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MOTIVATION Quantitative analysis of spatial mRNA expression in neurons presents challenges in terms of
accuracy and being computationally and time intensive. Existing methods that rely on nuclear labeling
(DAPI) to distinguish adjoining cells lack the precision to detect mRNA expression in the cytoplasm. In addi-
tion, quantificationmethods that rely on puncta counts can generate large, variable datasets that potentially
undercount highly expressed mRNAs. To overcome these methodological barriers, we developed the
SCAMPR pipeline that allows for fast, accurate segmentation of neuronal cell body boundaries, topo-
graphic gene expression mapping, and high-dimensional quantification and analysis of mRNA expression
in tissue sections.
SUMMARY
Spatial gene expression, achieved classically through in situ hybridization, is a fundamental tool for topo-
graphic phenotyping of cell types in the nervous system. Newly developed techniques allow for visualization
of multiple mRNAs at single-cell resolution and greatly expand the ability to link gene expression to tissue
topography, yet there are challenges in efficient quantification and analysis of these high-dimensional
datasets. We have therefore developed the single-cell automated multiplex pipeline for RNA (SCAMPR),
facilitating rapid and accurate segmentation of neuronal cell bodies using a dual immunohistochemistry-
RNAscope protocol and quantification of low- and high-abundance mRNA signals using open-source image
processing and automated segmentation tools. Proof of principle using SCAMPR focused on spatial
mapping of gene expression by peripheral (vagal nodose) and central (visual cortex) neurons. The analytical
effectiveness of SCAMPR is demonstrated by identifying the impact of early life stress on gene expression in
vagal neuron subtypes.
INTRODUCTION

The murine brain contains approximately 70 million individual

neurons (Herculano-Houzel et al., 2006). Understanding a tissue

of such complexity requires knowledge about its component

parts, both at the level of single neurons and at the level of cell

groups that constitute structural and functional nodes in circuits.

Analysis of the individual characteristics of single neurons, such

as their topographical organization, morphology, and molecular

signature (among other properties), can be used to categorize

them into distinct functional cell groups (Zeng and Sanes,

2017; Erö et al., 2018). The commercialization and ongoing

development of single-molecule fluorescent in situ hybridization

(smFISH) techniques (e.g., RNAscope, HCR, RNA-FISH,

MERFISH, etc.), supplemented by a variety of image analysis

tools and software that quantitate molecular signal with cellular
Cell Repo
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specificity, allow for multimodal comparison of transcriptomics

and histology at a single-cell level (Wang et al., 2012; Chen

et al., 2015; Ståhl et al., 2016; Choi et al., 2018; Eng et al.,

2019; Goh et al., 2020). Existing methods for quantitative anal-

ysis of smFISH face several challenges, including incomplete

single-cell segmentation and a loss of cell size information due

to the use of the nuclear marker DAPI to delineate cell bound-

aries, limited compatibility with multiround versions of smFISH

that are required for analysis of more than 4 genes, and

resource-/time-intensive pipelines (Carine Stapel et al., 2016;

Codeluppi et al., 2018; Dries et al., 2019; Maynard et al., 2020;

Wang et al., 2021). Here, we introduce SCAMPR, a quantitative

analysis pipeline that combines commercialized smFISH (HiPlex

RNAscope) with immunohistochemistry (IHC), and employs ex-

isting and newly developed semi-automated image processing

tools for accurate segmentation and quantification of mRNA
rts Methods 2, 100316, October 24, 2022 ª 2022 The Author(s). 1
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expression in neurons (Wang et al., 2012). SCAMPR includes

open-source code for quantitative analysis and spatial mapping

of mRNA expression in neurons, as well as precise comparison

of gene expression between distinct experimental groups. In

addition, neuron size is accurately preserved due to whole-

soma segmentation, and SCAMPR generates datasets that

require relatively small amounts of digital storage and process-

ing power for downstream analysis. Lastly, the entirety of the

SCAMPR pipeline, from the benchwork to the generation of

quantitative plots, takes 5 days to complete when multiplexing

12 genes, making it possible to perform comparative, multi-

modal gene expression experiments in a short amount of time.

We validate the compatibility of SCAMPR on two mouse

nervous system structures that have distinct neuronal packing

densities and topographical organizations: the jugular-nodose

complex of the peripheral nervous system, hereto referred to

as the nodose ganglion (NG) for simplicity, and the primary visual

cortex (V1) of the central nervous system. In V1, we demonstrate

that SCAMPR can be used to correlate single and multidimen-

sional gene expression to cortical layer topography and to

distinguish cell types based on soma size, gene expression,

and location. We use SCAMPR in the NG to demonstrate cell-

type-specific gene expression changes resulting from early life

stress (ELS). Our findings demonstrate the accuracy and utility

of SCAMPR for descriptive and comparative analysis of neuronal

gene expression and topography.

RESULTS

Overview of SCAMPR
A comprehensive snapshot of the SCAMPR pipeline is provided,

outlining the steps involved in processing and analyzing images

from a single tissue section (Figure 1). SCAMPR has two work-

flows: (1) an assay workflow (Figure 1A), which comprises

benchtop in situ hybridization, immunostaining, microscopy,

and image pre-processing, and (2) an image processing and

data analysis workflow (Figure 1B), which includes cell segmen-

tation, additional batch image processing in FIJI/ImageJ, mRNA

quantification, and data analysis (Schindelin et al., 2012;

Schneider et al., 2012). The SCAMPR assay workflow (Figure 1A)

starts with the published protocol for the Advanced Cell Diag-

nostics (ACD) HiPlex RNAscope assay (Wang et al., 2012).

Briefly, probes targeting three distinct mRNAs are hybridized

to the tissue, each with a different fluorescent signal, a DAPI

counterstain is performed, the tissue is imaged, the fluorophores

are cleaved, and this process is repeated with the hybridization

of three new mRNA probes. This is repeated in the same tissue

until all genes of interest have been hybridized and imaged. If

infrared confocal imaging is available, four probes can be hybrid-

ized simultaneously. After all probe signals have been imaged,

DAPI counterstaining and HuC/D IHC are performed to mark
Figure 1. Schematic of SCAMPR pipeline

(A) Assay workflow. (1) All rounds of HiPlex RNAscope are performed and section

processed and registered using the DAPI signal as the anchor.

(B) Image processing and data analysis workflow. (1) Batch cell boundary segme

using macros to automate gene expression quantification for each cell in ImageJ

mapping (bottom) are performed in R. Scale bars: 100 mm.
the boundaries of cellular nuclei and the neuronal cytoplasm,

respectively, and the tissue is imaged one final time. Flattened,

maximum intensity projection images from the different hybridi-

zation/staining rounds are spatially registered (overlayed) using

the DAPI signal with the ACD RNAscope HiPlex Image Registra-

tion Software or in ImageJ. The resulting registered images then

proceed through the SCAMPR image processing and data anal-

ysis workflow (Figure 1B).

In this second workflow (Figure 1B), cell segmentation and

batch image processing are performed. The HuC/D image is

used to segment the cells into individual regions of interest

(ROIs). These ROIs may be achieved by manual drawing in

FIJI/ImageJ or, to save time, by using an open-source auto-

mated cell segmentation program such as Cellpose (Stringer

et al., 2021). In parallel, the images containing the mRNA signal

are visually inspected by the user in ImageJ to determine the

optimal parameters for applying a threshold to convert the

mRNA signal into a binary signal/no-signal image. To add flexi-

bility to this process, an alternative, semiautomated method

was designed to determine the thresholding parameters

(Figure S1). The ROIs are then used in combination with these

parameters to quantify signal for each mRNA probe on a sin-

gle-cell level in each tissue section. New macros were written

to automate this process in ImageJ. These macros produce a

‘‘gene by count’’ matrix in the form of a CSV file, which is used

for subsequent data analyses. The data analysis component of

the SCAMPR pipeline contains numerous methods to quantify

gene expression, co-expression, and global expression pat-

terns, as well as methods for spatial mapping and comparative

gene expression analysis between groups. Each analysis

method has its own R script that can be accessed on GitHub.

Dual IHC-RNAscope accurately demarcates cell
boundaries in peripheral and central nervous system
tissues
HuC and HuD are mRNA-binding proteins that are involved in

transcript regulation and are selectively expressed in neurons

starting in embryonic development, initially appearing in progen-

itor cells, and continuing to be expressed in postmitotic neurons

into adulthood (Okano and Darnell, 1997). HuC and HuD are

present at the protein level in both the nucleus and cytosol

(Diaz-Garcia et al., 2021). The whole-cell expression, neuron

specificity, and broad expression time course of HuC/D make

them excellent cell boundary markers for quantitative studies

that require neuronal segmentation. Two experiments employing

SCAMPR demonstrate that HuC/D IHC is compatible in multiple

nervous system tissues at different developmental time points.

First, multiround HiPlex RNAscope is successfully applied in

postnatal day 9 (P9) NG of the peripheral nervous system as

well as in adult V1 in the central nervous system (Figures 2A,

2B, 2E, and 2F). Subsequent HuC/D immunostaining is
s are imaged. (2) HuC/D IHC is performed. (3) Images from all rounds are pre-

ntation using Cellpose. (2) Images are inspected by the user, then processed

. (3) Gene expression (top) and co-expression, clustering (middle), and spatial

Cell Reports Methods 2, 100316, October 24, 2022 3



Figure 2. Combined IHC andHiPlex RNAscope allows for high-resolution, single-cell mRNA expression in the central and peripheral nervous

system

(A) HiPlex RNAscope visualized in postnatal day 9 nodose ganglion. Scale bar: 100 mm.

(B) High-magnification inset from (A). Scale bar: 15 mm.

(C and D) High-magnification insets from (A) co-visualized with HuC/D (C) and DAPI (D). Scale bar: 10 mm.

(E) HiPlex RNAscope visualized in adult mouse visual cortex. Scale bar: 100 mm.

(F) High-magnification inset from (E). Scale bar: 5 mm.

(G and H) High-magnification inset from (E) co-visualized with HuC/D (G) and DAPI (H). Scale bar: 5 mm.
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compatible with HiPlex RNAscope in these same tissues and

accurately labels neuronal cell bodies following multiround Hi-

Plex RNAscope (Figures 2C and G). Comparison of HuC/D label-

ing with nuclear DAPI labeling demonstrates that HuC/D more

precisely captures the complete individual cellular profile than

the nuclear DAPI signal, resulting in accurate localization of sin-

gle-cell RNAscope signals in both tissues (Figures 2C, 2D, 2G,

and 2H).

Additional validation of RNAscope-HuC/D co-staining was

performed in the embryonic NG and early postnatal brainstem

(data not shown). In all instances, an intense HuC/D signal al-

lowed for distinct segmentation between individual neurons.

There is minimal immunolabeling of neuronal processes, further

enhancing the ability to distinguish between closely apposed

neuronal somata.

Automated methods for accurate segmentation of
single neurons
Quantitative analysis of spatial transcriptomics data requires

segmentation of cells into single, discrete units. The most accu-

rate segmentation of cells in a tissue section will be obtainedwith

more precise cell boundary markers that demarcate the cyto-

plasm rather than using a single organelle label such as the nu-

cleus. DAPI marks cell nuclei, and because mRNA is localized

to both nuclear and cytosolic cell compartments, segmentation

based on the nucleus can result in mRNA fluorescent signal

that is unassigned to a cell profile and therefore not measured.

Using expanded nuclear labeling (cytoDAPI) allows for more ac-

curate segmentation of whole neurons but makes it difficult to

separate neurons from non-neurons in densely packed tissues

with large amounts of non-neuronal cell types (Wang et al.,

2021). Using the localization of two genes, manual segmentation

was performed to demonstrate potential differences in mRNA

signal detection between nuclear segmentation using DAPI

signal and whole-cell segmentation using HuC/D staining after

HiPlex RNAscope in a sample section of the V1 cortex (Fig-

ure 3A). The HuC/D signal allows for segmentation of the cell

body and more accurately encircles the entirety of the mRNA

signals (here Pvalb andChd13) in the segmented cells compared

with the DAPI signal (Figure 3B). Quantification of gene expres-

sion after DAPI segmentation and HuC/D segmentation on a

subset of images further demonstrates that the HuC/D segmen-

tation captures more of the RNA signal and therefore higher

average gene expression acrossmost of the genes assayed (Fig-

ure S2A). The size of this increase is not consistent across all

genes. Thus, some genes such as Cckar are affected more

than others by the incomplete capture of RNA signal after

DAPI segmentation (Figure S2A). These gene-specific differ-

ences are likely due to the predominant cytosolic localization

of certain transcripts such as Cckar (Figures S2B and S2C).

Furthermore, using HuC/D staining for segmentation facilitates

selective capture of signal in neurons, as both the V1 and NG

contain large numbers of non-neuronal cells. Segmentation of a

portion of the V1 cortex using the nuclear DAPI signal results in a

28% increase in segmented cells (1,213 HuC/D versus 1,547

DAPI). This difference is much larger in the NG, where there was

a 209% increase in segmented cells (398 HuC/D versus 1,230

DAPI), likely due to the large numberof non-neuronal satellite cells.
The time requirement for manual segmentation increases

dramatically as the surface area of the tissue of interest and

the cell packing density increases. Popular automated segmen-

tation methods such as watershed segmentation greatly reduce

this time requirement but perform poorly on images of densely

packed cell bodies, a particular challenge in most developing

and certain adult tissues. More recent methods such as

StarDist are trained on specific image sets (DAPI signal) and

require further user-guided training to accurately define whole-

cell boundaries that are more closely apposed (Weigert et al.,

2020). Cellpose, a generalized, deep-learning, automated seg-

mentation algorithm that has been trained on multiple different

image sets, obviates these challenges (Stringer et al., 2021).

Application of Cellpose on HuC/D immunolabeling signal pro-

duces highly comparable results to manual segmentation in

the same tissue sections. Small deviations (missed cells, incor-

rect boundaries, etc.) can be corrected manually after Cellpose

segmentation (Corrected Cellpose) (Figure 3C). On a per-cell ba-

sis, data from two different operators demonstrate that there is

an approximately 20-fold difference in segmentation time be-

tween using Cellpose and manual segmentation, with Cellpose

segmentation requiring 0.25 s per cell and manual segmentation

requiring 4.77 s per cell. Corrected Cellpose takes �6 times

longer than Cellpose alone but is also �3 times faster than

manual segmentation (Figure 3D). The time-savings estimates

from limited ROIs are likely an undervaluation, as the rate of Cell-

pose segmentation scales up in a non-linear fashion with an in-

crease in number of analyzed cells. Thus, Cellpose segmentation

on �6,500 cells using the entire V1 cortex tissue section results

in a time reduction from 0.25 to 0.085 s per cell. This translates

into Cellpose segmentation being approximately 56 times faster

than manual segmentation. The calculation of an F1 score, rep-

resenting the accuracy of Cellpose and Corrected Cellpose seg-

mentation compared with manual segmentation, demonstrates

the precision of this segmentation method (see STAR Methods

for details). To generate the F1 score, ROIs that showed a

R70% overlap with the manually generated ROIs were consid-

ered true positives (Caicedo et al., 2019). This comparison re-

sulted in an F1 score of 0.76 for Cellpose and 0.79 for Corrected

Cellpose (Figures 3D and 3E). To better understand whether this

accuracy affected the overall dynamics of segmentation in each

image, the number of segmented cells and the distribution of ROI

areas were compared between each method. Cellpose and Cor-

rected Cellpose resulted in only 1.6%–3.0% fewer ROIs than

manual segmentation, and the distribution of the ROI areas of

the neurons between the three methods were nearly identical,

providing further evidence for the overall accuracy of the fully

automated segmentation method compared with the manual

method (Figure 3F). These data demonstrate that Cellpose seg-

mentation alone can be employed for both high segmentation

accuracy and substantial time savings.

Quantification and spatial projection of pairwise mRNA
expression patterns
One of the main advantages of SCAMPR is the ability to

accurately quantify a multiplexed fluorescent in situ signal on a

single-cell level while preserving the topographic location of

each cell in the tissue. The pipeline provides an opportunity to
Cell Reports Methods 2, 100316, October 24, 2022 5



Figure 3. Automated segmentation of cytoplasm of single cells using Cellpose

(A) Differences in nuclear segmentation boundaries (red outline) and whole-soma segmentation boundaries (green outline) in V1 cortex.

(B) Nuclear signal that is present in the cytoplasm for two genes is not included when using nuclear segmentation.

(C) Visualization of whole-cell segmentation. Automated Cellpose segmentation is compared with manual segmentation and a mix of Cellpose and manual

segmentation (Corrected Cellpose). Red arrowhead denotes a cell identified during manual segmentation but not during automated Cellpose segmentation.

(D) Mean cell counts, time burden, and F1 scores for manual, Cellpose, and Corrected Cellpose segmentation methods. n = 8 images per group.

(E) Mean (red text) and individual F1 scores for ROIs generated by Cellpose and Corrected Cellpose segmentation compared with the ground-truth ROIs

generated by manual segmentation. n = 8 images per group.

(F) The total number of ROIs generated after Cellpose, Corrected Cellpose, or manual segmentation (see total number of cells in red). Note that cell area dis-

tributions are nearly indistinguishable between the three methods. n = 8 images per group.
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analyze both average gene expression and expression topog-

raphy with single-cell spatial resolution across all neurons in a

single tissue section. Single-neuron expression of nine different

genes was quantified in V1 (Figure 4A). The analysis of V1 not

only reveals differences in mean gene expression between
6 Cell Reports Methods 2, 100316, October 24, 2022
transcripts (e.g., Slc17a7 versus Chat) but also demonstrates

that for some genes with similar mean expression (Chd13 versus

Piezo1), the neurons have distinct expression distribution

ranges. Specifically, Piezo1 expression is normally distributed

and exhibits a smaller distribution range, while Chd13



Figure 4. Analysis and spatial visualization of gene expression and co-expression of HiPlex RNAscope

(A) Violin plot of log-normalized gene expression for nine genes expressed in V1 cortex.

(B) Spatial map of log-normalized Met expression in the V1 cortex. Note the greater expression in layers 2–3 and low expression in layer 4.

(C) Spatial map of log-normalized Slc17a7 expression in V1 cortex. Note the greater expression in layers 5 and 6 and medium-low expression in layer 4.

(D) Spatial map of log-normalized Pvalb expression in V1 cortex. Note high-expressing red profiles scattered across all layers, with an enrichment in layer 5.

(E) Pairwise correlation plot for log-normalized gene expression in V1 cortex. Asterisk denotes correlation betweenMet and Slc17a7, which is analyzed further in

(F) and (G).

(legend continued on next page)
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expression is skewed leftward toward zero and exhibits a larger

overall range of expression (Figure 4A).

SCAMPR also facilitates the mapping of gene expression and

gene co-expression patterns at single-cell spatial resolution onto

the tissue of origin. This is demonstrated by using SCAMPR to

map 3 genes, Met, Slc17a7, and Pvalb, each having distinct

levels of expression and neuronal distributions in V1 cortical

layers. Consistent with prior results from our laboratory, neurons

expressing the highest levels of Met are distributed predomi-

nantly in layer 2, and those expressing the lowest levels of Met

localize to layer 4 (Figure 4B) (Judson et al., 2009; Eagleson

et al., 2016). Slc17a7 is expressed in neurons across all layers

in V1, with slightly lower expression in layer 4 (Figure 4C). Neu-

rons expressing Pvalb at high levels also are scattered across

all layers of V1, with noticeable enrichment in layer 5 (Figure 4D).

In addition to single-gene spatial mapping, SCAMPR also can be

used to quantify and spatially map gene co-expression patterns.

Gene co-expression was quantitated by generating pairwise

linear correlation coefficients between all nine genes in V1. A va-

riety of relations are revealed, with some genes highly co-ex-

pressed (Slc17a7 and Met), and others discordant (Slc17a7

and Pvalb) (Figure 4E). In V1, Slc17a7 and Pvalb are known to

be expressed in two different neuronal populations (excitatory

versus inhibitory neurons), whereas Met is highly enriched in

excitatory neurons. Comparison of the expression levels of these

genes across the layers of V1 at single-cell resolution as well as

co-expression analysis confirm these prior findings. As an added

dimension, the accurate segmentation of neuron cell bodies,

rather than nuclei, provides cell size (ROI_Area) as a variable in

this co-expression analysis. Matching prior reports in AMPA

and NMDA gene expression in motor neurons, the quantitative

expression levels of most genes in V1 exhibited positive correla-

tions with cell area (Rana et al., 2020). One obvious exception

was noted, with Vip (expressed in inhibitory neurons) exhibiting

expression levels that were independent of cell size (Figure 4E).

A unique feature of data analysis using SCAMPR is the single-

cell, topographic characterization of gene co-expression pat-

terns between two genes. This is accomplished by fitting a trend

line to the co-expression scatterplot of the two genes and subse-

quently measuring residual distances between each cell and the

trend line. Here, the residual distances were mapped back onto

the cells in the tissue. Fitting a locally estimated scatterplot

smoothing (LOESS) line to the Met and Slc17a7 co-expression

scatterplot shows a positive relationship between Met expres-

sion and Slc17a7 expression for the large majority of Met/

Slc17a7 co-expressing cells. Cells that fall on or near the trend

line represent the majority or ‘‘expected’’ co-expression pattern

for Met and Slc17a7, whereas those that fall far from the trend

line express relatively more or relatively less Met and Slc17a7
(F) LOESS regression plot between log-normalizedMet and Slc17a7 expression i

from the regression line (residual size).

(G) Spatial map of residuals from (F). Red cells have large positive residuals and ex

have large negative residuals and express less Met and/or more Slc17a7 than is

(H) Left: high-magnificationmicrographs, denoted by green (layer 2) and blue (laye

Met (green) compared with Slc17a7 (red) in layer 2. The resulting large positive re

cells with a high Slc17a7 (red) in layer 4, lower co-expression in one profile, and h

match with their residual-denoted colors in the spatial map (bottom right).
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than expected. On the tissue section rendition, these subtypes

were marked in increasingly darker shades of red if they ex-

pressed more Met and/or less Slc17a7 than expected and

increasingly darker shades of blue if they expressed less Met

and/or less Slc17a7 than expected (Figure 4F). The positive

(red), negative (blue), or neutral (grey) distances of these cells

from the trend line were then mapped back onto their location

in the V1 tissue, showing that the Met/Slc17a7 ratio was larger

than the trend in layer 2 and smaller than the trend in multiple

layers, particularly in layer 6a (Figure 4G). To validate the accu-

racy of this method for characterizing both trends, and thus the

heterogeneity in the co-expression pattern of two genes, high-

magnification insets from layers 2 and 5 of the spatial map

were compared with the original HiPlex RNAscope images

from the same regions (Figure 4H).

Clustering and spatial mapping of high-dimensional
mRNA expression patterns
In addition to single and dual gene expression patterns,

SCAMPR can utilize hierarchical clustering methods to catego-

rize neurons into groups based on global gene expression

patterns. Using nine genes assayed in the V1 cortex HiPlex RNA-

scope experiments, SCAMPR was used to cluster the cells into

eight distinct groups. The clusters are represented as a joint

dendrogram/heatmap (Figure 5A). Because ROI identity and

spatial coordinates are preserved during the clustering, each

cluster can be spatially mapped back onto the tissue section.

Notably, some of the clusters segregate spatially. Cells that

comprise cluster 1 are predominantly located in layer 4, whereas

cells in cluster 8 are predominantly located in layers 5 and 6a

(Figure 5B). Additionally, the cells that comprise cluster 8 are

larger than those in cluster 1 (Figure 5C). Cells in cluster 8 also

exhibit either higher or equivalent log-normalized gene expres-

sion when compared with cells in cluster 1, with prominent

differences in genes such as Cdh13 and Foxo1 (Figure 5D).

Examination of the original images for mRNA fluorescence

validates significantly higher Cdh13 and Foxo1 expression in

deeper, compared with superficial, layers, with the highest co-

expression in layer 5 and a near absence of these two genes in

layers 2–4 (Figure 5E).

Using SCAMPR to identify gene expression pattern
differences between two experimental groups
Differences in expression levels of specific genes due to a

manipulation may either vary across all neurons that express a

specific transcript or in specific subtypes and can be resolved

using quantitative analyses at the single-cell level. Thus, high-

dimensional in situ hybridization can be used to compare the

expression of a carefully selected set of genes, such as cell
n V1 cortex. Points denote single cells and are colored based on their distance

press moreMet and/or less Slc17a7 than is predicted by the model. Blue cells

predicted by the model. Note layer 2 enrichment of red cells.

r 4–5 border) boxes in (G). Top image illustrates the relatively high expression of

siduals (pink/red) are shown in the top right graphic. Bottom image illustrates

igher expression of Met (green) in a layer 5 neuron. These expression patterns



Figure 5. High-dimensional clustering analysis of HiPlex RNAscope data

(A) Heatmap of scaled gene expression in V1 cortex after hierarchical clustering.

(B) Spatial maps of cells in cluster 1, which are mostly localized in layers 2/4/6, and cluster 8, which are predominantly localized in layers 5/6a.

(C) Boxplots demonstrating differences in cell size (area) between the clusters. Largest difference in cell size is between cluster 1 (brown) and cluster 8 (green).

Data are represented as medians.

(D) Violin plots demonstrating higher expression of several genes in cluster 1 compared with cluster 8.

(E) Hiplex RNAscope image of Chd13 (white) and Foxo1 (red), which are enriched in cluster 8 and absent in cluster 1. Note that both genes are more highly

expressed in layers 5 and 6a, the primary location of cluster 8 cells.
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subtype markers, to determine potential phenotypic differences

that occur due to an experimental manipulation between groups.

Here, we used a well-validated model of limited bedding and
nesting (LBN), applied from P2 to P9 in mice. LBN disrupts

maternal care and produces an ELS response in pups (Rice

et al., 2008; Heun-Johnson and Levitt, 2016; Eagleson et al.,
Cell Reports Methods 2, 100316, October 24, 2022 9
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2020). Care-as-usual (CAU) pups were raised under normal con-

ditions. Development of vagal circuitry is sensitive to ELS,

though information is limited at a molecular level (Card et al.,

2005; Banihashemi and Rinaman, 2010). To investigate prospec-

tive ELS-induced vagal gene expression changes in early post-

natal mice, we used SCAMPR to analyze the expression of 12

genes that demarcate adult subtypes of vagal sensory neurons

located in the NG of ELS and CAUmice (Kupari et al., 2019). Tis-

sue was harvested for processing on P9 at the end of the period

of ELS exposure. Pairwise correlation coefficients and least

squares regression analyses were performed for both groups

separately to identify possible gene co-expression differences

between groups (Figure S3). Visual inspection of the plot matrix

was sufficient to narrow possible differences in gene co-expres-

sion between CAU and ELS. Analyses began with the identifica-

tion of well-correlated gene pairs for all cells from all groups

(R > 0.40). From these, gene pairs that had both prominent be-

tween-group differences in correlation coefficients and linear

regression line slopes were selected. Two gene pairs fit these

criteria: Scn10a/Ntsr1 and Scn1a/Pvalb (Figure S3). To identify

differences between the co-expression of these genes in CAU

and ELS groups, scatterplots of Scn10a/Ntsr1 co-expression

and Scn1a/Pvalb co-expression were generated, and LOESS

models were fitted for each group. These plots demonstrated

lower Pvalb and Ntsr1 expression with rising values of Scn10a

and Scn1a in the ELS groupwhen compared with the CAU group

(Figures 6A and 6B). Since Scn10a and Scn1a have been shown

to be broad cell-type markers in the NG, and because Pvalb and

Ntsr1 have been shown to be differentially expressed in NG pop-

ulations with varying putative functions (control of pulmonary

volume versus gastrointestinal chemo/mechano sensation),

these analyses at single-cell resolution suggest that there are

subtype-specific decreases in Pvalb and Ntsr1 expression in

NG cells after ELS exposure (Kupari et al., 2019).

The subtype-specific reductions observed could be driven

either by an average decrease in expression of Pvalb or Ntsr1

across many cells or by a decrease in the proportion of cells

that express each gene. To investigate these possibilities,

Scn1a-expressing (Scn1a+), Scn10a-expressing (Scn10a+),

non-Scn1a-expressing (Scn1a�), and non-Scn10a-expressing

(Scn10a�) data subsets were generated, and mean Pvalb and

Ntsr1 expression was calculated for NG neurons from each

ELS and CAU pup. The averages of these mean expression

values were compared between groups for each subset. There

was no difference in mean Pvalb and Ntsr1 expression in the

Scn1a� andScn10a� subsets of neurons, andwhilemeanPvalb

and Ntsr1 expression in ELS mice trended toward a decrease in

in the Scn1a+ and Scn10a+ subsets of neurons, these differ-

ences did not reach statistical significance (Figures 6C and 6D).

It has been shown that the proportion of cells expressing a

particular gene can be altered in an experience-dependent

manner during development (Cheng et al., 2022). To determine

whether the reduction of Pvalb and Ntsr1 expression in ELS ani-

mals reflects a reduction in the proportion of cells expressing the

genes rather than overall mean expression levels in the specific

subpopulations, the percentage of cells expressing Pvalb and

Ntsr1 in the different cell-type-specific subsets was quantitated

(Figures 6E and 6F). In Scn1a+ cells, there was a significant
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24.1% decrease in the percentage of cells expressing Pvalb in

ELS animals when compared with CAU animals (51.8% CAU

versus 39.3% ELS, p % 0.05), whereas in Scn1a� cells, there

was no significant difference between groups (23.5%CAU versus

19.7% ELS, p = 0.56) (Figure 6E). In both Scn10a+ and Scn10a�
cells, there was a trending decrease in Ntsr1-expressing cells in

ELS animals when compared with CAU animals (64.7% CAU

versus 52.2% ELS, p = 0.12 and 25.8% CAU versus 21.1% ELS,

p = 0.38) (Figure 6F). These analyses suggest that in ELS animals,

Pvalb expression is reduced in a subset of NG cells that express

Scn1a and that this reduction is partially driven by a reduction in

the fraction of cells expressing Pvalb transcript. In addition, broad

gene expression comparisons of the remaining ten genes demon-

strated a decrease in meanGpr65 expression in ELS animals, yet

no difference in the percentage of cells expressing this gene (Fig-

ure S4). Together, these experiments demonstrate that SCAMPR

can be used as a tool to quantitatively compare global and cell-

type-specific differences at single-cell spatial resolution, as well

as gene co-expression patterns across experimental groups.

DISCUSSION

Here, we present SCAMPR, an open-source, user-friendly, time-

saving, bench-to-desk pipeline for accurate quantification and

analysis of spatial neuronal gene expression with single-cell res-

olution. The quantification and analytical tools that comprise

SCAMPR allow for comparison of the expression patterns of

multiple genes, spatial mapping of relative gene expression and

co-expression patterns across a tissue, and cell-type-specific

comparisons of gene expression between experimental groups,

all at single-neuron resolution. The comparative analyses of cell

labeling methods demonstrated superior savings of time, fully

completing bench and analytical work in approximately 5 days,

without sacrificing accuracy, while using fully automated or

semi-automated segmentation of the entire neuronal soma.

Achieving accurate spatial analyses at single-neuron
resolution
Utilization of HuC/D staining in the SCAMPR pipeline allows for

demarcation of neurons across multiple developmental time

points andmultiple subregions of the nervous system that exhibit

different cell packing densities and spatial organization patterns,

allowing broad application of SCAMPR for analyzing topo-

graphic gene expression in neurons. The stability of the anti-

HuC/D antibody under the harsh protease digestions and anti-

gen retrieval processing steps of HiPlex RNAscope allows for

HuC/D staining at the very end of hybridization protocol, circum-

venting the early occupation of an imaging channel or the need

for protein stain degradation/quenching or fluorophore cleaving.

Other sufficiently stable primary antibodies marking glial cells in

the nervous system, or other antibodies marking non-nervous

system cell classes present in other tissue types, can be vali-

dated for tissue processing stability and used with SCAMPR to

quantify gene expression differences in myriad cell types.

SCAMPR utilizes a combination of Cellpose and ImageJ

scripts to quantify gene expression for each neuron. In

contrast to methods that perform puncta counting, which

rely on intense particles standing out from their surroundings,



Figure 6. Utilization of HiPlex RNAscope for comparison of gene expression at single-cell resolution in nodose ganglion neurons from CAU

and ELS experimental groups
(A and B) Pvalb/Scn1a and Ntsr1/Scn10a co-expression scatterplots for all cells in the dataset. Points denote single cells in CAU (blue) and ELS (red) mice. Solid

blue and red lines denote the LOESS lines of CAU and ELS mice, respectively. Pearson’s r and corresponding p values for the correlations were determined for

each group separately.

(C)Mean, per-animal Pvalb expression in ELS andCAUScn1a-expressing (left) and non-Scn1a-expressing (right) cells (n = 4 per group). No statistically significant

difference noted between groups. Data are represented as medians.

(D) Mean, per-animal Ntsr1 expression in ELS and CAU Scn10a-expressing (left) and non-Scn10a-expressing (right) cells (n = 4 per group). No statistically

significant difference noted between groups. Data are represented as medians.

(E) Percentage of cells from CAU and ELS animals that express Pvalb in Scn1a+ (left) and Scn1a� cells (right) (n = 4 per group). Note the statistically significant

decrease in the percentage of neurons expressing Pvalb in Scn1a+ neurons in the ELS mice. Data are represented as medians.

(F) Percentage of cells from CAU and ELS animals that express Ntsr1 in Scn10a+ (left) andScn10a� cells (right) (n = 4 per group). No statistically significant

difference noted between groups. Data are represented as medians.
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SCAMPR employs a detection-by-thresholding method to

quantify the number of pixels in a binary image that are pos-

itive for a fluorescent signal representing a particular gene.

Because adjoining fluorescent molecules do not need to be

separated from one another based on intensity in detection

by thresholding, this method allows for accurate quantifica-

tion of genes expressed at low or high levels within the

same tissue section or even in adjacent neurons. Further-

more, SCAMPR quantifies gene expression using flattened,

z-projected images, and outputs gene expression as the per-

centage of the cell area or the number of pixels within a cell

area that are positive for a gene. This contrasts with some

puncta count methods, which match puncta with cellular

ROIs by assigning x, y, and z coordinates to each individual

puncta, thus generating large data matrices that increase the

computational burden in the requisite downstream analyses.

This is an important feature when considering data manage-

ment and computational time savings. Lastly, segmentation

based on the use of both DAPI and HuC/D, in conjunction

with modified versions of the ImageJ quantification macros,

can be used to obtain cell compartment information by sepa-

rately quantifying nuclear and cytosolic mRNA signals.

Spatial mapping tools enable visualization of complex
expression, co-expression, and cell-type clustering
patterns
The capabilities of SCAMPR for fast and accurate segmentation

of neurons and quantification of in situ hybridization signal were

combined with its tools for spatial analysis of gene expression,

co-expression, and clustering-driven cell-type localization in

theV1, a highly topographic structurewith a laminar organization.

We posited that challenging the ability of SCAMPR to accurately

segment, measure, and map gene expression in a highly orga-

nized brain structure that is characterized by region-specific dif-

ferences in packing density would reveal strengths and weak-

nesses of the pipeline. The data demonstrate the capabilities of

SCAMPR for detecting layer-enriched differences in the expres-

sion of single and multiple genes in this brain region. Analyses of

the co-expression of two genes (Met andSlc17a7), in which each

cell was binned based on residual proximity to a fitted line, facil-

itated spatial mapping of the general co-expression patterns of

these genes in the majority of neurons. Using this same analysis

method, SCAMPR was able to extract minority populations of

neurons withmore unique co-expression patterns based on their

deviation from the general co-expression patterns in themajority

population of neurons. This holistic analysis method will compli-

ment more direct strategies of separating neuron populations

based on gene co-expression patterns, such as the semi-quanti-

tative categorization of neurons basedon the expression levels of

both genes (low-low, low-high, high-low, and high-high) or by

considering their expressiondistributions andsummary statistics

(min, max, mean, quartiles, etc.). Lastly, it is possible to integrate

HiPlex RNAscope and other smFISH data with published single-

cell RNA sequencing datasets (Hashikawa et al., 2020;

Wang et al., 2021). These integrated datasets could theoretically

be used with SCAMPR to spatially map and validate the

expression levels of genes from single-cell RNA sequencing

experiments.
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SCAMPR enables analysis of differentially expressed
genes in subsets of cell types
SCAMPR’sutility forcomparinggeneexpressionbetweenneurons

developing under different environmental conditions was demon-

strated. In the NG, a tissue without a known cell-type-specific

topography, employing SCAMPR successfully identified unique

cell-type-specificchanges ingeneexpressiondue toELS. Further-

more, we demonstrated varied responses to ELS across cell sub-

types,where somegeneshad lowermeanexpression acrossa cell

type (Gpr65), while others were expressed in a lower number of

neurons in specific cell types (Pvalb) (Figure S2, 6D, and 6F). It

should be noted that many of the genes assayed in these experi-

ments are expressed in both the jugular and NG of the jugular-

nodose complex. Future experiments can employ ganglion spe-

cific markers such as Phox2b to interrogate both cell-type- and

tissue-specific changes in geneexpression after ELS. In summary,

SCAMPR also provides a cost-effective approach to high-resolu-

tion detection of potential, single-cell differences in gene expres-

sion in experimental models, with spatial details retained.

Limitations of study
SCAMPR, which utilizes HuC/D signal for cellular segmentation

and ROI generation, is currently limited to the study of neurons

in the nervous system.While the stability of reagents undermulti-

plex in situ hybridization conditions would need to be assessed,

it is likely that antibodies detecting proteins to mark other non-

neural cells can be utilized with SCAMPR to assay gene expres-

sion in unique cell populations. This would facilitate analysis in

pathogenic tissues, organoids, and other sources of tissue to

assay gene expression spatially.

The SCAMPR pipeline utilizes three cellular attributes—gene

expression, soma size, and cellular topography—to distinguish

neuron populations. Yet, neuronal innervation patterns, often in

combination with the three attributes utilized by SCAMPR, are

also important for categorizing neurons into distinct subtypes.

It has been demonstrated that one round of RNAscope is

compatible with retrograde tracers, making it feasible to incorpo-

rate a fourthmodality, circuit topology, into the SCAMPRpipeline

(Rana et al., 2020). For this to be successfully incorporated with

multiround HiPlex RNAscope and SCAMPR, the signal from the

traced cellswould require bleaching or degradation after an initial

round of imaging, making the microscopy channel available for

use in the proceeding rounds to assay mRNA expression.

To accurately quantifymRNA signal in image setswith large var-

iations in gene expression and signal intensity, SCAMPR utilizes

eithermanual orsemi-automated thresholdselection todistinguish

a positive signal from noise in an image-specific manner. To miti-

gate the effects of between-user variation during threshold selec-

tion, it is imperative that the user utilize proper experimental blind-

ing procedures to the identity of the image and the experimental

group during imaging and throughout the SCAMPR pipeline.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

HuC/HuD ThermoFisher Scientific RRID:AB_221448

Alexa Fluor 594 AffiniPure F(ab’)2 Fragment

Donkey Anti-Mouse IgG (H + L)

Jackson ImmunoResearch RRID:AB_2340858

Chemicals, peptides, and recombinant proteins

Tissue-Tek Optimal Cutting Temperature Compound Sakura Finetek 4583

ProLong Gold Antifade Mountant Jackson ImmunoResearch Cat. #017-000-121

Tween-20 Sigma-Aldrich P2287

SSC G. Biosciences 786-023

Bovine Serum Albumin Gemini Bio 700-106P

Normal Donkey Serum Jackson ImmunoResearch 017-000-121

Critical commercial assays

RNAScope Intro Pack for HiPlex12 Reagent

Kit – Fresh/Fixed Frozen – Mm

ACD Biosciences 324102

RNAscope HiPlex Probe – Mm – Pvalb – T1 ACD Biosciences 421931-T1

RNAscope HiPlex Probe – Mm – Met – T2 ACD Biosciences 405301-T2

RNAscope HiPlex Probe – Mm – Piezo1 – T3 ACD Biosciences 400181-T3

RNAscope HiPlex Probe – Mm – Chat– T4 ACD Biosciences 408731-T4

RNAscope HiPlex Probe – Mm – Foxo1 – T5 ACD Biosciences 485761-T5

RNAscope HiPlex Probe – Mm – Slc17a7 – T6 ACD Biosciences 416631-T6

RNAscope HiPlex Probe – Mm – Cdh13 – T7 ACD Biosciences 443251-T7

RNAscope HiPlex Probe – Mm – Qrfpr – T8 ACD Biosciences 566341-T8

RNAscope HiPlex Probe – Mm – Mab21l1 – T9 ACD Biosciences 485051-T9

RNAscope HiPlex Probe – Mm – Vip – T10 ACD Biosciences 415961-T10

RNAscope HiPlex Probe – Mm – Gfra1 – T11 ACD Biosciences 431781-T11

RNAscope HiPlex Probe – Mm – Cckar – T12 ACD Biosciences 313751-T12

RNAscope HiPlex Probe – Mm – Ntsr1 – T2 ACD Biosciences 422411-T2

RNAscope HiPlex Probe – Mm – Piezo1 – T3 ACD Biosciences 400181-T3

RNAscope HiPlex Probe – Mm – Npy2r – T4 ACD Biosciences 315951-T4

RNAscope HiPlex Probe – Mm – Httr3b – T5 ACD Biosciences 497541-T5

RNAscope HiPlex Probe – Mm – Trpv1 – T6 ACD Biosciences 313331-T6

RNAscope HiPlex Probe – Mm – Scn1a – T7 ACD Biosciences 434181-T7

RNAscope HiPlex Probe – Mm – Scn10a – T8 ACD Biosciences 426011-T8

RNAscope HiPlex Probe – Mm – Glp1r – T9 ACD Biosciences 418851-T9

RNAscope HiPlex Probe – Mm – Gpr65 – T10 ACD Biosciences 431431-T10

RNAscope HiPlex Probe – Mm – Piezo2 – T11 ACD Biosciences 400191-T11

Experimental models: Organisms/strains

C57BL/6J Mice The Jackson Laboratory 000664

Software and algorithms

SCAMPR_FilenamesCSV GitHub https://zenodo.org/badge/latestdoi/443220284

SCAMPR_AreaFraction ImageJ Macro GitHub https://zenodo.org/badge/latestdoi/443220284

SCAMPR_AreaFraction_SemiAuto ImageJ Macro GitHub https://zenodo.org/badge/latestdoi/443220284

SCAMPR_ViolinPlots GitHub https://zenodo.org/badge/latestdoi/443220284

SCAMPR_ExpressionTopomaps GitHub https://zenodo.org/badge/latestdoi/443220284

SCAMPR_LoessCoexpressionTopomaps GitHub https://zenodo.org/badge/latestdoi/443220284

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

SCAMPR_CorrelationCirclePlots GitHub https://zenodo.org/badge/latestdoi/443220284

SCAMPR_hClustHeatmapTopomaps GitHub https://zenodo.org/badge/latestdoi/443220284

SCAMPR_hClustViolinPlotsCellAreas GitHub https://zenodo.org/badge/latestdoi/443220284

SCAMPR_LoessScatterplotComparisons GitHub https://zenodo.org/badge/latestdoi/443220284

SCAMPR_MeanComparisonsCellTypes GitHub https://zenodo.org/badge/latestdoi/443220284

SCAMPR_PercentCellsComparisonsCellTypes GitHub https://zenodo.org/badge/latestdoi/443220284

SCAMPR_CorrelationRegressionComparisonsMatrix GitHub https://zenodo.org/badge/latestdoi/443220284

SCAMPR_MeanComparisonsMatrix GitHub https://zenodo.org/badge/latestdoi/443220284

SCAMPR_PercentCellsComparisonsMatrix GitHub https://zenodo.org/badge/latestdoi/443220284
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RESOURCE AVAILABILITY

Lead contact
Further information and help with the pipeline should be directed to the lead contact, Pat Levitt (plevitt@med.usc.edu).

Materials availability
This study did not generate new unique reagents or mouse lines.

Data and code availability
d Microscopy data, HiPlex images, and any additional data reported in this paper will be shared by the lead contact upon request.

d HiPlex Gene-Count matrices and all code used to analyze each Gene-Count matrix are publicly available at GitHub as of the

date of publication (https://github.com/ramin-ali-marandi-ghoddousi/SCAMPR). DOI numbers are listed in the key resources

table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODELS AND SUBJECT DETAILS

Animals
One female C57BL/6Jmouse, sacrificed at postnatal day 100 (P100), was used for the V1 cortex HiPlex RNAscope experiments. Four

ELS and four CAU litters were used for the ELS experiments. From each litter, 1 male and 1 female postnatal day 9 (P9) C57BL/6J

mouse was chosen at random and sacrificed for the NG HiPlex RNAscope experiments.

All experimental procedures were performed in accordance with the Institutional Animal Care and Use Committee of The Saban

Research Institute, Children’s Hospital Los Angeles.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Sequential steps for SCAMPR pipeline
Tissue collection and preparation

Prior to collection of adult visual cortex and early postnatal nodose ganglion, mice were anesthetized with a Ketamine:Xylazine

mixture (100 mg/kg: 10 mg/kg) and transcardially perfused with 4% paraformaldehyde (pH 7.4). Due to the small size of the tissue,

a dissecting microscope was used to collect the nodose ganglion from each mouse. All collected tissue was postfixed in 4% para-

formaldehyde for 2–3 hours at 4�C, then cryoprotected overnight in 20% sucrose. Tissue samples were embedded in Tissue-Tek

Optimal Cutting Temperature Compound (OCT) (Sakura Finetek, Cat. #4583), frozen over dry ice, and stored at �80�C.
20 mM cryosections were collected in six series through the entirety of the nodose ganglion and mounted directly onto slides. For

the visual cortex, 20 mM cryosections were collected in the sagittal orientation in 4 series. All slides were stored at �20�C until

processing.

Dual Immunohistochemistry-HiPlex RNAscope and imaging

The RNAscope HiPlex Assay was performed according to the manufacturer’s standard protocol using the RNAscope HiPlex12 Kit

(Advanced Cell Diagnostics Cat. #324194). Tissue sections were baked for 1 hour at 60�C and dehydrated in an ethanol series,

followed by antigen retrieval (5 min at 100�C) and protease treatment (Protease IV for 30 min at room temperature for NG,

Protease III for 30 min at 40�C for V1). Probes for twelve target genes were hybridized for 2 hours at 40�C, washed, and hybridized
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with target-binding amplifiers allowing for signal amplification of single RNA transcripts. Hybridization with negative control probes

targeting bacterial genes was performed in parallel. The final step of the first round of hybridization attached three fluorophores to the

first three of twelve of the target genes (T1-T3). Once the fluorophores were hybridized to the three genes, the sections were counter-

stained with DAPI for 30 seconds, then mounted/coverslipped with ProLong Gold Antifade Mountant (Jackson ImmunoResearch,

Cat. #017-000-121). For the NG samples, signal detection was performed in four rounds, where three target genes were labeled

with three cleavable fluorophores and imaged with a 40X water objective each round on a Zeiss LSM 710 confocal microscope.

Experimenters were blind to the genotype of all animals during imaging and signal quantification of the NG sections. For the V1

sample, signal detection was performed in three rounds (4 probes each round) due to the availability of an infrared fluorophore

(ACD Biosciences Catalog No. 322830) and a Leica Stellaris 5 confocal microscope with infrared detector. The V1 sections were

imaged using a 40x water objective on a Leica Stellaris 5 and automated, inter-tile registration and blending was performed for

the visual cortex images using the Stellaris imaging software (LAS X 4.1) to resolve any coordinate discrepancies between adjoining

tiles.

For each section, the gain and laser power were qualitatively optimized by the experimenter for each channel (DAPI, Alexa Fluor

488, Atto 550, Atto 647N, AF750 – V1 only) and a 20 mM z-stack image was obtained (1.33 mM step-size). No signal was observed in

the negative control tissue sections, or after cleaving all fluorophores, demonstrating the specificity of the assay. For the NG, only the

middle 6–7 mM of each image was used for downstream analysis to minimize packing density-related segmentation issues.

After the sections were imaged, the coverslips were removed in 4X SSC buffer (G. Biosciences, Cat. #786-023) and the fluoro-

phores were cleaved using the cleaving solution provided in the kit. A new set of fluorophores targeting the next three genes (T4-

T6 for NG, T5-T9 for V1) were hybridized onto the tissue sections, another round of DAPI counterstaining was performed, and the

sections were reimaged as described above. This was repeated until all 12 target genes were imaged. In order to identify the neurons

in the NG and V1, immunofluorescence labeling was performed in the same tissue sections following the cleaving of the fluorophores

from the last round of the HiPlex Assay. The coverslips were washed off once again, tissue sections were briefly washed in 0.005%

Tween-20 (Sigma-Aldrich Cat. #P2287) in PBS before incubation for 30 min in blocking solution containing 10% normal donkey

serum (Jackson ImmunoResearch Cat. #017-000-121) and 1% bovine serum albumin (Gemini Bio Cat. #700-106P) in PBS. Slides

were incubated overnight at room temperature with antibodies against the neuronal marker HuC/HuD (1:500, ThermoFisher Scientific

Cat. #A-21271, RRID:AB_221448) with 1% BSA in PBS. Slides were washed in 0.005% PBST, then incubated for 1 hour at room

temperature in Alexa Fluor 594 AffiniPure F(ab’)2 Fragment Donkey Anti-Mouse IgG (H + L) (1:500, Jackson ImmunoResearch

Cat. #715-586-151, RRID:AB_2340858) with 1% BSA in PBS. Following three washes in 0.005% PBST and one wash in PBS, slides

were counterstained with DAPI (Advanced Cell Diagnostics Cat. #324108) and coverslipped using ProLong Gold Antifade Mountant

(ThermoFisher Scientific Cat. #36930). One final round of imaging was performed as described above to capture the HuC/D andDAPI

signals.

Image preprocessing

Each confocal LSM (NG) or LIF (V1) image file was loaded into FIJI ImageJ. A maximum intensity z-projection was created, each

channel (corresponding to a specific gene / HuC/D / DAPI) was split into a separate image file, and each new image was saved

as a TIFF file. Generating flattened z-projections at this step providesmajor advantages to efficiency in the downstream process-

ing; image registration and cell segmentation only needs to be performed once for each z-projected image, in contrast to separate

registration and segmentation of each of the multiple z-planes in each image. To increase the speed of this step, a macro was gener-

ated in FIJI ImageJ to create and save maximum intensity z-projections for all images in a folder or set of subfolders.

Next, images from multiple rounds of imaging the same tissue were registered together using the ACD Biosciences Image Regis-

tration Software, following the manufacturers protocol (ACD Biosciences Document No. 30065UM). In brief, a DAPI image from one

of the rounds of imaging was used as the reference image. DAPI images from all other rounds of imaging were registered to this refer-

ence image, generating a transformationmatrix of coordinate conversions that was applied to the remaining gene and HuC/D images

from each imaging round to create one, unified coordinate system for all images from all rounds. In the same software, non-overlap-

ping regions around the edges of the images are cropped, and each registered image is saved separately as a TIFF file for

downstream processing. An alternative registration method using ImageJ is detailed on the SCAMPR GitHub.

Cell segmentation and signal quantification

Manual cell segmentation was performed by opening all registered HuC/Dmaximum intensity projection images in FIJI ImageJ, then

using the freehand selection tool to circle individual cells, which were each outlined as separate regions of interest (ROIs). ROIs for

each image were then saved into a ZIP file for use in later processing. Automated cell segmentation was performed using Cellpose

(Stringer et al., 2021). A Google Colab notebook that was provided by the authors of Cellpose wasmodified and used to generate the

ROIs for each image based on the HuC/D images. The ROI outlines that are generated by Cellpose were converted into FIJI ImageJ

compatible ROIs using the Cellpose_Outline_to_ROI_Converter.py script and saved as a ZIP file for use in later processing. We

demonstrate that even in densely packed tissues such as the NG, the maximum intensity projections are suitable for cellular ROI

generation as changes in cell morphology or the appearance/disappearance of cells across the z-stack have minimal impact on

segmentation accuracy (Figures S5A and S5B).

Semi-automated signal quantification using SCAMPR requires limited user inputs. In ImageJ, background subtraction was used to

remove imaging artifacts such as autofluorescence and other noise. Next, global image thresholding was performed to designate

each pixel in the image as either signal or background. Both steps require the selection of specific parameters: a rolling-ball radius
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pixel size for the background subtraction, and aminimum threshold value for the global image thresholding. Through trial and error, a

rolling-ball radius of radius 1 works well across all images and is therefore set as the default. This can be changed by the user when

analyses are performed. Due to differential tissue quality, imaging, and mRNA expression levels between multiple genes, using only

one set of threshold parameters or one automated thresholding method does a poor job of separating signal from background for all

mRNAs across multiple tissues (Figure S1A). For this reason, experimenter-blinded manual selection of theminimum threshold value

is required for each image prior to signal quantification. The rolling-ball radii and threshold values for image files of interest are saved

in one CSV file, which is utilized by the FIJI ImageJ macros that perform automated signal quantification in downstream steps.

For users that require a more time friendly alternative for determining the minimum threshold value, we have included a semi-auto-

mated method to SCAMPR that calculates image-specific threshold values for the entire image set by using image intensities and

manual threshold specification of one of the images. To do this: 1) calculate the mean pixel intensity of all background corrected im-

ages in an experiment, 2) calculate the maximum of these mean intensity values (Max Mean Intensity), 3) identify the image for which

the mean is the closest to the Max Mean (Representative Image), 4) perform manual thresholding of the Representative Image and

save the lower threshold value (Representative Threshold), 5) divide the mean intensity of each individual image (Individual Mean In-

tensity) by the Max Mean Intensity to obtain an image-specific thresholding weight, and 3) multiply the Representative Threshold by

the image-specific thresholding weight to obtain the intensity-adjusted lower threshold (Figures S1B–S1E).

Individual Threshold = Representative Threshold 3
Individual Mean Intensity

Max Mean Intensity

A FIJI ImageJ macro was developed as part of SCAMPR to quantify whole cell mRNA signal from RNAscope experiments. The

inputs for this macro, which were generated and processed in previous steps, are as follows: 1) the maximum intensity z-projected

images each gene, 2) the cellular ROIs generated manually or through utilization of Cellpose, and 3) the CSV file containing the

optimal, image-specific rolling-ball radius and minimum threshold as determined by the experimenter. Using this information, these

macros determine the expression of all genes in all cells for the input images, thereby generating a Gene by Cell matrix file with

the results. Each row of this matrix corresponds to a single cell and contains the animal ID, the image ID, the ROI (cell) area, and

the expression level of each gene of interest. The gene expression level is displayed as an area-fraction calculation (the number

of pixels expressing the gene within the cell divided by the area of the cell in pixels). This area-fraction expression value can be

used as-is for the downstream analysis or can be converted to a value representing the number of pixels expressing the gene by

multiplying the area-fraction by the cell area (i.e. pixel coverage in a cell).

Quantitative analysis and spatial mapping

The first step prior to analysis is to import the Gene by Cell matrix created in the previous step into RStudio. Cells not expressing any

genes can be removed from the dataset if desired. Depending on the genes chosen for the experiment, this can help remove noise

due to misclassification of tissue imperfections or other structures as cells. Next, the columns containing the gene-expression data

can be left as area-fraction calculations or converted into pixel coverage. These values are then natural log normalized to reduce

high-expressing gene bias during analysis and data visualization and used to generate violin plots, co-expression charts, spatial

maps, and cluster heatmaps/dendrograms.

Violin plots. Violin plots can be generated in two ways: 1) by plotting the gene expression levels of each gene in each cell, or 2) by

only plotting the expression levels of genes after excluding cells that do not express the gene of interest. The latter provides a

comparison of gene expression levels, while the former will give a comparison of both expression levels as well as a relative com-

parison of the number of cells that express a particular gene.

Expression, co-expression, and spatial mapping. Cellular ROIs are uploaded into R and matched to their appropriate cells in the

Gene by Cell matrix. If desired, manual annotations that mark structural boundaries (e.g the layers in the V1) or other image features

are also generated in ImageJ and uploaded into R. The gene expression levels for a gene of interest are binned into different

expression ranges and added as a column to thematrix. Each bin is assigned a color, and these assigned colors are also appended to

the matrix. Each cell is then plotted based on its ROI coordinates and colored according to its gene expression bin.

Graphical representation of gene co-expression is generated in R by using the log normalized gene expression values. Correlation

coefficient matrices can be plotted alone or combined with ordinary least squares regression lines for each gene pair. For these

matrices, the data can be stratified based on group, making it useful for exploratory analysis of differences in gene co-expression

between groups.

For co-expression spatial mapping, a local polynomial regression model (LOESS) is fitted to the log normalized gene expression

values of two genes of interest. Residual distances are calculated for each cell then binned based on size, and a color code from a

red-blue scale is assigned to each bin. This color code is added as a column to the Gene by Cell matrix. Cells are plotted according to

their ROI coordinates, and the new matrix is then used to color each cell according to its residual size bin.

Clustering and heatmaps. Log normalized data are hierarchically clustered. Depending on the dataset, different distance measures

(Euclidean, Pearson, and Spearman) can be utilized as inputs into the clustering algorithm, and a choice can be made between

multiple agglomeration methods (Ward.d2, complete, etc.). Here, we employed Ward.d2 clustering on Spearman correlation coef-

ficient distance measures. Cluster identities are assigned to each cell, and heatmaps are generated using normalized gene

expression data. The rows (cells) in the heatmap are organized by hierarchical clusters.
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Cellular cluster identities are appended to theGene byCell matrix and used in conjunctionwith ROIs to spatially map cells based on

cluster. Cluster identities also can be utilized in conjunction with gene expression levels and cell area to generate violin and boxplots,

allowing one to look for gene expression differences between clusters.

Early life stress paradigm

A limited bedding and nesting (LBN) model was used to expose pups in our experimental group to chronic early life stress (ELS) from

P2 to P9 (Peña et al., 2017). In brief, each ELS cage is linedwith amesh platform and just enough bedding is placed under the platform

to sparsely cover the cage floor. The dam is provided with half of standard nesting material. Combined limited bedding and nesting

materials have been shown to act as a stressor on the dam, and consequently leads to fragmented and erratic maternal care of the

pups. Care-as-usual (CAU), control litters are raised in cages with normal bedding and nesting resources. At P9, one male and one

female mouse were chosen at random from each of 4 different litters and sacrificed for HiPlex experiments.

12 genes that are involved in classifying NG neurons into 18 putative functionally projecting cell-types were compared between

groups in these experiments (Kupari et al., 2019)

Manual and cellpose segmentation comparisons

Eight 384 x 344 pixel ROIs, containing a combined total of 307 cells with a mean of 38 cells per ROI, were randomly cropped from

different locations in the visual cortex image and were used to assess the time demand and accuracy associated with manual seg-

mentation, automated segmentation using Cellpose, and semi-automated segmentation by combining Cellpose and manual

correction.

Time requirement experiments. To determine the time required for manual segmentation, each image was opened in ImageJ, and

the amount of time needed to segment each cell (ROI) by hand was determined. For these experiments, each cell was segmented

using a stylus on a touchscreen laptop or tablet in combination with the free hand selection tool on ImageJ. For Cellpose segmen-

tation, the amount of time required to load all eight files into the Cellpose Google Colab notebook, to run the program, and to output a

ZIP file of all ROI masks was calculated. For the Corrected Cellpose time calculation, Cellpose ROIs were overlayed onto each image

in ImageJ, and the amount of time needed to delete inaccurate Cellpose ROIs and redraw boundaries by hand using the free hand

selection tool was calculated. To determine the total time required for Corrected Cellpose segmentation, the time to perform ROI

corrections was added to the average time for segmentation using Cellpose alone.

Accuracy experiments. Segmentation accuracy was calculated by comparing the ROIs from Cellpose and Corrected Cellpose to

the ROIs from the manual segmentation. Using the centroid of each ROI, the nearest Cellpose or Cellpose Corrected neighbor for

eachManual ROI was determined in ImageJ. The percentage of overlap was calculated for each neighboring pair. In R, the number of

true positive (TPs), false positives (FPs), and false negatives (FNs) was determined at a 70% overlap threshold. The F1 score was

calculated by using the following equation:

F1 =
2TP

2TP+FP+FN
QUANTIFICATION AND STATISTICAL ANALYSIS

All statistics were performed in R and are described in the results section as well as the figure legends. In the segmentation method

comparisons, n represents the number of images that were used for the time and accuracy calculations in each group. In the ELS NG

comparison experiments, n represents the number of animals per group. For all comparisons, means were compared using a Stu-

dent’s T test and significance was reached at p < 0.05.
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