that each subject is now labeled as well. Then, all of
the subjects are non-linearly registered together (again, first with
an LSQ12 alignment, followed by a non-linear registration), cre-
ating a set of labels for each subject. A label voting technique is
then applied at each voxel, such that the most frequently occur-
ing label is selected for the final segmentation of that voxel. This
whole procedure is graphically depicated in Figure 12. We note
that although MAGeT Brain was the explicit motivation for this
application, the code could be easily extended to implement more
sophisticated label fusion techniques (Wang et al., 2013).

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 67 | 14

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedel et al. Pydpiper

FIGURE 12 | Schematic of the MAGeT algorithm. (A) An initial
labeled template is non-linearly aligned to a series of subjects. (B)

Using the transform that results from step A, the labels from the
template are propagated to each subject, creating a unique set of
labels for that subject. (C) Each subject is non-linearly registered to

every other subject. (D) The initial set of labels from each subject
(created in step B) are propagated to every other subject using the
transforms from step C. This creates a library of labels for each
subject. (E) A voxel voting procedure is applied, creating the best set
of labels for each subject.

As implemented in the Pydpiper framework, MAGeT re-
uses many of the classes and modules from other applications.
For example, the alignment of template to subject uses either
HierarchicalMinctracc or LSQ12ANTSNlin, exactly as
is done for the registration chain. This again illustrates the mod-
ular, re-usable nature of this toolkit. Prior to this alignment is
the option to use the LSQ6 module for an initial alignment as
well. In addition to assessing volumetric differences based on
label segmentations, the Pydpiper MAGeT application can also
be used in a number of different but related ways. As an exam-
ple, an input template (or set of templates) can be registered
to the population average created from any of the registration
pipelines detailed above. After voxel voting (necessary if more
than one template atlas is used), these labels from the population
average can be back-propagated (via the appropriately concate-
nated transforms) to each individual subject in the study, enabling
volumetric analysis from these sets of labels.

5. ANNOTATED CODE EXAMPLE
In this section, we provide a more complete Pydpiper code
example along with a corresponding shell script that one might
write to execute some of the same commands. These constrast-
ing pieces of code illustrate the utility of many of the Pydpiper
atoms and modules and provide a more detailed example for
understanding many aspects of the code discussed throughout
this paper. Additionally, because the initial Pydpiper applications
are all based on the MINC file format, this section provides
a bit more context regarding the command line tools we are
using. For more details, we refer the reader to http://www.bic.
mni.mcgill.ca/ServicesSoftware/MINC and http://en.wikibooks.
org/wiki/MINC.

The example pipeline we show here corresponds to a single
iteration of the multi-generation non-linear module discussed
in section 4.1, followed by the calculation of the displacement
field and Jacobian determinant necessary for DBM. It does the
following:

1. Aligns each input subject to a specified template using min-
cANTS. This will result in a transform from each input to the
resulting template. For clarity throughout this section, we will
refer to this transform as the “final non-linear transform.”

2. Resample each subject with its unique final non-linear
transform.

3. Create an average of these resampled brains to create a new
non-linear average.

4. Calculate the linear part of each subject’s non-linear trans-
form. The inverse of the full non-linear source-to-target
transform is also needed, but is automatically calculated by
mincANTS.

5. Concatenate these transforms to calculate the pure non-linear
transformation from target to each individual subject.

6. Calculate the pure non-linear vector field for each sub-
ject, apply a Gaussian smoothing, and calculate the Jacobian
determinant of this smoothed vector field.

Prior to starting this registration, we make the assumption that
the input files to this pipeline have already been aligned into a
common space by the LSQ6 and/or LSQ12 modules described in
section 4.1 of the text.

In Figure 13 we show how the above pipeline would be
executed in a simple bash script. In Figure 14, we show
the same pipeline in Pydpiper. In this case, we show the

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 67 | 15

http://www.bic.mni.mcgill.ca/ServicesSoftware/MINC
http://www.bic.mni.mcgill.ca/ServicesSoftware/MINC
http://en.wikibooks.org/wiki/MINC
http://en.wikibooks.org/wiki/MINC
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedel et al. Pydpiper

FIGURE 13 | Bash script that does a non-linear alignment from a set

of inputs to a common target, then calculates the resulting

deformation fields and their Jacobian determinants. Note that our

labeled sections for this figure begin with section B, as described in
the text. (B) File checking and initialization of average; (C) Image
alignment; (D) Statistics calculation.

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 67 | 16

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedel et al. Pydpiper

FIGURE 14 | Non-linearRegistration application in Pydpiper. This
code aligns a set of inputs toward a common target, iterating
over multiple generations if requested. Note that we have omitted
if __name__ = "__main__" from this figure, but it is included in

the .py file that runs this code. (See Figure 6 for more discussion).
(A) Pre-requisites for AbstractApplication class and integration into
pipeline; (B) File checking and initialization of average; (C) Image
alignment; (D) Statistics calculation.

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 67 | 17

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedel et al. Pydpiper

NonlinearRegistration application, which inherits from
AbstractApplication and can be run on the command
line. Each of these figures has multiple sections of code high-
lighted, and each highlighted section is labeled. The color and
label of one section in Figure 13 corresponds to the same color
and label in Figure 14. We will use these labels as a guide for dis-
cussion. In addition, registration steps 1–6, as enumerated above,
are also labeled in each figure.

5.1. SETUP AND PREREQUISITES
One of the most notable differences between the bash script
in Figure 13 and the Pydpiper code in Figure 14 is the ini-
tial code set-up and file checking. For the bash script, this is
encapsulated in section B, whereas in the Pydpiper code, this
is encapsulated in sections A, B. Note that the bash script does
not have section A, as it has nothing analogous to Pydpiper’s
AbstractApplication class.

In section A of Figure 14, there are two functions:
setup_options and setup_appName. Both of these are
necessary subclasses of AbstractApplication. setup_
options adds various option groups to the application’s option
parser, to ensure that the appropriate command line options are
available. In addition to reducing the amount of hard coding
with this application, all of the command line options themselves
are grouped together based on their functionality and can
be reused in many different applications. setup_appName
defines an application name, which is particularly useful for
parsing log files. The key thing to note about section A is
that, because NonlinearRegistration inherits from
AbstractApplication, all of the components necessary for
putting together a larger pipeline, calculating stage dependencies,
and using the executor model for running multiple stages
concurrently is present. No additional setup or coding is needed.
In contrast, when using the simple bash script provided, stages
can only be run consecutively, one-at-a-time.

In section B of both figures, three things are accomplished,
albeit in quite different ways. The first is the checking that is done
to ensure that all of the input files are in the MINC file format and
that a minimum of two are specified. The second is that output
directories are created, one for each input file. Finally, an initial
target for non-linear alignment is created by averaging all of the
input files.

In Figure 13, file checking is accomplished on lines 12–25
of code. In Figure 14, this happens on line 24 in the function
call initializeInputFiles. Not only does this function
check for the appropriate number and format of files, but it
initializes each of these files as a file handler, as discussed in
Section 3.2. In addition to file handler instantiation, if the
options.mask_dir argument is specified, a mask will be
assigned to each of the input files and their corresponding
file handlers. In order to include a mask in the bash script,
it would need to be re-written. In spite of the significant
additional features this function adds over the corresponding
bash script, it contains only 47 lines of code (not shown).
Output directory creation happens on lines 29–32 of the
bash script, and via two function calls in the Pydpiper code.
First, on line 21, the setupDirectories function, used

in virtually all other Pydpiper applications to date, creates the
main output directories for the registration. Then, as part of
initializeInputFiles, a subdirectory is created for each
input file.

Finally, on lines 35–40, the bash script calls mincaverage
to create an average target from the set of input files. This is
accomplished on lines 30–36 of the Pydpiper code, though as is
shown on lines 24–28, Pydpiper allows you to specify an initial
target on the command line, so averaging is not always neces-
sary. In both Pydpiper scenarios, the target file is initialized as
a file handler (lines 26 or 32). Because averaging happens using
the mincAverage atom (line 33), all of the appropriate file
dependencies are included in the pipeline.

5.2. IMAGE ALIGNMENT
The portion of each piece of code that does image alignment
is marked in both figures as section C. In Figure 13, a sim-
ple image alignment is shown on lines 46–65. Each input file
is first blurred (lines 46–49) with the mincblur tool, using
a Gaussian smoothing kernel with a full-width at half maxi-
mum (fwhm) of 0.224 µm. The target is blurred as well (line
53). Then, the blurred version of each input file is aligned to
the blurred version of the target via a mincANTS call (lines 59–
65). This particular call uses a cross-correlation similarity metric
(CC) with a Gaussian regularizer (Gauss[2,1]) and a transfor-
mation model that uses symmetric normalization (SyN[0.1]).
More details about these parameters can be found in Avants et al.
(2008). The resulting transform is then applied to each of the
input subjects via a mincresample call (lines 67–69) and a
new average is created via mincaverage (line 75). Although this
is a straightforward and brief script, it requires editing for any
set of images that do not use these hard coded parameters, and
extending it to multiple generations would require a fair amount
of recoding.

The Pydpiper code that accomplishes this same alignment is
effectively encapsulated two function calls, shown on lines 40–45
of Figure 14. First, the initNLINModule function is called on
line 40. This function returns the appropriate non-linear module
as nlinModule. The module returned depends on the value of
options.reg_method passed into the function. In the exam-
ple here, options.reg_method=mincANTS is specified on
the command line, and initNLINModule returns an instance
of NLINANTS.

After the instantiation of NLINANTS, the iterate() func-
tion is called. This function executes the following commands:
After blurring both input and target using the blur atom, the
blurred version of each input is registered to the blurred version of
the target using the mincANTS atom. Then, as in the bash script,
the resulting transform is applied to each input, and it is resam-
pled via the mincresample atom. Then, the mincaverage
atom is used to create a new non-linear average. (If additional
generations were required, the new average would be blurred,
and each blurred input would be registered to this new average,
with the entire cycle repeating). Note that each of these atoms
calls the command line tool of the same name, and the com-
mands exectued are nearly identical (provided the same set of
parameters) as those shown in the bash script.

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 67 | 18

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedel et al. Pydpiper

The exact registration parameters used by NLINANTS, includ-
ing (but not limited to) the Gaussian smoothing kernel neces-
sary for blurring, the similarity metric for alignment and the
transformation metric are all contained in the file specified for
options.nlin_protocol (line 43). If no protocol is spec-
ified, a set of defaults, currently optimized for registration of
mouse brains, is used. For the present example, the parameters
necessary for only one generation are included in the protocol file.
In contrast to the bash script, simply updating the non-linear pro-
tocol extends the code to an arbitrary number of generations. No
re-coding is necessary.

5.3. STATISTICS CALCULATION
Finally, in section D of each figure, we show the code neces-
sary for performing a statistics calculation. As is evident from
the bash script in Figure 13, calculating a Jacobian determinant
is a multi-step process: First, the linear part of the non-linear
transform from input to target is calculated (line 87). Then, this
transform is concatenated with the full transform from target to
input (automatically calculated by mincANTS during the align-
ment procedure) via xfmconcat on line 91. After a calculation
(line 94) and smoothing (line 96) of the displacement field, the
Jacobian determinant is calculated (lines 99–102). Note that the
determinant smoothing happens for only a single blurring ker-
nel (in this case, the specified fwhm is 0.5 µm), and keeping track
of all the inputs and outputs is a critical step in making sure this
script executes properly.

In constrast, the Pydpiper execution of this code is contained
entirely on line 60. For each input and target, the CalcStats
class is instantiated. Within this class, fullStatsCalc exe-
cutes each of the same stages as in the bash script using the
appropriate atoms and modules. The deformation field may be
smoothed with more than one blurring kernel (a list is specified
as the --stats-kernels command line option). This list of
blurs is passed as the options.stats_kernels argument to
CalcStats and results in the calculation of multiple Jacobian
determinant fields. Additionally, on lines 52–53, the target file
necessary for the statistical calculations is selected as the final
average from a series that may be generated; in the current exam-
ple, this number is one, but will be larger for multi-generation
registration.

Finally, we note the similarities between Figure 14 and
Figure 9. In particular, the code in sections C, D is nearly iden-
tical to that on lines 69–89 of Figure 9. This module reusibility
was a deliberate design choice.

5.4. RUNNING THE CODE
To run the bash script depicted in Figure 13, assuming it is located
in an appropriate directory in the user’s path, the command is:

nlin_registration_and_stats.sh input_1.mnc
input_2.mnc ... input_n.mnc

The analagous command for the Pydpiper code is:

NLIN.py input_1.mnc input_2.mnc ...
input_n.mnc --calc-stats

--nlin-protocol=ANTS_protocol.csv
--mask-dir=/directory/of/masks

--num-executors=1 --proc=8

The command line arguments for both the bash script
and Pydpiper code are simply the brains to be registered
(input_1.mnc ... input_n.mnc). Additional com-
mand line options are also specified for the Pydpiper code.
--calc-stats is required for the final statistics calculation.
(If this option is unspecified, the non-linear alignment will run
but no statistics are calculated). --nlin-protocol supplies
a non-linear protocol for registration, and --mask-dir
specifies a directory of masks to be associated with each input.
Additionally, the --num-executors and --proc options
are not required, but if they are unspecified, the NLIN.py
command will launch the pipeline server only, and executors will
need to be launched separately.

6. DISCUSSION
The ability to use neuroimaging technologies to help under-
stand the relationship between genotype and phenotype will be
an important contribution to biomedical research in the twenty-
first century. Although there are multiple different methods for
analyzing neuroimaging data, image registration is of particu-
lar interest due to its wide range of applications. Performing
image registration in an accurate and automated way is a crit-
ical component of of many neuroimaging studies, regardless
of subject-type (humans, mice) or imaging modality (MRI,
micro-CT, OPT). Different experimental designs require different
registration strategies in order to assess growth patterns, com-
pare genotype differences, or look at the impact of learning.
Nevertheless, common features underlie these registration strate-
gies, suggesting that a common computational framework may be
used to construct a multitude of different registration pipelines.
With the Pydpiper toolkit, we have created such a framework.

Throughout this paper, we have discussed many of the design
choices that influenced our development of Pydpiper. Above all
else, we were motivated by five principles: (1) high-level cod-
ing should be as simple as possible for those with less coding
experience (advanced users can still easily get “under-the-hood”
to create new modules); (2) individual building blocks of code
should be as modular as possible, easy to subclass, and geared
toward a range of biologically relevant applications; (3) complete,
runnable pipelines containing thousands of stages and address-
ing the registration scenarios described above should be available
“out-of-the-box”; (4) at the end of any pipeline, there should be
an option to calculate the derived volumes necessary for TBM
based statistics, using a module that contains all of the required
stages; (5) we should include a robust file handling class to keep
track of naming schemes and file interactions across many mod-
ules in a single application. Stemming from these principles,
we believe that Pydpiper offers the following innovations to the
community:

• A robust file handling class that allows access to outputs from
all stages of registration at any point in the pipeline. To the best
of our knowledge, no other package offers a similar framework.

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 67 | 19

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedel et al. Pydpiper

• The ability to write code in a “non-linear” way; that is (as
shown in Figure 5), duplicate stages that make conceptual
sense can be written into the code, but are only executed once.
This results in code that is both easy to read and write.

• A set of classes (in the form of atoms and modules) that are
reusable, easy to subclass and designed to be combined in
different ways to solve a variety of image registration problems.

• A toolkit that enables novice programmers to quickly piece
together relatively complex pipelines with only a few lines of
code.

• Four complete applications that run complex image registra-
tion pipelines with thousands of stages, “out-of-the-box.”

As we noted in the Introduction and throughout the text, there are
a number of pipelining frameworks currently available for run-
ning image registrations, and although our goal is not to replace
any of them, we believe we offer complementary functionality.
This is particularly true for Nipype, which is also open-source,
written in Python, and has many of the same goals as Pydpiper.
At present, Nipype offers interfaces to many more common neu-
roimaging toolkits than Pydpiper, and if one wanted to create
a pipeline using any of these tools (e.g., FSL, Freesurfer, SPM),
Nipype is the obvious choice. For other applications, such as an
iterative registration using ANTs, one could choose either frame-
work, as both Nipype and Pydpiper provide the infrastructure
to do this relatively easily. Where we believe Pydpiper offers an
advantage is via the integration of the file handling class into the
high-level code structure. Our toolkit gives users the ability to
quickly put together applications from our existing modules with
relatively simple syntax, and through the file handlers, have the
ability to access the state of each input at any stage throughout
the pipeline. In particular, using the file handling framework in
conjunction with the statistics module gives users a significant
amount of flexibility in calculating statistics, making it easy to
perform TBM at the end of any pipeline.

We hope that our architectural goals and code construction
will attract both seasoned developers and more novice coders who
want to tackle a variety of registration challenges, without hav-
ing to piece together a mish-mash of functions from scratch. By
creating Pydpiper as an open source, freely available toolkit, we
also hope to facilitate significant additional contributions from
the community. With the emergence of new imaging techniques
and experimental designs will come the need for new registra-
tion paradigms, and we expect that the existing Pydpiper code
provides a solid foundation on which to build these new pipelines.

ACKNOWLEDGMENTS
We gratefully acknowledge financial support from the Canadian
Institutes of Health Research (CIHR) and the Ontario Brain
Institute, an independent non-profit corporation, funded par-
tially by the Ontario government. The opinions, results and
conclusions are those of the authors and no endorsement by
the Ontario Brain Institute is intended or should be inferred.
Many of the computations necessary for code development
were performed on the GPC supercomputer at the SciNet HPC
Consortium (Loken et al., 2010). SciNet is funeded by: the Canada
Foundation for Innovation under the auspices of Compute

Canada; the Government of Ontairo; Ontario Research Fund—
Research Excellence; and the University of Toronto. Insights from
R. Mark Henkelman, John G. Sled and Brian J. Nieman were
instrumental in clarifying our thinking and we thank them for
many useful discussions. Finally, we thank Fraser MacDonald for
early work on this project and for coming up with the name
Pydpiper.

REFERENCES
Ashburner, J., and Friston, K. J. (2000). Voxel-based morphometry–the methods.

Neuroimage 11(6 Pt 1), 805–821. doi: 10.1006/nimg.2000.0582
Avants, B. B., Epstein, C. L., Grossman, M., and Gee, J. C. (2008). Symmetric

diffeomorphic image registration with cross-correlation: evaluating automated
labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41.
doi: 10.1016/j.media.2007.06.004

Bellec, P., Lavoie-Courchesne, S., Dickinson, P., Lerch, J. P., Zijdenbos, A. P., and
Evans, A. C. (2012). The pipeline system for Octave and Matlab (PSOM): a
lightweight scripting framework and execution engine for scientific workflows.
Front. Neuroinform. 6:7. doi: 10.3389/fninf.2012.00007

Burk, K., Globas, C., Wahl, T., Buhring, U., Dietz, K., Zuhlke, C., et al. (2004). MRI-
based volumetric differentiation of sporadic cerebellar ataxia. Brain 127(Pt 1),
175–181. doi: 10.1093/brain/awh013

Callahan, S. P., Freire, J., Santos, E., Scheidegger, C. E., Silva, C. T., and Vo, H. T.
(2006). “VisTrails: visualization meets data management,” in Proceedings of the
2006 ACM SIGMOD International Conference on Management of Data (Chicago,
IL: ACM), 745–747. doi: 10.1145/1142473.1142574

Chakravarty, M. M., Steadman, P., van Eede, M. C., Calcott, R. D., Gu, V., Shaw,
P., et al. (2013). Performing label-fusion-based segmentation using multiple
automatically generated templates. Hum. Brain Mapp. 34, 2635–2654. doi:
10.1002/hbm.22092

Chung, M. K., Worsley, K. J., Paus, T., Cherif, C., Collins, D. L., Giedd, J. N.,
et al. (2001). A unified statistical approach to deformation-based morphometry.
Neuroimage 14, 595–606. doi: 10.1006/nimg.2001.0862

Collins, D. L., Holmes, C. J., Peters, T. M., and Evans, A. C. (1995). Automatic
3D model-based neuroanatomical segmentation. Hum. Brain Mapp. 3, 192–205.
doi: 10.1002/hbm.460030304

Collins, D. L., Neelin, P., Peters, T. M., and Evans, A. C. (1994). Automatic 3D
intersubject registration of MR volumetric data in standardized Talairach space.
J. Comput. Assist. Tomogr. 18, 192–205. doi: 10.1097/00004728-199403000-
00005

Dinov, I., Lozev, K., Petrosyan, P., Liu, Z., Eggert, P., Pierce, J., et al.
(2010). Neuroimaging study designs, computational analyses and data prove-
nance using the LONI pipeline. PLoS ONE 5:e13070. doi: 10.1371/jour-
nal.pone.0013070

Dorr, A. E., Lerch, J. P., Spring, S., Kabani, N., and Henkelman, R. M. (2008).
High resolution three-dimensional brain atlas using an average magnetic
resonance image of 40 adult c57bl/6j mice. Neuroimage 42, 60–69. doi:
10.1016/j.neuroimage.2008.03.037

Durrleman, S., Pennec, X., Trouvé, A., Braga, J., Gerig, G., and Ayache, N. (2013).
Toward a comprehensive framework for the spatiotemporal statistical analysis
of longitudinal shape data. Int. J. Comput. Vis. 103, 22–59. doi: 10.1007/s11263-
012-0592-x

Ellegood, J., Babineau, B. A., Henkelman, R. M., Lerch, J. P., and Crawley, J. N.
(2013). Neuroanatomical analysis of the BTBR mouse model of autism using
magnetic resonance imaging and diffusion tensor imaging. Neuroimage 70,
288–300. doi: 10.1016/j.neuroimage.2012.12.029

Evans, A. C., Janke, A. L., Collins, D. L., and Baillet, S. (2012). Brain templates and
atlases. Neuroimage 62, 911–922. doi: 10.1016/j.neuroimage.2012.01.024

Fischl, B., and Dale, A. M. (2000). Measuring the thickness of the human cere-
bral cortex from magnetic resonance images. Proc. Natl. Acad. Sci. U.S.A. 97,
11050–11055. doi: 10.1073/pnas.200033797

Fonov, V., Evans, A. C., Botteron, K., Almli, C. R., McKinstry, R. C., Collins, D. L.,
et al. (2011). Unbiased average age-appropriate atlases for pediatric studies.
Neuroimage 54, 313–327. doi: 10.1016/j.neuroimage.2010.07.033

Gazdzinski, L. M., and Nieman, B. J. (2014). Cellular imaging and texture analy-
sis distinguish differences in cellular dynamics in mouse brain tumors. Magn.
Reson. Med. 71, 1531–1541. doi: 10.1002/mrm.24790

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 67 | 20

http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

Friedel et al. Pydpiper

Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C.,
et al. (2004). Dynamic mapping of human cortical development during child-
hood through early adulthood. Proc. Natl. Acad. Sci. U.S.A. 101, 8174–8179. doi:
10.1073/pnas.0402680101

Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N., Friston, K. J.,
and Frackowiak, R. S. (2001). A voxel-based morphometric study of age-
ing in 465 normal adult human brains. Neuroimage 14(1 Pt 1), 21–36. doi:
10.1006/nimg.2001.0786

Gorgolewski, K., Burns, C. D., Madison, C., Clark, D., Halchenko, Y. O., Waskom,
M. L., et al. (2011). Nipype: a flexible, lightweight and extensible neuroimag-
ing data processing framework in python. Front. Neuroinform. 5:13. doi:
10.3389/fninf.2011.00013

Guimond, A., Meunier, J., and Thirion, J.-P. (2000). Average brain mod-
els: a convergence study. Comp. Vis. Image Understand. 77, 192–210. doi:
10.1006/cviu.1999.0815

Hanke, M., and Halchenko, Y. O. (2011). Neuroscience runs on GNU/Linux. Front.
Neuroinform. 5:8. doi: 10.3389/fninf.2011.00008

Heckemann, R., Hajnal, J., Aljabar, P., Rueckert, D., and Hammers, A. (2006).
Automatic anatomical brain MRI segmentation combining label propagation
and decision fusion. Neuroimage 33, 115–126. doi: 10.1016/j.neuroimage.2006.
05.061

Henkelman, R. M. (2010). Systems biology through mouse imaging centers:
experience and new directions. Ann. Rev. Biomed. Eng. 12, 143–166. doi:
10.1146/annurev-bioeng-070909-105343

Hyde, K. L., Lerch, J., Norton, A., Forgeard, M., Winner, E., Evans, A. C., et al.
(2009). Musical training shapes structural brain development. J. Neurosci. 29,
3019–3025. doi: 10.1523/JNEUROSCI.5118-08.2009

Ince, D. C., Hatton, L., and Graham-Cumming, J. (2012). The case for open
computer programs. Nature 482, 485–488. doi: 10.1038/nature10836

Joshi, A. A., Shattuck, D. W., Thompson, P. M., and Leahy, R. M. (2007). Surface-
Constrained Volumetric Brain Registration Using Harmonic Mappings. IEEE
Trans. Med. Imaging 26, 1657–1669. doi: 10.1109/TMI.2007.901432

Joshi, S. H., Cabeen, R. P., Joshi, A. A., Sun, B., Dinov, I., Narr, K. L., et al. (2012).
Diffeomorphic sulcal shape analysis on the cortex. IEEE Trans. Med. Imaging 31,
1195–1212. doi: 10.1109/TMI.2012.2186975

Kim, J. S., Singh, V., Lee, J. K., Lerch, J., Ad-Dab’bagh, Y., MacDonald, D., et al.
(2005). Automated 3-D extraction and evaluation of the inner and outer cor-
tical surfaces using a Laplacian map and partial volume effect classification.
Neuroimage 27, 210–221. doi: 10.1016/j.neuroimage.2005.03.036

Klein, A., Andersson, J., Ardekani, B. A., Ashburner, J., Avants, B., Chiang,
M. C., et al. (2009). Evaluation of 14 nonlinear deformation algorithms
applied to human brain MRI registration. Neuroimage 46, 786–802. doi:
10.1016/j.neuroimage.2008.12.037

Kovačević, N., Henderson, J. T., Chan, E., Lifshitz, N., Bishop, J., Evans, A. C., et al.
(2005). A three-dimensional MRI atlas of the mouse brain with estimates of the
average and variability. Cereb. Cortex 15, 639–645. doi: 10.1093/cercor/bhh165

Lau, J. C., Lerch, J. P., Sled, J. G., Henkelman, R. M., Evans, A. C., and Bedell, B. J.
(2008). Longitudinal neuroanatomical changes determined by deformation-
based morphometry in a mouse model of Alzheimer’s disease. Neuroimage 42,
19–27. doi: 10.1016/j.neuroimage.2008.04.252

Lepore, N., Brun, C. A., Chiang, M. C., Chou, Y. Y., Dutton, R. A., Hayashi, K. M.,
et al. (2006). Multivariate statistics of the Jacobian matrices in tensor based mor-
phometry and their application to HIV/AIDS. Med. Image Comput. Comput.
Assist. Interv. 9(Pt 1), 191–198. doi: 10.1007/11866565_24

Lerch, J. P., Carroll, J. B., Spring, S., Bertram, L. N., Schwab, C., Hayden, M. R.,
et al. (2008). Automated deformation analysis in the YAC128 Huntington dis-
ease mouse model. Neuroimage 39, 32–39. doi: 10.1016/j.neuroimage.2007.
08.033

Lerch, J. P., Sled, J. G., and Henkelman, R. M. (2011). MRI phenotyping of
genetically altered mice. Methods Mol. Biol. 711, 349–361. doi: 10.1007/978-1-
61737-992-5-17

Loken, C., Gruner, D., Groer, L., Peltier, R., Bunn, N., Craig, M., et al. (2010). Scinet:
lessons learned from building a power-efficient top-20 system and data centre.
J. Phys. Conf. Ser. 256:012026. doi: 10.1088/1742-6596/256/1/012026

Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., et al. (2006).
Scientific workflow management and the Kepler system. Concurr. Comput. Prac.
Exp. 18, 1039–1065. doi: 10.1002/cpe.994

Macdonald, D. (2000). Automated 3-D extraction of inner and outer surfaces
of cerebral cortex from MRI. Neuroimage 12, 340–356. doi: 10.1006/nimg.
1999.0534

Maheswaran, S., Barjat, H., Bate, S. T., Aljabar, P., Hill, D. L. G., Tilling, L., et al.
(2009). Analysis of serial magnetic resonance images of mouse brains using
image registration. Neuroimage 44, 692–700. doi: 10.1016/j.neuroimage.2008.
10.016

Mangin, J.-F., Jouvent, E., and Cachia, A. (2010). In-vivo measurement of corti-
cal morphology: means and meanings. Curr. Opin. Neurol. 23, 359–367. doi:
10.1097/WCO.0b013e32833a0afc

Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., et al. (2001). A
probabilistic atlas and reference system for the human brain: international con-
sortium for brain mapping (ICBM). Philos. Trans. R. Soc. Lond. B Biol. Sci. 356,
1293–1322. doi: 10.1098/rstb.2001.0915

Nieman, B. J., Bishop, J., Dazai, J., Bock, N. A., Lerch, J. P., Feintuch, A., et al. (2007).
Mr technology for biological studies in mice. NMR Biomed. 20, 291–303. doi:
10.1002/nbm.1142

Oinn, T., Greenwood, M., Addis, M., Alpdemir, M. N., Ferris, J., Glover, K., et al.
(2006). Taverna: lessons in creating a workflow environment for the life sciences.
Concurr. Comput. Prac. Exp. 18, 1067–1100. doi: 10.1002/cpe.993

Paus, T. (2010). Population neuroscience: why and how. Hum. Brain Mapp. 31,
891–903. doi: 10.1002/hbm.21069

Sled, J. G., Zijdenbos, A. P., and Evans, A. C. (1998). A nonparametric method for
automatic correction of intensity nonuniformity in mri data. IEEE Trans. Med.
Imaging 17, 87–97. doi: 10.1109/42.668698

Spring, S., Lerch, J. P., and Henkelman, R. M. (2007). Sexual dimorphism revealed
in the structure of the mouse brain using three-dimensional magnetic resonance
imaging. Neuroimage 35, 1424–1433. doi: 10.1016/j.neuroimage.2007.02.023

Studholme, C. (2011). Mapping fetal brain development in utero using magnetic
resonance imaging: the Big Bang of brain mapping. Annu. Rev. Biomed. Eng. 13,
345–368. doi: 10.1146/annurev-bioeng-071910-124654

Szulc, K. U., Nieman, B. J., Houston, E. J., Bartelle, B. B., Lerch, J. P., Joyner, A. L.,
et al. (2013). MRI analysis of cerebellar and vestibular developmental pheno-
types in Gbx2 conditional knockout mice. Magn. Reson. Med. 70, 1707–1717.
doi: 10.1002/mrm.24597

van Eede, M. C., Scholz, J., Chakravarty, M. M., Henkelman, R. M., and Lerch,
J. P. (2013). Mapping registration sensitivity in MR mouse brain images.
Neuroimage 82, 226–236. doi: 10.1016/j.neuroimage.2013.06.004

Wang, H., Suh, J. W., Das, S. R., Pluta, J., Craige, C., and Yushkevich, P. A. (2013).
Multi-atlas segmentation with joint label fusion. IEEE Trans. Patt. Anal. Mach.
Intell. 35, 611–623. doi: 10.1109/TPAMI.2012.143

Woods, R. P., Grafton, S. T., Holmes, C. J., Cherry, S. R., and Mazziotta, J. C.
(1998a). Automated image registration: I. General methods and intrasub-
ject, intramodality validation. J. Comput. Assist. Tomogr. 22, 139–152. doi:
10.1097/00004728-199801000-00027

Woods, R. P., Grafton, S. T., Watson, J. D., Sicotte, N. L., and Mazziotta,
J. C. (1998b). Automated image registration: II. Intersubject validation of
linear and nonlinear models. J. Comput. Assist. Tomogr. 22, 153–165. doi:
10.1097/00004728-199801000-00028

Zijdenbos, A. P., Dawant, B. M., and Margolin, R. A. (1995). “Intensity correction
and its effects on measurement variability in MRI,” in International Symposium
on Computer and Communication Systems for Image Guided Diagnosis and
Therapy (CAR 95), eds H. U. Lemke, K. Inamura, C. C. Jaffe, and M. W. Vannier
(Berlin: Springer-Verlag Berlin), 216–221.

Zijdenbos, A. P., Forghani, R., and Evans, A. C. (2002). Automatic “pipeline”
analysis of 3-D MRI data for clinical trials: application to multiple sclerosis.
IEEE Trans. Med. Imaging 21, 1280–1291. doi: 10.1109/TMI.2002.806283

Conflict of Interest Statement: The authors declare that the research was con-
ducted in the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Received: 20 December 2013; accepted: 26 June 2014; published online: 30 July 2014.
Citation: Friedel M, van Eede MC, Pipitone J, Chakravarty MM and Lerch JP
(2014) Pydpiper: a flexible toolkit for constructing novel registration pipelines. Front.
Neuroinform. 8:67. doi: 10.3389/fninf.2014.00067
This article was submitted to the journal Frontiers in Neuroinformatics.
Copyright © 2014 Friedel, van Eede, Pipitone, Chakravarty and Lerch. This is an
open-access article distributed under the terms of the Creative Commons Attribution
License (CC BY). The use, distribution or reproduction in other forums is permitted,
provided the original author(s) or licensor are credited and that the original publica-
tion in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Neuroinformatics www.frontiersin.org July 2014 | Volume 8 | Article 67 | 21

http://dx.doi.org/10.3389/fninf.2014.00067
http://dx.doi.org/10.3389/fninf.2014.00067
http://dx.doi.org/10.3389/fninf.2014.00067
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroinformatics
http://www.frontiersin.org
http://www.frontiersin.org/Neuroinformatics/archive

	Pydpiper: a flexible toolkit for constructing novel registration pipelines
	Introduction
	Motivation and Existing Solutions
	Design and Implementation
	General Pipeline and Application Structure
	Class Hierarchy and File Handling

	Example Applications
	Essential Registration Modules
	LSQ6
	LSQ12
	NLIN
	Pre-processing
	Statistics

	Iterative Group-Wise Registration
	Registration Chain
	Two-Level Registration
	Multiple Automatically Generated Templates (MAGeT)

	Annotated Code Example
	Setup and Prerequisites
	Image Alignment
	Statistics Calculation
	Running the Code

	Discussion
	Acknowledgments
	References

