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The unreliability of crackles: insights from a breath sound
study using physicians and artificial intelligence
Chun-Hsiang Huang1, Chi-Hsin Chen1, Jing-Tong Tzeng2, An-Yan Chang3, Cheng-Yi Fan1, Chih-Wei Sung1,4, Chi-Chun Lee2,3,6✉ and
Edward Pei-Chuan Huang1,4,5,6✉

BACKGROUND AND INTRODUCTION: In comparison to other physical assessment methods, the inconsistency in respiratory
evaluations continues to pose a major issue and challenge.
OBJECTIVES: This study aims to evaluate the difference in the identification ability of different breath sound.
METHODS/DESCRIPTION: In this prospective study, breath sounds from the Formosa Archive of Breath Sound were labeled by five
physicians. Six artificial intelligence (AI) breath sound interpretation models were developed based on all labeled data and the
labels from the five physicians, respectively. After labeling by AIs and physicians, labels with discrepancy were considered doubtful
and relabeled by two additional physicians. The final labels were determined by a majority vote among the physicians. The
capability of breath sound identification for humans and AI was evaluated using sensitivity, specificity and the area under the
receiver-operating characteristic curve (AUROC).
RESULTS/OUTCOME: A total of 11,532 breath sound files were labeled, with 579 doubtful labels identified. After relabeling and
exclusion, there were 305 labels with gold standard. For wheezing, both human physicians and the AI model demonstrated good
sensitivities (89.5% vs. 86.0%) and good specificities (96.4% vs. 95.2%). For crackles, both human physicians and the AI model
showed good sensitivities (93.9% vs. 80.3%) but poor specificities (56.6% vs. 65.9%). Lower AUROC values were noted in crackles
identification for both physicians and the AI model compared to wheezing.
CONCLUSION: Even with the assistance of artificial intelligence tools, accurately identifying crackles compared to wheezing
remains challenging. Consequently, crackles are unreliable for medical decision-making, and further examination is warranted.
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INTRODUCTION
Breath sounds manifest with varying pitches, durations, and
characteristics depending on the pathophysiologies affecting
airflow within the respiratory tract. Abnormal breath sounds are
observed in over 25% of adults upon auscultation, with prevalence
increasing with age1. Auscultation thus serves as a valuable tool
for diagnosing and assessing the disease severity in a real-time,
non-invasive, and cost-effective manner. While studies have
validated its reproducibility and reliability2–4, the inter-observer
agreement of breath sounds remains uncertain and heavily reliant
on physicians’ experience5,6. Additionally, physicians’ preferences
and auscultatory skills contribute to classification discrepancies7,8.
Consequently, the clinical importance of conventional ausculta-
tion is waning. Luca Arts et al. conducted a meta-analysis on the
diagnostic accuracy of lung auscultation, suggesting its limited
contemporary role and advocating for its replacement with
superior diagnostic modalities such as ultrasound or radiography9.
Nevertheless, advancements in technology have revitalized

auscultation by facilitating more consistent differentiation of breath
sounds. The advent of digital stethoscopes offers enhanced resolution
and noise cancellation. They inherently excel in sound acquisition
compared to traditional bell and diaphragm stethoscopes, particularly
for high-frequency sounds like wheezing10,11. Spectrograms provide
visual assistance, enhancing breath sound classification and increas-
ing inter-rater agreement12,13. Crucially, the rapid progress of machine

learning has significantly enhanced the accuracy and objectivity of
breath sound analysis8,14.Through spectrogram and digital analysis,
we gain a better understanding of adventitious sounds: wheezing
presents as high-pitched and “musical” sounds, typically lasting more
than 100ms with a dominant frequency of 400 Hz or higher15,16. In
contrast, crackles are discontinuous and explosive, with durations less
than 20ms and frequencies ranging from 60 to 2000 Hz16,17.
It is widely acknowledged that human subjectivity impedes

auscultation. Bohadana et al. observed that physicians’ ability to
describe lung sounds was superior for wheezes compared to
crackles7. Whether the characteristics of adventitious sounds
themselves contribute to classification difficulties remains unclear.
Moreover, the robustness of deep learning models against
different sound characteristics remains uncertain. Therefore, we
established a database with breath sounds recorded in clinical
field. By exploring the database with both conventional medical
expertise and contemporary deep learning methodologies, our
study aims to evaluate the difference in the identification ability of
different breath sound.

METHODS
Study design and patient selection
This cross-sectional comparative study was conducted at the
emergency department (ED) of the National Taiwan University
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Hospital Hsinchu Branch, a tertiary medical center with an average
of 5000 monthly ED visits, between January 2021 and February
2022. Non-trauma patients aged over 20 years presenting to the
ED were eligible for inclusion. Exclusion criteria comprised
pregnant individuals, patients experiencing out-of-hospital cardiac
arrest, those transferred to another medical facility, or those
discharged against medical advice.

Outcomes
The outcome was the efficacy of the initial labeling physician and
All-data AI model in the identifying different breath sounds. The
sensitivity, specificity, and area under the receiver-operating
characteristic (AUROC) curve were calculated. The definition of
wheezing and crackles are inherently subjective. Hence, we
considered there is still a gold standard but it should be
determined by physicians with a majority rule.

Data collection
Patients’ breath sounds were recorded at the ED with fidelity,
including possible noises. Recording was performed using a
CaRDIaRT Electronic Stethoscope DS101, with a frequency range
from 0 to 8000 Hz. The 20-1000 Hz are specifically highlighted. We
exported soundwaves into digital formats as “.wav” format at 16-
bit depth, resampled all recordings into 16 kHz, and converted
them into mel-spectrograms. A 10-second recording of breath
sounds was obtained from four sites on both lungs. The upper
sites were located at the midclavicular line of the second
intercostal space, while the lower sites were located at the
anterior axillary line of the inferior scapular rim (Fig. 1). Since each
recording is exactly 10 seconds long, no partitioning or segmenta-
tion was performed.
The recordings were then uploaded to the online database

“Formosa Archive of Breath Sound,” with no post-processing or
filtering applied. Each recording was assigned to a physician for
labeling, who was blinded to the patient’s clinical information.
Physicians were allowed to replay the recordings multiple times

and adjust the volume before labeling. Respiratory sound records
from different chest locations of the same participant were
presented concurrently during labeling. Breath sounds were
categorized into five groups: normal, wheezing, crackles,
unknown, and no breath sounds. Normal breath sounds were
defined as unremarkable inspiration and expiration without
adventitious sounds. Wheezing was characterized by high-
pitched, “musical” sounds heard during either inspiration or
expiration. Crackles were described as non-musical, brief, explo-
sive sounds primarily occurring during inspiration18. Breath
sounds were labeled as unknown if they could not be classified
as wheezing or crackles but exhibited distinct inspiratory and
expiratory phases. Recordings containing only ambient noise were
labeled as no breath sounds. A pre-training course was provided
for the labeling physicians to ensure inter-rater reliability. The pre-
test demonstrated an acceptable Kappa value of 0.7 on the demo
recordings.
Each breath sound was labeled by a single physician, with a

total of five physicians involved in labeling the recordings.
Additionally, six artificial intelligence (AI) breath sound interpreta-
tion models were developed: five AI models emulating the
physicians, trained with their respective labeling data (referred to
as AI doctors), and a final model trained with all available data
(referred to as the All-data AI model). Every breath sound was then
labeled by five AI doctors and the All-data AI model again. To
ensure the robustness of labels in our database, labels were
examined by three tests: physician’s label, the All-data AI model’s
label and the majority opinion of the five AI doctors. Any
discrepancy among these three tests would be considered as
doubtful. Through above measures, we tried to identify as many
doubtful labels as possible. Doubtful labels were then reassessed
by two additional human physicians. The final label, determined
by a majority rule among the three physicians (the initial labeling
physician plus two additional physicians), served as the gold
standard.

Model training
Based on the successful utilization of Mel spectrograms in breath
sound classification as demonstrated in prior literature, all breath
sound recordings underwent conversion into Mel spectrograms to
facilitate efficient feature extraction and input5,19,20. Our model
was constructed based on CNN14, which has exhibited promising
performance in audio tagging tasks21. To further bolster
performance and generalizability, we fine-tuned the network
utilizing pre-trained weights from AudioSet, a comprehensive
audio dataset comprising 2,063,839 training audio clips sourced
from YouTube.
In order to tackle the challenges posed by data imbalance and

scarcity, we implemented various data augmentation techniques,
including SpecAugment and Mixup, alongside employing a batch-
balancing strategy (Appendix 2). SpecAugment applies random
time and frequency masks directly onto the Mel spectrograms,
thereby enhancing model generalizability22. Additionally, Mixup
blends two spectrograms in random ratios, effectively broadening
the training distribution and resulting in enhanced performance22.
Furthermore, the batch-balancing strategy mitigates data imbal-
ance by oversampling the minority class within each batch23. By
incorporating these methodologies, we optimized our model’s
accuracy and robustness in classifying respiratory sound
recordings.

Statistical analysis
Dichotomous and categorical variables were presented as
numbers (percentages). Sensitivity and specificity were calculated
using standard formulas for a binomial proportion, with 95%
confidence intervals (CIs) estimated using the Clopper-Pearson
interval method. The calculation was performed with a “one v.s.

Fig. 1 The anterior view of the chest illustrating auscultation sites
numbered 1 through 4 for data recording from patients.
Auscultation recording was acquired at 4 sites of both lungs. The
upper sites were located at the midclavicular line of the second
intercostal space (area 1, 2), and the lower sites were at the anterior
axillary line of the inferior scapular rim (area 3, 4).
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the others” approach (i.e., for wheezing, the calculation was
performed comparing wheezing to non-wheezing cases). Com-
parison was conducted between the All-data AI model and the
initial physician who labeled the breath sounds. Sensitivity and
specificity comparisons were conducted using McNemar’s test, as
all breath sound files were labeled by both physicians and the All-
data AI model. The performance in differentiating breath sounds
was evaluated using the AUROC. Comparisons of AUROC values
were performed using the Delong test. A p-value < 0.05 was
considered statistically significant. Considering that breath sound
recordings from the upper auscultation sites are clearer than those
from the lower sites due to interference from the female breast,
we performed the sensitivity analysis using recordings only from
the upper chest. Moreover, a subgroup analysis by sex was also
conducted. Finally, unweighted Cohen’s kappa was measured to
evaluate the agreement between physicians and the All-data AI
model. All statistical analyses were conducted using the Statistical
Package for the Social Sciences (SPSS), version 26.0 (IBM Corp.,
Armonk, NY, USA), Python, version 3.8 (Python Software Founda-
tion), and R software, version 4.4.0 (R Foundation for Statistical
Computing, Vienna, Austria).

RESULTS
The Formosa Archive of Breath Sound has included 11,532 breath
sound recordings at the time of writing, making it the largest
breath sound database in Asia and one of the few databases
dedicated to audio recording in clinical setting. Among them,
there are 978 recordings of crackles, 277 recordings of wheezing,
4247 recordings of normal breath sound. Comparison of demo-
graphics between different breath sounds was not performed as a
single patient could present with different breath sounds at
various chest sites. Each of the 11,532 sound files was initially
labeled by one of the five human physicians. Following the
labeling by physicians and AI interpretation, 579 doubtful labels
requiring further evaluation were identified. These doubtful labels
were relabeled by two additional physicians, who were randomly
selected from the rest four physicians. After a majority vote, those
with undifferentiated or non-conclusive agreements were
excluded. Ultimately, 305 final labels with definitive classifications
(normal, wheezing, or crackles) were established as the gold
standard. Among the 305 recordings, there were 199 patients and
their characteristics are shown in Table 1. The median age was
68.8 years, and 105 (52.76%) patients were male. 19 (9.55%)
patients have congestive heart failure. 11 (5.53%) patients have
chronic obstructive pulmonary disease and 13 (6.53%) patients
have asthma. The distribution of labels from physicians, the All-
data AI model, and the gold standard are displayed in Fig. 2 and
further illustrated in a confusion matrix (Supplementary Figure 1,
Appendix 1). Notably, we found that many normal breath sounds
were misclassified as crackles by both physicians and the All-data
AI model.
Based on the 305 gold standard labels, a comparison of breath

sound identification ability was conducted between the All-data AI
model and the initial physician who labeled the breath sounds.
For calculation of sensitivity and specificity, contingency table was
provided (Supplementary Table 1, Appendix 1). The result was
shown in Table 2: For wheezing, both human physicians and the
All-data AI model exhibited good sensitivities (89.5% vs. 86.0%,
p= 0.480) and good specificities (96.4% vs. 95.2%, p= 0.248).
There was no significant difference observed in AUROC between
the two (0.951 vs. 0.934, p= 0.438) (Fig. 3a). Regarding crackles,
both human physicians and the All-data AI model demonstrated
good sensitivities (93.9% vs. 80.3%, p= 0.001) but poor specifi-
cities (56.6% vs. 65.9%, p= 0.023). Again, there was no significant
difference noted in AUROC between the two (0.728 vs. 0.721,
p= 0.168) (Fig. 3b). For normal breath sound, both human
physicians and the All-data AI model exhibited poor sensitivities

(30.2% vs. 44.0%, p= 0.020) but good specificities (94.2% vs.
85.2%, p= 0.002). No significant difference in AUROC was
observed between them (0.698 vs. 0.695, p= 0.334) (Fig. 3c).
The results of subgroup analysis by sex are presented in

Supplementary Table 2a and 2b. For both male and female,
subgroup analyses demonstrated a higher AUROC for wheezing
compared to crackles, consistent with our main findings. No
significant difference in AUROC was found between human
physicians and the All-data AI model, except for crackle
identification in female patients. Furthermore, after excluding
breath sound recordings from the lower chest, 180 gold-standard
recordings remained for the sensitivity analysis. The result was
shown in Supplementary Table 3. The AUROC for wheezing
identification remained above 0.9, while the AUROC for crackle
identification stayed between 0.7 and 0.8. Lastly, Cohen’s kappa
was calculated to evaluate the agreement between human
physicians and the All-data AI model. In wheezing identification,
the Kappa value was the highest at 0.948 while for crackles and
normal breath sound identification, the Kappa values were only

Table 1. The demographics, vital signs, and laboratory data of the
enrolled patients.

Variables All patients (n= 199)

Age (years) 68.82 ± 16.03

Sex (male) 105 (52.76%)

BMI (%) 23.92 ± 4.68

Pre-existing Disease

Hypertension 92 (46.23%)

Coronary artery disease 26 (13.07%)

Congestive heart failure 19 (9.55%)

Diabetic mellitus 56 (28.14%)

Chronic kidney disease 19 (9.55%)

Cerebrovascular accident 18 (9.05%)

COPD 11 (5.53%)

Asthma 13 (6.53%)

Lung cancer 15 (7.54%)

Other cancer 31 (15.58%)

Smoking status

Never smoker 96 (48.24%)

Triage Vital Signs

Body temperature 36.80 ± 0.90

Pulse rate 93.91 ± 25.65

Respiratory rate 22.10 ± 3.76

Systolic blood pressure 145.79 ± 35.32

Diastolic blood pressure 78.84 ± 17.59

SpO2 94.95 ± 5.17

Laboratory Data

White blood cell(K) 9.80 ± 5.63

Neutrophilic granulocyte (%) 74.38 ± 16.15

Hemoglobin (mg/dL) 11.80 ± 2.54

Creatinine (mg/dL) 1.61 ± 1.80

hsCRP (mg/dL) 6.05 ± 8.53

Lactic acid (mmol/L) 2.03 ± 1.57

NTproBNP (pg/mL) 4423.38 ± 8094.75

BMI body-mass-index, COPD chronic obstructive pulmonary disease, hsCRP
high-sensitivity C-reactive protein, NT-proBNP NT-proB-type natriuretic
peptide, SpO2 oxyhemoglobin saturation by pulse oximetry.
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fair to moderate (0.516 for crackles and 0.298 for normal breath
sound) (Supplementary Table 4, Appendix 1).

DISCUSSION
Our study established the first breath sound database in the
emergency department setting with clinical fidelity. Through
double examination by both human experts and a deep learning
model, the breath sound database was provided with relatively
robust labels. Auscultation has long been criticized for its
susceptibility to subjectivity and the observers’ abilities, which
limits its clinical utility7,9,24. While an increasing number of studies
attempt to address these issues with artificial intelligence25, it
should be noted that different breath sounds not only influence
human perception differently but also present varying complex-
ities in signal processing and pattern recognition for machine
learning. This study yielded two major findings: firstly, compared
to wheezing, the identification of crackles proves to be more
challenging and less prone to reaching a consensus. Secondly,
despite employing multiple versions of deep learning models and
adjustments in data sizes, the performance of crackle identifica-
tion by deep learning still fell short compared to wheezing. Other
auscultatory findings, such as heart murmurs, have been reported

to exhibit good sensitivity and specificity, with AI achieving an
AUC of 0.92 in detecting structural murmurs26. Therefore, despite
a fair AUROC, crackles remain unreliable for its low specificity, low
inter-rater agreement, and potential for confusion with normal
breath sounds. Further examination is warranted for accurate
diagnosis and proper management.
Our results are consistent with prior studies indicating that

crackle identification is more inaccurate and unreliable than
wheezing.6,7,12,24,27. The high-pitched musical tonal quality and
longer duration of wheezing render it more distinctive and easier
for human recognition compared to crackles, which are discontin-
uous and transient7,28. Additionally, louder background breath
sounds also hinder the perception of crackles, particularly the
coarse ones29. Previous studies have emphasized the importance
of standardized terminology, auscultation training, and advanced
equipment for improved breath sound classification6,7,11,24,28. A
unified definition with common terminology can mitigate bias
stemming from personal preferences or cultural differences, a
factor crucial for crackles given its varied and vague
manifestations.
In machine learning, our findings that wheezing identification

rates surpass those of crackles are consistent with prior
researches5,30–32. Emmanouilidou et al. developed signal

Fig. 2 Flow of data through the study.

Table 2. Comparison between human physician and All-data AI model in different breath sound identification.

Wheezing Crackles Normal

Physician All-data AI
model

p value Physician All-data AI
model

p value Physician All-data AI
model

p value

Sensitivity 89.5 (78.5–96.0) 86.0 (74.2–93.7) 0.480 93.9 (88.4–97.3) 80.3 (72.5–86.7) 0.001 30.2 (22.0–39.4) 44.0 (34.8–53.5) 0.020

Specificity 96.4 (93.2–98.3) 95.2 (91.7–97.5) 0.248 56.6 (48.9–64.1) 65.9 (58.3–72.9) 0.023 94.2 (89.8–97.1) 85.2 (79.3–89.9) 0.002

AUROC 0.951
(0.920–0.972)

0.934
(0.901–0.959)

0.438 0.728
(0.674–0.777)

0.721
(0.667–0.771)

0.168 0.698
(0.643–0.749)

0.695
(0.640–0.746)

0.334

AUROC area under receiver operating characteristic curve.
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processing tools for the analysis of pediatric auscultations and
found crackles to be more difficult to discriminate. From a signal
processing perspective, the frequency of crackles is ill-defined and
may overlap with wheezing. Its short duration comprises only a
small proportion of the signal, rendering it susceptible to
contamination by normal segments between crackles32. Previous
studies have also indicated that crackles are more challenging to
locate in the breath cycle or signal duration due to their brief
existence. Shanthakumari’s study confirmed that wheezing differs
more from normal breath sounds compared to crackles in most
first-order statistical features33. In summary, the difficulty in
crackle detection stems from a low signal-to-noise ratio, crackle-
like noise artifacts, and irregular loudness34.
As shown in Table 2 and the confusion matrix, there were many

normal breath sounds misclassified as crackles for both physicians
and All-data AI model. This explained the high sensitivity of
crackles and the high specificity of normal breath sounds. Other
machine learning studies have also indicated that crackles are
more likely to be confused with normal lung sounds35,36. Notably,
our study recorded the breath sound with an electronic stetho-
scope. Peitao Ye, et al. had suggested that electronic stethoscope
is prone to producing false crackles, potentially interfering with
medical decision-making37. However, their definition of normal
breath sounds was based solely on the fact that they came from
healthy individuals, without further examination to rule out any
pulmonary pathologies. Especially crackles is reported to be the
most frequent adventitious sounds in healthy people38. Finally,
the study recruited patients from ED. Since patients are assumed
to be ill to visit the ED, there may be a subconscious effect that

lower the physicians’ thresholds to diagnose adventitious
breath sound.
Our study has several limitations. Firstly, the inclusion of 579 breath

sound files categorized as doubtful arose from discrepancies between
physicians’ labels and AI interpretations. Thus they were more
ambiguous and much harder for classification essentially. Secondly,
breath sound labeling was conducted by emergency physicians
rather than pulmonologists. Although researches on the association
between medical specialty and the ability to identify different breath
sounds has yielded inconsistent results, we acknowledge that labeling
physicians from a single specialty could be a limitation of our study,
given their specific training and cultural practices6,27,28,39. Third, our
breath sound files were recorded in ED environment and con-
taminated by ambient noise. Nevertheless, this setting offers a more
clinically realistic scenario. Fourth, despite having fewer samples for
wheezing, both human physicians and the All-data AI model
demonstrated better wheezing recognition. This further strengthens
our results, as fewer samples typically lead to poor machine learning
training. Lastly, the use of Mel spectrogram as input may have
contributed to the similar performance of the All-data AI model to
human experts16,40. However, the current model was trained with our
breath sound database, which comprises relatively large datasets and
exhibited fair performance. Overall, while machine learning increas-
ingly serves as a black box model for accomplishing more complex
tasks, the decision-making process is often challenging for explana-
tion and understanding by physicians41. Our study not only compared
breath sound classification between humans and machines in
different breath sound but also contributed to a better understanding
of the black box model.

Fig. 3 Comparison of ROC curves between human and All-data AI model in different breath sound identification. No significant difference
of AUROC was noted between physician and All-data AI model for wheezing, crackles and normal breath sound. 3a. Wheezing 3b. Crackles. 3c.
Normal breath sound.

Table 3. Meaning and implications of the study.

Wheezing Crackles Normal

For physician The high sensitivity, specificity and AUROC
rendered wheezing reliable for disease
assessment, guiding management and
clinical handover.

Normal breath sounds are often misclassified as crackles. The high
sensitivity and low specificity of crackles suggest that physicians
may have a low threshold for diagnosing pulmonary pathologies
associated with crackles. However, the resulting low positive
predictive value indicates that further examination is necessary
before making management decisions and clinical judgments.

For artificial intelligence The unique sound feature of wheezing makes
itself distinct to other sounds. It is easier to be
recognized and for AI to learn.

The sensitivity and specificity of crackles and normal breath sounds
are complementary due to frequent misclassification. Compared to
wheezing, more effort is needed in AI training to improve the
classification of crackles and normal breath sounds.

AUROC area under receiver operating characteristic curve, AI artificial intelligence.
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CONCLUSION
Both human physicians and deep learning model exhibited
superior performance in identifying wheezing compared to
crackles or normal breath sounds, indicating shared weaknesses
in the classification of these categories. Therefore, medical
decisions based on crackles should be made with caution and
confirmed through additional examinations. For AI training,
greater attention should be given to distinguishing between
crackles and normal breath sounds (Table 3).

DATA AVAILABILITY
The datasets used during the current study are available from the corresponding
author on reasonable request.
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