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Abstract

This study uses species distribution modeling and physiological and functional traits to pre-

dict the impacts of climate change on native freshwater fish in the Murray-Darling Basin,

Australia. We modelled future changes in taxonomic and functional diversity in 2050 and

2080 for two scenarios of carbon emissions, identifying areas of great interest for conserva-

tion. Climatic-environmental variables were used to model the range of 23 species of native

fish under each scenario. The consensus model, followed by the physiological filter of lethal

temperature was retained for interpretation. Our study predicts a severe negative impact of

climate change on both taxonomic and functional components of ichthyofauna of the Mur-

ray-Darling Basin. There was a predicted marked contraction of species ranges under both

scenarios. The predictions showed loss of climatically suitable areas, species and functional

characters. There was a decrease in areas with high values of functional richness, disper-

sion and uniqueness. Some traits are predicted to be extirpated, especially in the most pes-

simistic scenario. The climatic refuges for fish fauna are predicted to be in the southern

portion of the basin, in the upper Murray catchment. Incorporating future predictions about

the distribution of ichthyofauna in conservation management planning will enhance resil-

ience to climate change.

PLOS ONE | https://doi.org/10.1371/journal.pone.0225128 November 27, 2019 1 / 21

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Galego de Oliveira A, Bailly D, Cassemiro

FAS, Couto EVd, Bond N, Gilligan D, et al. (2019)

Coupling environment and physiology to predict

effects of climate change on the taxonomic and

functional diversity of fish assemblages in the

Murray-Darling Basin, Australia. PLoS ONE 14(11):

e0225128. https://doi.org/10.1371/journal.

pone.0225128

Editor: Daniel de Paiva Silva, Instituto Federal de

Educacao Ciencia e Tecnologia Goiano - Campus

Urutai, BRAZIL

Received: June 24, 2019

Accepted: October 29, 2019

Published: November 27, 2019

Copyright: © 2019 Galego de Oliveira et al. This is

an open access article distributed under the terms

of the Creative Commons Attribution License,

which permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

Information files.

Funding: This work was supported by the

Conselho Nacional de Desenvolvimento Cientı́fico e

Tecnológico (CNPq) Project 446123 Chamada

MCTI/CNPq/ANA (Research in climate change) to

AAA and Coordenação de Aperfeiçoamento

http://orcid.org/0000-0002-6185-1728
http://orcid.org/0000-0003-4264-8449
https://doi.org/10.1371/journal.pone.0225128
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225128&domain=pdf&date_stamp=2019-11-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225128&domain=pdf&date_stamp=2019-11-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225128&domain=pdf&date_stamp=2019-11-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225128&domain=pdf&date_stamp=2019-11-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225128&domain=pdf&date_stamp=2019-11-27
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0225128&domain=pdf&date_stamp=2019-11-27
https://doi.org/10.1371/journal.pone.0225128
https://doi.org/10.1371/journal.pone.0225128
http://creativecommons.org/licenses/by/4.0/


Introduction

Climate change is considered one of the greatest threats to global biodiversity [1,2]. Impacts

include rising air and water temperatures, sea level and greenhouse gases, major changes in

regional rainfall and runoff patterns, and increases in the occurrence and severity of extremes

events [3,4]. These shifts are expected to impact on the distribution, composition and phenol-

ogy of species [1,5].

It is predicted that the biological impacts of climate change may be larger in freshwater sys-

tems than in terrestrial and marine systems, given their dendritic nature where aquatic organ-

isms may not be able to reach cooler habitats or higher altitudes [6,7]. Faced with

environmental-climatic alterations, obligate freshwater biota cannot move across landmasses

or through oceans [5] and are restricted to aquatic habitats (river networks, floodplains wet-

lands, springs) [8]. Climate-driven changes in species distributions will have impacts on local

community dynamics and diversity, including functional diversity (the biodiversity compo-

nent related to ecological functions and services played by the species) [9], since the pattern in

the distributions of functional traits (species morphological, structural and behavioural charac-

teristics) are likely to change. Because functional traits can influence species performance (or

fitness; [10]), the loss of functionally important species can modify ecosystem structure, func-

tion and resilience [11,12].

Fish are the most diverse group of freshwater vertebrates and play a central role in the struc-

ture and function of freshwater ecosystems [13]. They provide food for aquatic and terrestrial

consumers (e.g. other fish, reptiles, mammals and birds), can regulate aquatic food webs, cycle

nutrients and act as ecosystem engineers [14,15]. In addition, they are providers of valuable

goods and services to humans [16]. However, the effects of climate change on the functional

diversity of freshwater fish remain poorly understood, and the few studies that have used the

functional characteristics of species to infer their sensitivity to climate change are mostly

restricted to the northern hemisphere (see [9,17]).

Australia’s freshwater ichthyofauna is impoverished due to the country’s long isolation

from other continents, combined with an arid climate and low rainfall, which result in wide-

spread freshwater scarcity [18,19]. In Australia’s largest river basin, the Murray-Darling Basin,

freshwater fishes are already exposed to numerous threats, such as flow regulation, habitat deg-

radation, introduced species, exploitation and stocking [20–22] and may also be highly vulner-

able to climate change. Native fish population sizes in the Murray-Darling Basin have been

estimated to be 10% of their pre-European-settlement levels, and more than half of the Basin’s

native fish species are now listed as threatened or of conservation concern [19]. The impacts of

climate change on fish communities can be even greater for species-depauperate systems, in

which the loss or the gain of a small number of species may lead to a disproportionate shift in

assemblage composition [8]. Forecasting the potential impacts of climate change on fish spe-

cies composition and functional diversity in the Murray-Darling Basin is crucial in identifying

effective conservation strategies to preserve this already threatened ichthyofauna and the

important ecosystem services they provide [9,23].

One way to anticipate the impacts of climate change on freshwater biodiversity within a

functional context is to use correlative predictive models, usually referred to as species distri-

bution models (SDMs) (or ecological niche models; see [24], followed by comparative analysis

of the current and future functional structure of the assemblages. Although SDMs are useful

for this goal, they typically disregard the influence of physiological traits of the species which

can mediate spatial and temporal variation in their distributions in response to environmental

change [25]. For example, thermal tolerance limits, especially the upper thermal limit, are

essential to define species distribution changes in response to increasing temperatures
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associated with climate change. Incorporating such physiological information can provide a

more mechanistic basis for predicting ecological responses to climate change [26].

Considering that climate is a fundamental factor determining the distribution of organisms

at large spatial scales (reflecting the Grinnellian component of the ecological niche [27], and

that tolerance limits determine whether the species are able to withstand the conditions

imposed by an ever-changing environment, this study aimed to evaluate the effects of climate

change on the distribution of native freshwater fish of the Murray-Darling Basin (MDB) using

SDM’s combined with a physiological trait (the upper thermal tolerance limit). Firstly, we

modelled the effects of future climate (2050 and 2080) on fish species richness, also investigat-

ing the responses of individual species in terms of whether they were predicted to undergo

range expansion or contraction. Next, we analyzed the effects of climate change on functional

diversity (functional richness, functional dispersion and functional uniqueness) of fish assem-

blages, identifying climatically suitable areas for species persistence as well as areas that pre-

serve their existing functional character under future scenarios. Finally, we identified which

functional trait characteristics may become dominant in fish assemblages in future, and those

that may be lost as a result of climate change. By simultaneously considering taxonomic and

functional attributes, and by coupling environment and physiology in estimation of species

distribution, our study provides important information for guiding the spatial distribution of

conservation efforts required in the Murray-Darling Basin in the light of potential effects of cli-

mate change on freshwater fish.

Material and methods

Study area

The Murray-Darling Basin (MDB) is a semi-arid basin in southeastern Australia (between the

latitudes of 24 and 38˚S) that covers more than a million square kilometers (1,063,000 km2),

equivalent to 14% of Australia’s total area [19,28] (Fig 1). Despite its size, it has very low run-

off and is one of the driest catchments in the world [28]. Because of the water storage and

abstraction, only a third of natural mean annual discharge reaches the sea [15]. The MDB sup-

ports some of Australia’s most biologically and ecologically important floodplain and wetlands

habitats, including 16 sites listed as Wetlands of International Importance under the Ramsar

Convention [29]. Nearly two million people depend on the Basin’s resources and the value of

its agricultural produce exceeds $24 billion each year [30].

Species occurrence data

The fish fauna of MDB consists of 46 native freshwater fish species and 11 introduced species

(not included in the analysis). Of the 46 native species, 16 are found only in the Murray-Dar-

ling Basin [19]. The analyses were performed with fish occurrence records only from within

the MDB; these were obtained from state government agency fish distribution databases (Vic-

torian Department of Sustainability and Environment and New South Wales Department of

Fisheries) and sites surveyed as part of the Murray–Darling Basin Sustainable Rivers Audit

[31]. We restricted our analysis to 4,347 sites surveyed between 1980 and 2010 for which reli-

able location and sampling information were available. Sampling involved a range of methods,

including electrofishing and netting. In this study, we restricted analyses to those native species

for which reliable information of functional traits and upper thermal tolerance limits are avail-

able (n = 23 species; see details below). Introduced species were excluded from all analyses.

Occurrence records were mapped in a regular grid of 0.1˚ latitude and longitude (6,485 grid

cells, each with approximately 11 km side and 120 km2 area) with a buffer of 10 km from each

side of the river network. For each species, a binary matrix of presence (1) and pseudo-absence
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(0) was constructed from the occurrence data, which formed the biotic component for the

modeling. Considering that previous studies have demonstrated increasing precision of pre-

dictive models with increasing prevalence (i.e. proportion of occupied survey points; [32], rare

native species (i.e. those occupying < 4 grid cells) were excluded from all analyses. The final

dataset for modelling included 23 species (Table A in S1 File) for which a total of 9,219 occur-

rence records were available (Fig A in S1 File); this resulted in 4,275 occupied grid cells.

Predictor variables

We selected a set of ecologically relevant and minimally redundant environmental attributes

as predictor variables in the SDMs (Table B in S1 File). The following bioclimatic predictors

were used in the modeling process: annual mean temperature (TMEAN;˚C), maximum tem-

perature in the hottest month (TMAX;˚C), minimum temperature in the coldest month

(TMIN;˚C), annual precipitation (PANN; mm), precipitation of wettest month (PMAX; mm)

and precipitation of driest month (PMIN; mm). Temperature and precipitation have been

chosen because they are the major climatic parameters determining the distribution of organ-

isms on Earth [33]. As ectotherms, temperature is one of the most fundamental variables influ-

encing the physiology of fishes, influencing physiological condition, development, growth

rates, reproduction and behavior [34–36]. Precipitation determines aquatic habitat availability

and the seasonal variations of droughts and floods, synchronizing biological events of species,

Fig 1. Map of Murray-Darling Basin showing the main rivers.

https://doi.org/10.1371/journal.pone.0225128.g001
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such as migration, spawning, home range shifts and growth [36]. We also used the catchment

topographic variable upstream flow path length (UFL) to represent variation in aquatic habitat

availability [34,36] and altitude (ALT). The bioclimatic variables representing current condi-

tions were obtained from WORLDCLIM (http://www.worldclim.org) and for future times from

CCAFS (http://ccafs-climate.org; Research program on Climate Change, Agriculture and Food

Security), both with a spatial resolution of 30 arc-seconds (~1 km). Catchment topography and

altitude were obtained from a 9 second digital elevation model (DEM; [37]). All variables were

averaged according to the grid of 0.1˚ resolution for obtaining the environmental layers. Abso-

lute Pearson’s correlation coefficients among predictor variables did not exceed 0.7.

We have chosen two years, 2050 (mid of the century) and 2080 (end of the century) to pre-

dict the future scenarios of climate change over the fish distribution. TMEAN, TMAX, TMIN,

PANN, PMAX and PMIN for future scenarios were extracted from the Intergovernmental

Panel on Climate Change, Fifth Assessment Report (IPCC-AR5). Our predictions involved

four Atmospheric-Ocean General Circulation Models (AOGCMs): CSIRO (Australia’s Com-

monwealth Scientific and Industrial Research Organization), MIROC (Model for Interdisci-

plinary Research on Climate), MRI (Meteorological Research Institute) and NCAR (National

Center for Atmospheric Research) (see [38] for further details). The greenhouse gas concentra-

tion trajectory for each AOGCMs were based on the Representative Concentration Pathways

(RCP), from a moderate—RCP 4.5 stabilization to a pessimistic scenario—RCP 8.5 business-
as-usual of carbon emission. The difference between them consist in the assumptions they use

about population, economic growth, energy consumption and sources and land use over this

21st century [39]. The term ‘‘stabilization” here means an intermediate scenario of accumula-

tion of greenhouse gases in the Earth’s atmosphere in future, rising until the mid of the century

and after diminishing, and the term ‘‘pessimistic” means a scenario of high accumulation of

greenhouse gases without efforts to contain the emissions [4]. When modeling species geo-

graphical distribution for future scenarios, we assumed temporal stationarity of UFL and ALT.

Species distribution modeling

The matrices of species occurrences and climatic-environmental layers were used to calibrate

multiple SDMs for each species, from which the environmental suitability and potential distri-

bution of the species were modelled under current and future scenarios.

Given the conceptual and statistical particularities of different SDM approaches, a range of

predictions can be generated, introducing uncertainty about which is the best model to repre-

sent the environmental suitability and the potential distribution of species [40]. To overcome

this, we applied an ensemble forecasting approach to derive the consensus result amongst six

SDM approaches (CONS, [41]). The main principle in using a consensus approach is that dif-

ferent sources of error affect each niche model in different ways, and the combination of its

predictions tends to minimize errors and generate more robust predictions [40].

Our modeling protocol included six SDMs: BIOCLIM (BIOC; [42]), Euclidian Distance

(EUCD; [43]), Gower Distance [43,44], Ecological Niche Factor Analysis (ENFA; [45]), Maxi-

mum Entropy (MAXE; [46]), and Genetic Algorithm for Rule-set Production (GARP; [47]).

These models represent a wide variation in predictions due to the variety of statistical tech-

niques. All six rely on the use of species presence-only and presence-background data. Only

results of the consensus models (CONS) were retained for interpretation which means if a

model had not a good performance according the evaluation and validation methods below

described, it was not included in the final model.

The suitability matrices range from 0 to 1, in which values equal to 1 correspond to ideal

habitat conditions and values equal to 0 correspond to suboptimal habitat conditions for the
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species [48]. For each SDM, the continuous suitability predictions were converted into binary

vector (1/0) using a threshold that maximizes the sensitivity and specificity values in the

Receiver Operating Characteristic curve (ROC curve; see Fielding and Bell 1997). The ROC

curve is generated by plotting the fraction of true positives versus the fraction of false positives,

at various threshold settings. The use of all possible thresholds avoids the need for a selection

of a single threshold, which is often arbitrary. The area under the ROC curve (AUC) is often

used as a single threshold-independent measure for model performance [49].

The species occurrence dataset was randomly divided into two subgroups: 75% of the data

was used for calibration (training data) and 25% for validation/evaluation (test data). This pro-

cedure was performed 50 times to avoid biases in the calibration and evaluation data

subgroups.

The distribution of each species in current climatic conditions was estimated using 300 pre-

dictions (6 SDMs x 50 randomizations). The simulations for future climatic conditions were

estimated obtaining 1,200 predictions (6 SDM’s x 50 randomizations x 4 AOGCM’s) for each

future scenario (2050 and 2080) and carbon emission scenario (RCPs 4.5 and 8.5), totaling

4,800 future predictions. This replication allowed us to generate a frequency of projections for

each SDMs, which were weighted by the True Skill Statistics (TSS), i.e., better models accord-

ing to this metric will have more weight in our consensus projections. The TSS statistic varies

from -1 to +1, where values equal to +1 are a perfect prediction and values equal to or less than

0 are no better than random ones [49]. We used the majority consensus rule [40] to obtain the

final consensus model for each species. This method considers the species present only in cells

where at least 50% of the models retained in the ensemble predicted the species to be present.

The modeling of species distribution was performed in the BioEnsembles computational plat-

form [40].

Given that temperature tolerance limits are pivotal within the climate change context, we

combined the correlative SDMs with independently derived estimates of the upper thermal

tolerance of each fish species to further constrain species ranges estimates under each of the

time (2050 and 2080) and carbon emission levels (RCPs 4.5 and 8.5). The combined model

generated for each species provides an environmental envelope truncated by the upper thermal

tolerance limit (i.e. the lethal maximum temperature), furnishing a potentially more reliable

delineation of the geographic distribution of each species. This constrained delineation is likely

to help avoid false predictions, particularly regarding potential future range shifts. Thus, for

each species, the final range was constructed from the presence-absence matrices generated by

CONS model, keeping presences only in cells whose maximum temperature is tolerable by the

species (TMAX minor or equal to the lethal maximum temperature). As the bioclimatic vari-

able used was air temperature, we used the model relating air temperature and water tempera-

ture proposed by [50] to estimate the latter in each grid cell. The lethal maximum temperature

for each species was obtained from [51–53].

Taxonomic diversity attributes and range size

To determine taxonomic diversity (species richness patterns), we employed the modeling

strategy at the community level of “predict first, assemble later” (sensu [54]), in which the

ranges of individual species are overlapped to obtain the number of species predicted in each

cell.

The range size of each species was the sum of the number of occupied cells within the

MDB. Temporal variations of the range size were analyzed by comparing the frequency distri-

bution of the number of cells occupied by individual species. Taxonomic diversity and range

size of individual species were obtained for current, 2050 and 2080 scenarios and for the

Predicting effects of climate change on fish assemblages in the Murray-Darling Basin
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different carbon emission levels, considering the outputs of our combined model (i.e. correla-

tive models described by CONS truncated by the upper thermal tolerance limits).

Functional diversity attributes

While the MDB has relatively few native freshwater fish species, those present represent a

diversity of size, form and life history requirements [19,55]. We selected a set of morphologi-

cal, behavioral, trophic and reproductive traits aimed at identifying the complementary func-

tional aspects of the fish assemblage niche. The functional traits used were: (i) Maximum

temperature in the warmest month within the range of species occurrence (TMAX), (ii) mini-

mum temperature in the coldest month within the range of species occurrence (TMIN), maxi-

mum total body length (MAXL), (iii) vertical position in water column (benthic–VPBEN;

non-benthic–VPNBEN), (iv) longevity (LONG), (v) age at maturation (AGEMAT), (vi) move-

ment classification: non-movement–NON MOV; potamodromy–POTAMO (fishes that

migrate between different sites in freshwater); amphidromy–AMPHID (fishes that regularly

migrate between freshwater and the sea, in both directions, but not for the purpose to breed-

ing); catadromy–CATAD, (freshwater fishes that migrate to the sea for the purpose of breed-

ing), (vii) parental care (PARC), (viii) total fecundity (TFEC), (ix) egg size (EGGS), (x) trophic

guild (herbivorous-detritivorous–HERB-DET; omnivorous–OMNI; invertivorous–INV;

invertivorous-piscivorous–INV-PISC). A brief description of each functional trait can be

found in Table C in S1 File. Trait assignments were based on a number of sources, including

species accounts in comprehensive texts (i.e. [19,56–59]), species descriptions from the pri-

mary literature, state agency reports, university reports, graduate theses, and electronic data-

bases available on the World Wide Web (e.g. FishBase). All trait information was assigned

based on a majority of evidence rule, with preference given to adult female measurements

where possible (see [60]) for more details on trait assignments).

From the presence and absence matrices derived from the consensus model, functional

diversity was calculated for each time and carbon emission scenario. Functional diversity was

obtained from three indices: Functional Richness (FRic–[61]), Functional Dispersion (FDis–

[62]), the Functional Uniqueness (FUni–[63]). FRic represents the multidimensional volume

occupied by the community and does not consider species’ abundances. FDis [64] is the mean

distance weighted by abundance to the centroid (multivariate dispersion). For presence and

absence data, where species have equal abundances, the Functional Dispersion is simply the

mean distance to the centroid. Changes in FDis reflect changes in the species traits in relation

to the center of functional space. FUni assumes that species with different traits perform dis-

tinct functions in the ecosystem. Thus, it is high when species have unique trait value combina-

tions compared with each species of the pool (i.e. low redundancy). FUni (range 0 to 1) is the

ratio between Rao’s entropy and the Simpson diversity index, relating observed functional

diversity to the maximum value of dissimilarity of the community [63].

Indices were calculated in the R environment [65]. FRic and FDis were calculated using the

function “dbFD” (distance based on functional diversity) from the FD package, proposed by

[62]. The traits matrix had mixed variables (continuous and categorical–see Table C in S1

File), so we used Gower’s dissimilarity with Cailliez’s correction [66,67] for negative eigenval-

ues. FUni was calculated from the function “uniqueness” from [63]. All indices were calculated

for each grid cell. The relationship between species richness and functional richness was evalu-

ated through a Spearman correlation, since, according to the nature of this functional index,

there is expected to be a high correlation between them [61].

From a T matrix (traits x grid coordinates; using SYNCSA R package, function “matrix.t”–

[68], we performed the Indicator Value Analysis, which varies from 0 to 1 (IndVal; [69]),

Predicting effects of climate change on fish assemblages in the Murray-Darling Basin
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using carbon emission scenarios as a factor with five different levels). IndVal identifies which

traits are significantly increased or decreased in frequency in future scenarios. Good indicator

traits would be those that are both abundant in a specific scenario (specificity) and predomi-

nantly found in a scenario (fidelity). Because we only used presence and absence, we only used

fidelity. The statistical significance level adopted was α = 0.05, and these analyses were per-

formed in R environment, using the package labdsv, function “indval” [65].

Results

Taxonomic diversity attributes and range size

Species richness predictions derived from the consensus model (CONS truncated by upper

thermal tolerance limits of the species) identify the upper Murray River region as the richest in

the basin (up to 16 species in a single cell) (Fig 2), emphasizing the high current climatic-envi-

ronmental diversity within these drainages, and the suitability of this region for the ichthyo-

fauna. Other catchments in the southeast of the basin (Lachlan and Murrumbidgee),

southwest and northeast (e.g. Gwydir River catchment) have intermediate richness (up to 12

species). The rivers of the northwest presented the lowest ichthyofaunal richness (up to 6 spe-

cies). However, future predictions produced by SDM’s and the physiological component

revealed a marked loss of climatically suitable areas throughout much of the basin. The

Fig 2. Species richness of fishes in Murray-Darling Basin in the present, 2050 and 2080 for RCPs 4.5 and 8.5.

https://doi.org/10.1371/journal.pone.0225128.g002

Predicting effects of climate change on fish assemblages in the Murray-Darling Basin

PLOS ONE | https://doi.org/10.1371/journal.pone.0225128 November 27, 2019 8 / 21

https://doi.org/10.1371/journal.pone.0225128.g002
https://doi.org/10.1371/journal.pone.0225128


combined model suggests that the highest species richness will be restricted to a much reduced

area in the southeastern upper Murray River and its major tributaries, with species losses

intensifying toward the end of the century in the pessimistic scenario. In 2080 for RCP 8.5, the

majority of richest cells tend to support only 5–6 fish species.

Present-day fish species range sizes vary widely (200 to 2,800 occupied cells) in the MDB

(Fig 3A). Future predictions indicate a marked range contraction under climate change for all

species (Fig 3B, 3C, 3D and 3E). In the most pessimistic scenario in 2080, only four species

(Hypseleotris klunzigeri, Macquaria ambigua, Ambassis agassizii and Tandanus tandanus),
occupied more than 200 grid cells (Fig 3E). For Galaxias maculatus the range loss reached

100% in 2050 (RCP 8.5), with five species showing similar declines by 2080 (RCP 8.5) (Galax-
ias maculatus, Galaxias oliros, Maccullochella macquariensis, Neosilurus hyrtlii, Philypnodon
grandiceps). Similarly, Bidyanus bidyanus and Philypnodon macrostomus were constrained to a

single cell. These range retractions represent a loss of at least 25% of the species analysed here

and 13% of the total of native fish species present in MDB. Not one species had its distribution

extended in the future scenarios.

Functional diversity

Taxonomic and functional richness were positively correlated for all times and scenarios

(r> 0.81, p< 0.05 for all pairwise comparisons), indicating that cells with higher taxonomic

richness usually also had higher functional richness. The highest values of functional richness

calculated from the combined model, were found in the northeastern part of Murray-Darling

Basin; in the Macintyre, Gwydir and Namoi Rivers despite these regions only having interme-

diate levels of Species Richness, as well in the southeastern part of the MDB, in the upper

reaches of the Murray and Murrumbidgee Rivers (Fig 4). There was a marked reduction in the

Fig 3. Current range size of fish species from Murray-Darling basin, Australia, and expected changes due to future

climate changes (A = present, B = 2050 4.5, C = 2050 8.5, D = 2080 4.5, E = 2080 8.5).

https://doi.org/10.1371/journal.pone.0225128.g003
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number of cells with highest values of FRic (~ 0.30–0.33; Fig 5) in future scenarios, with the

greatest values of FRic restricted to a few cells in the southeastern part of the basin, especially

under the most pessimistic scenario (RCP 8.5).

The highest values of FDis corresponded with the highest values of FRic in the current sce-

nario. Rivers from the Northeast region (e.g. Macintyre, Gwydir, Namoi) showed the highest

FDis values. The upper Murray River and its major tributaries such as the Ovens and Goul-

burn Rivers also exhibited high functional dispersion values, and in the future, the trend of

constraining of high values toward high altitudes in the Southeast region was the same for tax-

onomic and functional indices (Fig 5).

Regions of the MDB with highest values of FUni for the present scenario were the Conda-

mine River catchment upstream of St George, the lowlands reaches of Northeast Region catch-

ments, the lower Darling River together with small areas of some of the eastern rivers (e.g the

Macquarie-Castlereagh; Fig 6). This spatial pattern differs from both species richness and

functional richness for the current scenario. These areas (North and Northeast) are also pre-

dicted to be the most heavily affected in the future. For 2050, areas of high FUni contract the

very upper reaches only of smaller rivers such as the Border Rivers, Gwydir and Namoi are

predicted to retain the highest functional uniqueness, while for 2080 the highest values were

Fig 4. Species functional richness (FRic) of fishes in Murray-Darling Basin in the present, 2050 and 2080 and different RCPs (4.5 and 8.5) scenarios.

https://doi.org/10.1371/journal.pone.0225128.g004
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predicted in the upper reaches of the Macquarie, Lachan, Murrumbidgee and Murray rivers,

following the taxonomic and functional richness tendencies (Fig 6).

Indicator value analysis

All functional traits had their value of contribution significantly diminished in the future sce-

narios (p< 0.5) relative to present condition, as the results of IndVal showed (Table D in S1

File). Catadromy was the most affected trait with no relevant contribution in any future time

and carbon emission scenario, followed by amphidromy, vertical position non-benthic, her-

bivorous-detritivorous and omnivorous. Nonetheless, in relation to the contribution of each

trait composing the future scenarios in proportion (%—Fig 7) it was possible to note a subtle

rising of maximum temperature, minimum temperature, eggs, total fecundity, vertical position

benthic, longevity, non-movement, parental care, invertivorous, invertivorous-piscivorous at

least in the contribution of composing the pessimistic scenario in 2080.

Discussion

Species distribution models are widely used to forecast the impact of climate change on

species distribution, including freshwater organisms [7,9,36]. Despite several advantages (see

[48,70]), SDMs present limitations, especially those related to predictive uncertainties as

Fig 5. Functional dispersion (FDis) of fishes in Murray-Darling Basin, in the present, 2050 and 2080 and different RCPs (4.5 and 8.5) scenario.

https://doi.org/10.1371/journal.pone.0225128.g005
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aforementioned. In addition, the correlative approach of SDMs is exclusively focused on envi-

ronmental-species occurrence correlations, ignoring physiological characteristics of species,

which are traditionally addressed by mechanistic modeling (see [71,72]. In this sense, studies

suggest the predictive outcomes should be substantially improved if the models take into

account mechanistic elements, rather than using correlation alone [73,74].

Our study predicts a severe negative impact of future climate change over both taxonomic

(species richness) and functional components of the ichthyofauna of the Murray-Darling

Basin. Although this study focused on 23 of the 46 native species occurring in the basin, the

general pattern of response to climate change we find is likely to be same for the other species

of fish. Species distribution modelling combined with a physiological parameter and followed

by a functional analysis, suggest a loss of climatically suitable areas, leading to less cells with

the highest values of species richness, the contraction of range and loss of function of the

majority of freshwater fishes of the MDB. These findings imply that under climate change,

local extinction rates can increase considerably throughout the basin. Impacts are predicted to

be particularly high along the north and northeaster regions, where high rates of loss of climat-

ically suitable areas are projected by the end of the century. The upper catchments of the

southern Basin, especially the upper Murray, Mitta Mitta, Goulburn and Campaspe Rivers

Fig 6. Functional uniqueness (FUni) of fishes in Murray-Darling Basin in the present, 2050 and 2080 and different RCPs (4.5 and 8.5) scenarios.

https://doi.org/10.1371/journal.pone.0225128.g006
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stand out as potential climate refuges in the future scenarios, showing the highest values of

retained species richness and functional diversity.

The southern portion of the MDB basin (Murray River catchment) currently supports a

larger number of fish species than the arid western and northern parts of the basin (Darling

River catchment), where rivers can dry to isolated waterholes in low-rainfall years [19].

Although the southeast portion of Murray-Darling Basin is predicted to retain the highest

number of species and greatest functional diversity in the face of predicted climate change, our

results also predict great losses of habitat suitability, with regions of greater richness retracting

to higher altitudes as climate refuge. Indeed, favorable climatic-environmental conditions at

higher altitudes in the face of climate change have been documented in several studies ([75–

77]). For temperate species of stream fish in France, predictions suggest systematic species

range shifts towards higher elevations and upstream reaches basin in response to climate

change, with mean shifts in range center of 13.7 m decade-1 and 0.6 km decade-1, respectively

[78]. It is important note that the displacement of species-friendly conditions encounters land

limitations once the continental area does not expand as well as the mountaintops [79].

Despite species distributions are generally predicted to shift towards higher latitudes and

altitudes as a result of climate changed induced shifts of bioclimatic variables [77,80] some

components of assemblages can move in the opposite direction, or simply do not exhibit a

retraction of their ranges [81]. These species-specific responses could uncouple important

Fig 7. Indicator values indicating the proportion (0 to 100%) of contribution of each trait for fish species in different years (2050 and 2080) and RCP’s

(4.5 and 8.5) for the Murray-Darling Basin, Australia. Higher values indicate traits predominantly found in this scenario (i. e. fidelity). (TMAX = Maximum

temperature; TMIN = Minimum temperature; MAXL = Maximum total length; VPBEN = Vertical position benthic; VPNBEN = Vertical position non-Benthic;

LONG = Longevity; AGEMAT = Age of maturation; NON-MOV = Non-movement; POTAMO = Potamodromous; AMPHID = Amphidromous;

CATAD = Catadromous; PARC = Parental are; TFEC = Total fecundity; EGGS = Number of eggs; HERB-DET = Herbivorous-detritivorous;

OMNI = Omnivorous; INV = Invertivorous; INV-PISC = Invertivorous-piscivorous).

https://doi.org/10.1371/journal.pone.0225128.g007
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species interactions, such as the regulation of population abundance, nutrient cycling and hab-

itat creation, affecting ecosystem processes and function [82].

Range contraction of fish assemblages was predicted in all future climate scenarios.

Declines in species distribution occur because species have particular environmental require-

ments and physiological characteristics, directly influencing their adaptive responses to the

environment [83]. For freshwater fish, these attributes are usually habitat conditions, especially

temperature, dissolved oxygen and hydrology [84–86]. Habitats become unsuitable when con-

ditions vary beyond tolerable limits of the species. When this occurs, metabolism and individ-

ual performance of organisms (especially ectotherms) are affected, decreasing the intrinsic rate

of population growth and leading to extinction scenarios over time [36]. Under our simula-

tions, the most alarming scenario is that five fish species are predicted to lose 100% of environ-

mental suitable habitat within the MBD by the end of century. Two of these; Galaxias oliros
(obscure galaxias) and Maccullochella macquariensis (trout cod), represent global extinctions

given that both species are endemic to the MDB [19]. Similarly critical is the status of Bidyanus
bidyanus (silver perch) which is considered as vulnerable species by International Union for

Conservation of Nature (VU-IUCN), and listed as critically endangered under federal legisla-

tion in Australia.

Even though the decrease of climatic-environmental suitability and range size does not nec-

essarily imply extinction of a species (see below the importance of physiologic plasticity), it is

consensual in conservation biology that a decrease in the extent of occurrence or area of occu-

pancy reflects increasing extinction risk [87]. In the face of predicted climate change, the per-

sistence of species in their original ranges will be dependent on the degree of genetic diversity,

physiological and phenotypic plasticity [88]. In this sense, historic-evolutionary hypothesis

explaining diversity gradients postulates that due to the climatic stability of lower latitudes,

tropical species evolve to have narrow thermal tolerances and that due to the climatic instabil-

ity of high latitudes, temperate species evolve to have broader thermal tolerances [89,90]. As a

consequence, tropical species are likely to be more vulnerable to changes in global climate due

their narrow thermal niches [91,92]. Because the MDB is a temperate basin, it would be

expected high tolerance of fish species to global warming forces. Nonetheless, we found that

for many MDB fish species, the upper lethal temperature was lower than future temperature

predictions. The fragility of temperate fish facing climate alteration was also pointed out by

[11]. Evaluating plasticity to upper tolerance temperature of fishes, these authors found that

species occupying higher latitudes showed no greater acclimatization capacity than those living

at lower latitudes, interposing to historic-evolutionary hypothesis.

Regions of the MDB showing the highest current values for functional dispersion and

uniqueness (e.g. the lower Darling River and the upper Condamine River catchment) also

have the lowest fish species richness. In this circumstance, it is more likely that the loss of a

given species will have large impacts on ecosystem processes and functionality. In this context,

the conservation of these areas is arguably as important as protecting the richest areas. The

future scenarios of stabilization (RCP 4.5) predicted high functional uniqueness in some

smaller rivers in the northeast region (e.g. Gwydir and Lachan Rivers), however, in the busi-
ness-as-usual scenarios (RCP 8.5) it was primarily the upper Murray River and Murrumbidgee

Rivers in the southeastern region of the MDB that displayed more distinct assemblages. Such

areas will become increasingly significant for conservation, because high values of functional

uniqueness contribute disproportionately to maintaining a high level of functional diversity

than species having common traits shared by other species (i.e. high functional redundancy)

and may actually help to stabilize ecosystem processes as a result of functional niche comple-

mentarity [17]. Many studies have reported reductions in functional diversity of assemblages
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in response to anthropogenic impacts, driven by replacement of specialist taxa by more gener-

alist species, resulting in functional homogenization [93,94].

The reduction of all functional traits under future climate scenarios tends to imply declines

in the ability of fish assemblages to continue to provide comparable ecosystem services. Con-

sistent with previous studies evaluating climate change responses of ichthyofauna in the MDB

[20,52], some functional traits even decreasing in response to the loss of some species, can

enlarge the proportional contribution within the future scenarios, as we observed in our most

pessimistic (2080 8.5). When considered only future scenarios, the traits AGEMAT, EGG,

TMAX, TMIN, LONG, NON-MOV, PARC, INV, INV-PISC and VPBEN tend to show better

performance, especially in the pessimistic business as usual carbon emission scenario at the

end of the century.

Although we did not measure ecological processes linked to ecosystem functioning directly,

we can make some predictions. Loss of, or a decline of fish taxa with large body length, as sug-

gested here, may compromise biomass and affect recreational fisheries that generate substan-

tial socio-economic benefits. The larger fish species of the MDB, such as the Murray cod,

golden perch, silver perch and freshwater catfish have historically provided an important food

source for Aboriginal people and European settlers [95], supplying recreational activities and

the commercial fish industry. In addition, the potential extirpation of species displaying traits

such as catadromy, amphidromy, potamodromy, herbivory-detritivory and omnivory in 2080

and the severe reduction in vertical position non-benthic, and species tolerants to low temper-

atures (TMIN) under the pessimistic emission scenario warns of potential degradation of eco-

system functioning. The loss of species traits related to movement between distinct habitats

implies a reduction in the transfer of energy, biomass and nutrients [96]. Despite not being

entirely lost from the MDB based on our models, potamodromous fish also suffer a significant

decline. The life-cycles of many potamodromous fishes are flow-dependent [97]. Forecasts of

future declines in rainfall and runoff in MDB [98,99], suggest flow events triggering large-scale

movements will decline. The loss of the traits herbivorous-detritivorous and omnivorous can

alter the trophic structure of stream food webs, leading to cascades that have not been captured

by predictions arising from SDMs [100].

The southeast region, which represents the main climate refuge of the MDB fish diversity is

already affected by several contemporary impacts. Anthropogenic alterations of flow (regula-

tion and consumptive use), fragmentation (by dams and weirs) and land use intensification

(causing pollution and sedimentation) are significant in the southern MDB, but are not

restricted to this area alone [19]. Another challenge to conservation of native fish in the MDB

under climate change relates to the high number of introduced fish species in the basin.

Although some studies have revealed diminishing impacts of invasive species under climate

change [36,101], other indicate that future climate may exacerbate the threat posed by invasive

species [102]. In Australia, introduced stream fish of Victorian streams were predicted to expe-

rience both contraction (Salmo trutta and Oncorhynchus mykiss) and expansion (Gambusia
holbrooki and Misgurnus anguillicaudatus) of their ranges [21]. The MDB shows 11 invasive

species (23% of the total), thus it is possible that the functional characteristics of these species

may be favorably selected in the future. It is possible that introduced species may increase their

dominance in climatic refuges intensifying biotic interactions such as predation and competi-

tion, with native species. The difficulty of predicting how interactions among species will be

altered under future climate scenarios are reported in several papers (e.g. [103]). Thus, further

research is needed to assess to what extent invasive species of MDB can spread their ranges

considering future environmental conditions.

In conclusion, this paper models the response of taxonomic and functional diversity of

freshwater fishes of the Murray-Darling Basin, Australia, under two carbon emission scenarios
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(stabilization and business-as-usual) for the years 2050 and 2080. The addition of physiological

parameters representing the upper thermal tolerance limit of individual fish species offers some

advantages over correlative modelling alone, because it can indicate locations in geographic

space with a heat safety margin for species survival, thus guiding conservation efforts to the

most promising areas. Our study suggests that native fish assemblages of the Murray-Darling

Basin are sensitive to climate change, given the pronounced range contractions, species extinc-

tions and changes to ecosystem functionality predicted to occur between now and the end of

the century. Currently, there is a considerable effort being made to rehabilitate and sustainably

manage the Basin. Initiatives such as the Native Fish Strategy for the Murray-Darling Basin

(2003–2013) and Murray-Darling Basin Plan (2012 and ongoing), have outlined holistic targets

for rehabilitating native fish including through investment in the provision of environmental

flows, the installation of fishways, physical habitat restoration, the management of non-native

fish species, and fish translocations and stocking [55]. From our predictions, we emphasize the

critical need to begin to incorporate potential range shifts when undertaking such investments.
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