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Introduction
Colorectal cancer (CRC) arises from the buildup of muta-
tions in the cells of the colonic epithelium that lines the walls 
of the gut. In particular, these mutations occur in structures 
known as colonic crypts, a series of test-tube-shaped invagi-
nations in the wall of the large intestine. These mutations 
cause cells to proliferate without the usual cell cycle regu-
lation and to alter their mechanical properties, eventually 
leading to polyp-type formations where all structure of the 
epithelium is lost.1

Much work has been done to try to understand the 
processes underlying the onset of CRC, both experimental 
and theoretical.2 Early theoretical work mainly focused on 
the development and use of continuum models of the crypt, 
and CRC, and consisted primarily of compartmental mod-
els.3,4 However, some of the first modeling work in the crypt 
was actually undertaken using a two-dimensional cellular 
automata (CA) model to investigate the distribution of cell 
types within the healthy crypt.5 More recently, multiscale 
multicellular models, the spiritual descendants of the CA 

models, have been used to study the crypt and the onset of 
CRC. These approaches model the interactions of individual 
cells and study the resulting ensemble behaviors. They are 
the ideal modeling approach when you are looking to con-
sider the effect of mutant cells, as you are able to adjust the 
properties of individual cells and see the effect on the tissue 
as a whole.

A multiscale model of the crypt based on the off lattice 
cell center was presented in Van Leeuwen et al.6 This work 
coupled a previous model of the crypt7 (which extended the 
earlier CA model but used force balance, instead of prob-
abilities, to define cell–cell interactions) with a model of the 
cell cycle8 developed for crypt epithelial cells. This model of 
a healthy crypt has since been extended to consider the effect 
of geometry on cell distribution,9 to represent deformable 
substrates,10 and to test hypotheses about active migration 
within the crypt.11 The model has also been used to study 
the onset of CRC, by including cells with mutant pheno-
types, and has given insight into how mutant cells take 
over the crypt.12,13 Recently, additional three-dimensional 
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multicellular models have been developed that consider cells 
of multiple types (absorptive and secretory), where the cell 
type is determined by the internal state of the cell, which is 
updated at each timestep according to the state of neighbor-
ing cells, allowing the composition of the epithelial layer to 
be investigated.14

Rather than considering force balance, a popular 
method for representing interacting cells is the cellu-
lar Potts model (CPM), which is derived from the Ising 
model of ferromagnetics and the large-q Potts model.15 
The first use of the CPM was by Graner and Glazier16 and 
by Glazier and Graner,17 where they used it to represent 
the aggregation and sorting of cells in vitro. The sorting 
was based on interaction energies, and this sorting prop-
erty is fundamental to the CPM. Since its introduction, 
the CPM has been used to model many other biological 
systems, for example, morphogenesis,18,19 blood clot for-
mation,20 and vascular tumor growth and invasion.21,22 
because of its popularity there are many software pack-
ages that can run simulations using the CPM, two of the 
most established of these being CompuCell3D23 and Mor-
pheus.24 Additionally, due to the lattice-based structure of 
the model, it is possible to derive continuum representa-
tions of the system, allowing larger parameter regimes to  
be investigated.25

Wong et  al.26 presented the first model of the colonic 
epithelium using the CPM. This work focused on the pedi-
gree model for cell proliferation. The pedigree model has an 
explicit population of immortal stem cells at the base of the 
crypt; these cells divide asymmetrically to produce an addi-
tional transit amplifying cell, which will subsequently divide 
a specified number of generations before differentiating. This 
pedigree model was compared to a positional-based model 
(where proliferative type is determined by external signal-
ing factors) in Van Leeuwen et al.6 which was shown to be 
unable to reproduce the colonizing of crypts seen experimen-
tally. More recently, the random Boolean network models 
for cell-type specification have been coupled to a CPM to 
represent the spatial structure of the crypt.27 This model 
includes cell mutations through the evolution of hyperprolif-
erative cell phenotypes in the random networks, but does not 
change the mechanical properties of cells. For more details 
of the history of experiments and modeling of CRC, see the 
reviews by Kershaw et al.2 and De Matteis et al.28

The key biological aim of this work is to investigate 
whether mutant cells can colonize the crypt by altering their 
mechanical properties. Moreover, we will study how differ-
ent these mutant cells need to be (compared to healthy cells) 
in order to become persistent in the crypt. In addition, we 
aim to demonstrate how to include mutant cell pheno-
types (with altered mechanical properties) in to the cellular 
Potts framework.

The remainder of this paper is structured as follows. 
First we introduce the mathematics underlying the CPM 

and discuss how to couple this model to temporal models 
of subcellular processes such as those for the cell cycle. The 
result of this section is a multicellular model of a healthy 
crypt based on the CPM framework which is subsequently 
investigated. We then discuss a method for implementing 
mutant cell phenotypes in the framework and present a 
model for the onset of CRC. We conclude by discussing 
future avenues for this work.

A CPM Wnt-Dependent Model of a Healthy Crypt
We now detail the elements of our multicellular model of the 
crypt. The model is similar to that used in Osborne et  al.12; 
however, here physical interactions between cells are modeled 
using the CPM. As in Osborne et al.12, the cell cycle is repre-
sented stochastically with proliferation and cell cycle duration 
controlled by the level of an external stimulus, Wnt. This stim-
ulus can affect different cell types in different ways, allowing 
mutant cells to be represented. Moreover, due to the multiscale 
construction of the model, a more complicated cell cycle model 
(like the one in Van Leeuwen et al.6) or other subcellular pro-
cesses (as reviewed in Kershaw et al.2) could be included.

A CPM for cellular interaction. Here we use the CPM 
to represent the physical interactions between cells in the 
crypt. The traditional CPM has been used for many biologi-
cal processes, including cell sorting,16 morphogenesis,18 and 
vascular tumor growth.21 The CPM is described in detail 
in Izaguirre et al.18, among others, so here we just give an 
outline of the CPM and detail the changes to the general 
model, used previously, in order to represent the crypt and 
the onset of CRC. In the CPM, the spatial domain is dis-
cretized in to a finite collection of lattice sites, as shown 
in Figure  1A. Here, these sites form a regular lattice but 
they could be a set of arbitrarily connected sites of different 
shapes. Each cell is represented by a collection of such sites, 
and each site is contained in at most one cell. The shape of 
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Figure 1. Potts model and the multiscale coupling. (A) Representation 
of cells in the cellular Potts model. Cells comprise a collection of lattice 
sites (here a regular square lattice) and evolve over time by selecting 
neighboring (or contained) lattice sites to be included in (or removed 
from) the cell. Cell boundaries are given by bold lines, and the central 
cell is shaded in gray. (B) Schematic drawing of the components of the 
model: cellular Potts model (CPM) for cell movement; cell cycle model 
(CCM) for control of cell proliferation; and Wnt stimulus for controlling the 
cell cycle. Arrows indicate coupling between components.
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the cells is evolved by minimizing the energy of the sys-
tem. This is done in a stepwise manner through evaluation 
of a Hamiltonian, H, (which represents the energy of the 
various cell–cell interactions) and metropolis sampling. If 
an appropriate Hamiltonian is given, then the lattice sites 
associated with each cell are evolved at each Monte Carlo 
step (MCS, a component of the metropolis sampling algo-
rithm representing a sampling of the domain) using the 
following algorithm.

for Number of MCS do
for Appropriate number of samples (NS) do

Calculate the Hamiltonian in current state, H0;
Select a lattice site, i, from the domain at random;
Select a neighbor, j, of this site at random;
�Change the configuration so that site i belongs to the 
same cell as site j;
Calculate the Hamiltonian in new configuration, H1;
if ∆H = H1 – H0 # 0, then
  Accept change;
else
  Evaluate p H

T
= −



exp ;∆

  Sample a number u from U(0, 1);
  if p , u, then
    Accept change;
  end
end
�If change is rejected, then restore to the original 
confirmation.

end
end

where the neighborhood of a lattice site is defined by the 
Moore neighborhood (ie, the eight sites that surround it, with 
appropriate adjustments for periodicity on the left and right 
domain boundaries). The parameter T (known as the “temper-
ature”) is a residual parameter from the origins of the model 
in ferromagnetism and, while it has no specific biological sig-
nificance here, it can be thought of as a motility or fluctuation 
parameter.15 As T is increased, cells will move more freely, but 
the likelihood of the cell (defined as the set of lattice sites com-
prising it) becoming non-connected also increases. Therefore, 
a key element of any CPM simulation is choosing the value of 
the parameter T in order to balance it with the other model 
parameters in order to get realistic results. In a wider sense, T 
(specifically in relation to the magnitude of the terms in the 
Hamiltonian) is analogous to the viscosity or drag parameters η 
and µ found in cell center and cell vertex models, respectively,12 
and we will use this property later to represent mutant cell phe-
notypes. The number of samples per MCS, NS, how this MCS 
relates to an actual timestep dt, and the “temperature” T will 
dictate the dynamical properties of the system. For clarity, here 
we let NS = N, where N is the total number of lattice sites, so 
we are aiming to sample each site at every MCS in an averaged 
sense, and we couple the CPM to the cell cycle by choosing

	 1MCS = dt.	 (1)

This choice is arbitrary, as we are just specifying that one 
sweep of the domain corresponds to the timestep, dt, and we 
can subsequently vary dt to change the coupling scales. There-
fore we use the terms MCS and timestep interchangeably, 
using whichever is more appropriate.

The dependence of the CPM, and therefore the simula-
tions, on these key model parameters is an important property 
of the CPM and allows multiple behaviors to be considered 
and also allows simulations to be tailored to the system being 
investigated and the questions being asked. A detailed investi-
gation in to this dependence will be undertaken for our system 
of the colorectal crypt in the next section.

The Hamiltonian is central to all CPM simulations and 
specifies how the cells evolve as the simulation progresses. It 
is comprised of multiple components, which can be included 
in the model to represent different biological properties or 
phenomena depending on the problem you are investigating. 
This is analogous to the idea of including forces in off-lattice 
models.10,12,14,29 The most commonly used Hamiltonian 
components are cell–cell adhesion and area (volume in three 
dimensions) constraint.17

In this model, we use

	 H H H= +Adhesion Area ,	 (2)

where HAdhesion and HArea are the adhesion energy and area 
constraint contributions, respectively. The adhesion energy 
contribution is given by

	
H J i ji j

i j
Adhesion

neighbors
= −∑ ( ) ( ( ), ( )),( ), ( )

( , )
1 δ τ τσ σ 	 (3)

where σ(k) is the cell containing lattice site k, τ(k) is the type 
of cell σ(k), and J represents the interaction energies between 
cells and captures the effect of adhesion molecules on the sur-
face of cells. This contribution represents a cell’s propensity 
to remain as one solid unit rather than a set of disconnected 
regions and is common to all CPM simulations. Different 
adhesion energies J can be chosen to represent cell aggrega-
tion and sorting (this was one of the first applications of Potts 
type models in biology).17 Here we choose to have cells of the 
same type (either healthy or mutant) have a stronger adhesion, 
Jnn =  0.1, than those of different types, Jnm =  0.2 (note that 
a smaller energy contribution implies a stronger adhesion); 
these choices are inspired by the values used in Wong et al.26

We include an area constraint in the Hamiltonian, and this 
leads to cells tending to a set target area ATarget(i, t), which can 
depend on internal properties of the cell allowing detailed models 
of cell growth. The contribution to the Hamiltonian is given by

	
H A i t A i t

Cells
Area Target= −∑ α ( ( , ) ( , )) ,2 	 (4)
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where A(i, t) is the area (or volume in three dimensions) of 
cell i at time t, and ATarget(i, t) is the corresponding target area 
(volume). α is a parameter that influences how fast cells react 
to the constraint.17 The balance between α, the interaction 
energies J, and the other dynamic parameter T influences the 
speed at which the cells move and rearrange. (dt also affects 
the speed but this contribution can be isolated by looking at 
the ratio between T and dt.) The larger the value of α, the 
more quickly the cells area will tend to the target area. Addi-
tional components can be added to the Hamiltonian to repre-
sent many other cellular processes, for example, a surface area 
constraint, chemotaxis, or haptotaxis.18

Crypt domain and multicellular coupling. Following  
Osborne et  al.12, we consider the crypt to be an unwrapped 
cylinder. Here we restrict cells to lie on the periodic regular 
lattice of width 50 and height 110 lattice sites. Once the center 
of a cell (defined by its center of mass) is above the height of 
100 lattice sites, then it is assumed to be sloughed from the 
crypt and is removed from the simulation.

Cell proliferation is controlled by an imposed gradient of 
a signaling molecule Wnt (shown in Fig. 3). Cells of different 
types respond to the gradient in different ways. Normal cells can 
proliferate only in the lower third of the crypt where there is 
a plentiful supply of Wnt. While proliferating, each cell has a 
model of the cell cycle, and here we draw the duration of the 
whole cell cycle from a normal distribution with mean TCCD and 
unit standard deviation.12 This duration includes all phases of the 
cell cycle. When a cell gets to the prespecified age (if there is still 
enough Wnt present, ie, it is in the lower third of the crypt), it 
divides by evenly distributing its lattice sites into two daughter 
cells (if there are an odd number of lattice sites, then the extra 
site is distributed at random) and each daughter cell draws its 
own cell cycle duration from the same normal distribution as 
the parent cell. A schematic of the components of the model 
and their coupling is given in Figure  1B. This is a simplified 
approach to modeling the cell cycle and is used here as we wish 
to keep the model as simple as possible in order to isolate the 
influence of the mechanical properties of cells. In future work, 
we could use a more complicated cell cycle model that is fitted 
to experimental data.

Note that cell division can occur only between MCS and 
not during them, as each MCS represents the rearrangement 
of cells during one timestep. Also note that, if a cell is only 
occupying one lattice site when the subcellular machinery dic-
tates the cell should divide (as could be the case for poorly 
chosen parameters or an unrealistic proliferation model), then 
the cell cannot divide and the simulation is halted.

In order to represent cell growth when a cell divides, its 
daughter cells have a target area of half the mature target area, 
and this increases linearly until it reaches the mature target 
area. In line with previous models of the crypt, we increase 
this over the first hour of the cell cycle.6,12,13

Traditionally, within the CPM framework, cell divi-
sion is usually modeled by constantly increasing the target 

area of individual cells, and once the actual cell area reaches 
a predefined threshold, it divides.18 The approach taken 
here is more in line with established multiscale multicellu-
lar frameworks and allows cells to divide based on internal 
cues, permitting a full coupling between cellular and sub-
cellular levels.

Parameters, initial conditions, and simulation. As 
specified above, all simulations presented here are on a 
domain of 110 lattice sites tall and 50 lattice sites wide, with 
periodic boundaries applied on the left and right, and cells 
are removed from the simulation when their center is more 
than 100 lattice sites from the base of the crypt. Cells have 
a mature target area of 25 lattice sites, and so the crypt is 
approximately 10 × 20 cell diameters (CDs) in size (in agree-
ment with Osborne et al.12). All model parameters are given 
in Table 1.

Simulations are initialized by creating a regular array of 
10 × 20 square cells, each containing 25 lattice sites. Cell ages 
and cell cycle durations are drawn from a normal distribution 
with mean Tccd and unit standard deviation. All cells are ini-
tially healthy and are specified as proliferative or differentiated 
based upon the Wnt level (ie, position up the crypt).

All simulations are undertaken using the open source 
Chaste (Cancer, Heart, and Soft Tissue Environment) 
framework.29,30 Further details on Chaste are available at 
http://www.cs.ox.ac.uk/chaste. All the codes used to run 
the simulations presented here are released under an open 
source BSD license. The code and tutorials on how to use 
it can be found at https://chaste.cs.ox.ac.uk/trac/wiki/
PaperTutorials/PottsCrypt2015. The time taken to run 
simulations depends on the size of the domain, the num-
ber of cells, and the timestep dt. As an illustration, the 
simulation presented in Figure 2A took less than 2 min-
utes to run on a single-core laptop computer (note this is 
for 100 hours of crypt time). The same amount of time is 
taken for each simulation run in the mutation examples in 
later f igures.

Table 1. Parameters in the model.

Nx, Ny Width and height of lattice 50,110 lattice sites

HSlough Height at which cells are removed 100 lattice sites

TCCD Mean cell cycle duration 16 hours

a Deformation energy parameter 0.1

ATarget Mature cell target area 25 lattice sites

Jhh, Jmm Adhesion energy – same cell  
types

0.1

Jhm, Jmv, Jhv Adhesion energy – different cell  
types

0.2

T “Temperature” 0.1*

dt Timestep 0.01* hours

n Mutant cell “drag” multiplier 1–10

Note: *Default values – these are varied in Figure 3.
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Simulations of a CPM Wnt-Dependent Model 
of a Healthy Crypt
Before looking at the effect of mutant cell phenotypes on the 
development of the crypt, we investigate the dynamic equilib-
rium of the crypt model with only healthy cells. In particular, 
we investigate the model’s dependence on the dynamic para
meters resulting from the use of the CPM: T and dt.

Figure 2 presents results from two realizations of the model 
introduced in the previous section. In Figure 2A we present a 
snapshot at dynamic steady state (t = 100 hours) of a simulation 
using the default parameter set (dt = 0.01 and T = 0.1, as given 
in Table 1), and in Figure 2B we present a snapshot of the same 
simulation with a larger timestep dt = 0.1 at t = 100 hours. Vid-
eos of these simulations are given in Supplementary Movies 1 
and 2, respectively. For the default parameter set, we see that the 
cells are all approximately the same size and shape, cells toward 
the base of the crypt are proliferating (where the Wnt level is 
sufficient, shown by yellow cells), and subsequently migrate up 
the crypt. With an increased timestep, Figure 2B, we see that 
cells are no longer of the same size and they have become frag-
mented, especially toward the base of the crypt. This is due to 
the restricted motility of cells (as can be seen in Fig. 3).

A comparison of how the cell compression and ver-
tical velocity vary as we move up a healthy crypt is given 
in Figure  3. In Figures  3A and 3B, the dependence of 
compression defined as (ATarget - A)/ATarget and the vertical  
velocity, vy, with height up the crypt, are compared for increasing  

values of dt (from 0.00125 to 0.04 in factors of 2, solid lines). 
These results are compared with results for analogous simula-
tions using a cell-center-based off-lattice model from Osborne 
et al.12 (dashed line) and to the experimental data from Kaur 
and Potten31 (dot dashed line). Figures  3C and 3D show  
how increasing the timestep affects the number of cells in  
the crypt.

It is clear from Figures 3A and 3B that with larger val-
ues of dt the cells are more compressed, resulting in a larger 
number of cells in the crypt (this is because having a smaller 
timestep allows cells more MCSs to relax to their target area 
between cells dividing). Additionally, from Figure 3D, it is clear 
that the number of proliferating cells is affected more than the 
number of differentiated cells, which is due to the compression 
being greatest in the base of the crypt where the proliferating 
cells are found. However, interestingly, the overall cell velocity 
is relatively unaffected by dt, and is in excellent agreement with 
that for published off-lattice simulations12 and in good agree-
ment with experimental data.31 In future work, a better fit to 
experimental data could be achieved by modifying the other 
parameters of the model.

In order to fully investigate the way the parameters dt and 
T affect the simulation, in Figure 4 we present how the number 
of cells in crypt deviates from the expected value of 210 (taken 
from Fig. 3D, for dt = 0.01) at time t = 50 hours and also how the 
number of cells changes between t = 25 hours and t = 50 hours, 
for varying T and dt. From the bottom contour plot, we see that 
for large values of dt the crypt is not in homeostasis and the 
number of cells is increasing; this is backed up by the compressed 
cells in the red and blue snapshots. From the top contour plot we 
can see that, for small values of T, there is a larger number of cells 
in the crypt than expected and this gets worse as we increase dt 
(also shown in the yellow and red snapshots). In addition, a large 
value of T leads to a fragmentation of cells (shown in the blue 
and green snapshots); moreover, if we also have a small value of 
dt, cells are removed as a result of excessive sampling and move-
ment, and this leads to a decrease in cell number (shown in the 
green snapshot). Taking all of these behaviors into account, we 
choose a default parameter set dt = 0.01 hours and T = 0.1. This 
is shown by the black snapshot in Figure 4, and these parameters 
are used in the remainder of this work.

Mutations in the Crypt
Following Osborne et  al.12, we now perturb the homeostatic 
healthy crypt by including mutant cells. Mutant cells are con-
sidered to have gained independence from proliferative signal-
ing, and have altered their mechanical properties to promote 
invasion.32 In fact, there is experimental evidence that Wnt-
independent mutant cells (which have an inactivation of 
Apc) have stronger cell–stroma adhesion than normal Wnt-
dependent cells.33

Modeling mutant cells. When using off-lattice models 
for cell interactions, the increased adhesion often observed 
in mutant cells (in order to promote invasion) is represented 

Figure 2. Cellular Potts model of a healthy crypt. Illustrative snapshots 
of the crypt simulation at t = 100 hours with: (A) sensibly chosen “motility 
parameters” (dt = 0.01, T = 0.1) and the crypt is in dynamic homestasis, 
and (B) poorly chosen parameters (dt or T too high, here dt = 0.1, T = 0.1, 
but similar behavior is seen for increased T). Cells proliferate (yellow 
cells) when there is a plentiful supply of Wnt stimulus (which linearly 
decreases up the crypt as shown on the left). Cells no longer proliferate 
(pink cells) when the Wnt value is below a given threshold (here this is a 
third up the crypt). Videos of the simulations for (A) and (B) can be seen 
in Supplementary Movies 1 and 2, respectively.
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by increasing the resistance to motion (“drag”) experienced 
by mutant cells. This is possible because in off-lattice models 
the movement of cells is determined by a force balance and 
therefore increasing the “drag” a cell experiences will repre-
sent increased adhesion to a substrate (see Osborne et al.12 for 
details). The CPM framework utilized here does not use force 
balance to define cell movement, so there is no such thing as a 
“drag” parameter in the model as it stands. However, the reduced 
motility of specific cells in the CPM can be achieved by modi-
fying the success probability of site swaps involving mutant 
cells. This can be achieved by rejecting a specified proportion of 
all moves involving mutant cells, and is implemented by adding 
the following term to the Hamiltonian, Equation (2):

	

H i p
Mutant

if is mutant and
=

∞ <





τ µ( ) ,1

0 otherwise,
	 (5)

where p is drawn from a uniform U(0,1) distribution, µ is 
the mutant cell “drag” ratio (which defines how many moves 

to reject), and τ(i) is the type of the cell containing lattice 
site i. In addition to having an increased “adhesion” (modeled 
through the µ parameter), mutant cells proliferate indepen-
dently of the external Wnt stimulus level (ie, they proliferate 
throughout the crypt).

The effect of mutant cells. In order to show how our 
implementation of mutant cells within the CPM framework 
behaves, we again follow Osborne et al.12, and place a patch of 
mutant cells with varying “drag” ratios in the crypt and track 
the size of the patch over time. Simulations of a healthy crypt 
as in the previous section are run until they are in a dynamic 
steady state (ie, for 50 hours), a patch of cells is then selected, all 
cells contained in the patch are converted to mutant cells, and 
we track the size and shape of the patch over time. We define 
the patch by specifying its center and radius, and all cells who’s 
centers are within this radius from the center of the patch are 
defined to be mutant cells. In this work, we consider a radius of 
2 CDs and investigate a “high patch”, placed at (5 CDs, 4 CDs) 
and a “low patch” placed at (5 CDs, 12 CDs); these can be seen 
in the t = 0 simulation snapshots in Figure 5.
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In Figure 5, we track how the position of the mutant patch 
is affected as we increase the mutant “drag” parameter, µ, from  
1 to 10. We do this by tracking the position of the base (and 
top) of the mutant patch at times t  =  0, 10, 20, 30, 40, and 
50 hours after the addition of mutant cells, for each µ. Illus-
trative simulation snapshots are also included for low (µ = 1), 
medium (µ =  5), and high (µ =  10) mutant “drag” ratios for 
both the low and high mutant patch. Videos of these illus-
trative simulations are given in Supplementary Movies 3 and 
4, respectively.

We see from the central plots of Figure 5 that, as in the 
off-lattice case,12 as the “drag” µ of the mutant cells increases, 
the base (and top) of the patch are lower down the crypt. 
This can also be seen in the illustrative simulation snapshots 
in Figure  5. Additionally, we see that in the case of a low 
patch, for a mutant “drag” ratio of greater than about µ = 6, 
the mutant cells are migrating downward. This downward 
invasion is more pronounced in these CPM simulations than 
the off-lattice simulations in Osborne et  al.12 (as also seen 
in Fig. 6), and may provide more evidence for the top-down 
mechanism for morphogenesis.1

In order to see how adjusting the Hamiltonian, as in 
Equation (5), compares to increasing the drag coefficient in 
off-lattice models, we present a comparison with some of the 

results from Osborne et al.12 in Figure 6. As discussed above, 
the qualitative behavior is the same as we increase the mutant 
“drag” parameter, and we see that increasing the parameter µ 
has the same effect as increasing the drag coefficient in cen-
ter-based simulations. By matching the value of µ for which 
cells invade down the crypt, below the initial height, we can 
see that (for the other parameters as defined) a value of the 
“drag” parameter of µ*P ≈ 5.75 in the CPM is equivalent to a 
drag coefficient of µ*C ≈ 15  in cell-center-based simulations. 
Therefore we can relate the two parameters by the relationship  
µP ≈ 0.4µC, where µP is the “drag” parameter for the CPM in this 
paper and µC is the drag coefficient from cell-center models.12

One key advantage of the CPM over the traditional cell-
center off-lattice model used previously is that the cell shape 
(ie, area and perimeter) is a driver of cell movement, and we are 
able to easily track how cell shape within the crypt is affected 
by the presence of mutant cells. In Figure 7 we present how, 
due to the presence of mutant cells, the average cell area, A, 

perimeter, P, and circularity, defined as C A
P

= 4
2

π ,35 vary as  

you move up the crypt. (Note that, due to the fact that we are 
using a regular lattice, the maximum circularity is π/4 ≈ 0 7854.  
rather than the usual maximum of 1). These averages are cal-
culated between 40 and 50  hours after the mutant patch is 
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Figure 4. Selecting dynamic parameters for the crypt. Center top: deviation of cell number at t = 50 from the expected value of 210 (from Fig. 3D, for 
dt = 0.01) as dt and T are varied. Center bottom: ratio of the numbers of cells at t = 50 and t = 25. Numbers are averaged from 100 simulations for each 
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initialized (initially centered on an height of 4 CDs, ie, the 
low patch) for both low (µ = 1, in black) and high (µ = 10, 
in blue) mutant “drag” ratios. In addition, on each plot, the 
proportion of mutant cells in the crypt is also presented for 
low and high mutant “drag” ratios; these are given as histo-
grams in black and blue, respectively. Each plot is created by 
averaging the relevant size and shape properties of cells whose 
centers lie in each height window (of width 1 cell diameter) 
between 40 and 50 hours after the mutant patch is initialized. 
Furthermore, these data are also averaged over a collection of 
100 realizations (utilizing different random number seeds) in 
order to show the typical behavior of the system.

From Figure 7A, we see again that, in the case of a crypt 
of only healthy cells (dotted line) there is an increase in the 
level of compression as you go down the crypt. This was shown 
to depend on the dynamic parameters of the CPM in Fig-
ure 3A, and here the typical values (of T = 0.1 and dt = 0.01) 
are used. Although the cells are more compressed toward the 
base of the crypt, the cell perimeter remains relatively constant 
as shown by the dotted line in Figure 7B. This leads to slight 
decrease in circularity as you go down the crypt (dotted line 
in Fig. 7C). The addition of mutant cells with low “drag” ratio 
does not change the shape of the area, perimeter, or circular-
ity distribution; it just results in slightly smaller cells (the solid 
and dashed black lines in Figs. 7A–C). This is because mutant 

cells are predominantly being washed out of the crypt by time 
t = 40 hours (as seen by the black histogram in Figs. 7A–C). 
Before being washed out mutant cells are still proliferating in 
the upper areas of the crypt, increasing the number of cells 
and lowering the average area slightly.

When including mutant cells with a high “drag” ratio, 
the mutant cells remain lower in the crypt (seen by the blue 
histograms in Figs.  7A–C and the simulation snapshots in 
Fig. 5) and the effect on cell shape is much more marked. We 
see that the level of cell compression toward the base of the 
crypt is much larger for all cells, but it is actually slightly less 
for healthy cells (solid and dashed blue lines, respectively, in 
Fig. 7A). (Note that the average compression decreases again 
at the base of the crypt compared to that of healthy cells. This 
is because there are fewer mutant cells there. In fact, there are 
none at the very base, as seen in the blue histogram, and there-
fore the contribution from mutant cells is less.) This is due to 
the fact that a by-product of cells having an increased “drag” in 
the CPM is that it will take longer for cells to grow and there-
fore they may divide before reaching full mature size, resulting 
in slightly more compressed cells. However, here the perimeter 
for healthy cells is smaller than the average for all cells (dashed 
and solid blue lines, respectively, in Fig. 7B). These two obser-
vations combine together when looking at the circularity, and 
we see that healthy cells have a relatively constant circularity in 
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the crypt, whereas we see a decrease in the average circularity 
from all cells where mutant cells are present (dashed and solid 
blue lines, respectively, in Fig. 7C). The result of this is that, 
when a population of mutant cells is fixated in the crypt (as 

is the case for µ  =  10), the circularity of the mutant cells is 
lower, suggesting that the cells are no longer approximately 
spherical in shape and are more irregular. This can be seen in 
Figure 8, where we present magnifications of the cell boundar-
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ies in a region of healthy cells and a region of mutant cells in an 
illustrative simulation with a large mutant “drag” ratio (µ = 10). 
We see that the cell boundaries are much more irregular in the 
mutant region, explaining the lower circularity when mutant 
cells are present.

Discussion
In this paper we have presented a model of mutations in the 
colorectal crypt. This model builds upon previous work,6,12,13 by 
utilizing a different cell-based modeling paradigm, the CPM. 
The presented crypt model is the first, to the authors know
ledge, to represent mutations, with different mechanical prop-
erties, in the colorectal crypt using a CPM. The implementation 
of mutations here represents a mechanism by which mutations 
could be represented in the CPM for other biological systems. 
The use of a CPM has allowed us to not only verify the results 
of earlier publications using off-lattice models12 but has also 
enabled us to undertake a detailed investigation of the effect 
that mutant cells have on the shape of cells within the crypt. 
While parts of this would have been possible using the vertex-
based model presented previously,12 the level of cell deforma-
tions would of be much less observable.

This work could be extended in two key ways. First, further 
investigation into the workings of the colorectal crypt could be 
undertaken; in particular, other types of mutations could be 
investigated. In addition, the crypt model could be extended to 
include more realistic models of the cell cycle, as discussed in 
Kershaw et al.2 or using a different representation for the cell 
cycle and cell fate specification, for example, a random Bool-
ean network27 or a state-based model.14 Further models of 

cell interactions, for example, the subcellular element method 
(SEM),34 could be used to represent the mechanical compo-
nents of the system. The second main avenue of future work 
would include using the implementation of the CPM, devel-
oped here, for other biological systems, for example, problems 
in development or avascular tumor growth. This would involve 
introducing other components into to the Hamiltonian to rep-
resent other biological constraints, for example, surface area 
constraints and chemotaxis,18,21 but this would be straightfor-
ward given the modular framework developed and used here.

In summary, the work presented here gives new insight 
into the effect of mutations on the structure of the colorec-
tal crypt and, moreover, presents a framework for including 
cell phenotypes with varied mechanical properties within 
the CPM.
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Supplementary Materials
Supplementary Movie 1. Video of simulation of healthy 

crypt from t = 0 to t = 100 hours with sensible motility param-
eters. The end point of this movie is shown in Figure 2A. Sup-
plementaryMovie1.mp4 or http://youtu.be/pmj_KOX1LIg.

Supplementary Movie 2. Video of simulation of healthy 
crypt from t = 0 to t = 100 hours with inappropriate motil-
ity parameters. The end point of this movie is shown in 
Figure 2B. SupplementaryMovie2.mp4 or http://youtu.be/
gszAMMQAKUA.

Supplementary Movie 3. Video of a comparison between 
three simulations of a crypt with mutant cells from t = 0 to  
t = 50 hours. The video shows ‘drag’ ratios of μ = 1, 5, and 10 
(from left to right) with the initial mutant blob placed low in 
the crypt. Snapshots from this movie are shown on the left 
of Figure 5. SupplementaryMovie3.mp4 or http://youtu.be/
RKiNzip2ZPM.

Supplementary Movie 4. Video of a comparison between 
three simulations of a crypt with mutant cells from t = 0 to t = 50 
hours. The video shows ‘drag’ ratios of = 1; 5; and 10 (from left 
to right) with the initial mutant blob placed high in the crypt. 
Snapshots from this movie are shown on the right of Figure 5. 
SupplementaryMovie4.mp4 or http://youtu.be/8qlLFpV7ugI.
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