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Abstract

Parameter inference and model selection are very important for mathematical modeling in systems biology. Bayesian
statistics can be used to conduct both parameter inference and model selection. Especially, the framework named
approximate Bayesian computation is often used for parameter inference and model selection in systems biology. However,
Monte Carlo methods needs to be used to compute Bayesian posterior distributions. In addition, the posterior distributions
of parameters are sometimes almost uniform or very similar to their prior distributions. In such cases, it is difficult to choose
one specific value of parameter with high credibility as the representative value of the distribution. To overcome the
problems, we introduced one of the population Monte Carlo algorithms, population annealing. Although population
annealing is usually used in statistical mechanics, we showed that population annealing can be used to compute Bayesian
posterior distributions in the approximate Bayesian computation framework. To deal with un-identifiability of the
representative values of parameters, we proposed to run the simulations with the parameter ensemble sampled from the
posterior distribution, named ‘‘posterior parameter ensemble’’. We showed that population annealing is an efficient and
convenient algorithm to generate posterior parameter ensemble. We also showed that the simulations with the posterior
parameter ensemble can, not only reproduce the data used for parameter inference, but also capture and predict the data
which was not used for parameter inference. Lastly, we introduced the marginal likelihood in the approximate Bayesian
computation framework for Bayesian model selection. We showed that population annealing enables us to compute the
marginal likelihood in the approximate Bayesian computation framework and conduct model selection depending on the
Bayes factor.
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Introduction

Mathematical modeling is a very useful and powerful approach

in systems biology [1,2]. Mathematical models used in systems

biology are often represented by ordinary or partial differential

equations. These differential equations contain a number of

parameters which represent the rates of biochemical reactions or

amounts of components (proteins, mRNAs etc). An appropriate

mathematical model together with appropriate values of param-

eters enables us to explain, understand and predict the target

biological phenomena in system level. However, we may have a

number of competing and potential mathematical models to

explain the observed experimental data. In addition, concrete

values of parameters in mathematical models are often not well-

known in previous experimental literatures. In such cases, we need

to conduct model selection and parameter inference by some sort

of systematic procedures.

For parameter inference, we can use likelihood based approach

as a statistical approach [3]. In addition, many optimization

algorithms have already been developed and used to conduct

parameter inference in systems biology [4–8]. For model selection,

AIC [9] has already used to compare a number of mathematical

models in systems biology [10–12].

Alternative to those methods and approaches, Bayesian statistics

enables us to conduct both model selection [11,13–19] and

parameter inference [13,15,16,20,21] under the coherent philos-

ophy. For Bayesian model selection and parameter inference in

systems biology, the framework named approximate Bayesian

computation (ABC) or likelihood-free computation is often used

[14,15,18,22–27]. ABC is very useful when likelihood functions

are analytically or computationally intractable, or it takes much

cost for evaluation [14,15,23,24]. Instead of evaluating the

likelihood function, ABC compares the observed data and the

simulated data, and gives us the approximated posterior distribu-

tion [14,15].

However, to compute Bayesian posterior distributions, Monte

Carlo methods often need to be used. As Bayesian parameter

inference and model selection algorithms in the ABC framework,

Markov chain Monte Carlo (MCMC) [15,22,24] and sequential

Monte Carlo (SMC) [15,18,23] have already used. It is known that

the efficiency of ABC-MCMC algorithm reduces when the

sampler is trapped in a low probability area [23]. To overcome
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the problem, ABC-SMC algorithm was developed [15,18,23].

However, even though the algorithms work successfully, the

posterior distributions of parameters may be almost uniform or

very similar to their prior distributions [13]. In such cases, it is

difficult to choose one specific value of parameter with high

credibility as the representative value of the posterior distribution.

To overcome the problems, we introduced one of the Monte

Carlo algorithms, population annealing [28,29]. Population

annealing is a so-called population Monte Carlo algorithm [30]

as same as SMC. Although population annealing is usually used in

statistical mechanics [28,31], we showed that population annealing

can be used to compute Bayesian posterior distributions for

parameter inference and model selection in the ABC framework.

To deal with un-identifiability of the representative values of

parameters, instead of choosing one specific value of parameter in

the posterior distribution, we ran the simulations with the

parameter ensemble sampled from the posterior distribution,

named ‘‘posterior parameter ensemble’’. We propose this

approach is valid if our purpose of parameter inference is to

reproduce or predict the system dynamics, not to estimate the

correct values of parameters. We showed that population

annealing is an efficient and convenient algorithm to generate

the posterior parameter ensemble. In addition, we showed that the

simulations with the posterior parameter ensemble can, not only

reproduce the data used for parameter inference, but also capture

and predict the data which was not used for parameter inference.

Lastly, we introduced the marginal likelihood in the ABC

framework for Bayesian model selection. We showed that

population annealing enables us to compute the marginal

likelihood in the ABC framework and to conduct model selection

depending on the Bayes factor. The validity of our propositions

was firstly judged by applying our method to the feed-forward loop

network motif models [32–36], secondly to the insulin dependent

AKT pathway model [47,48].

Methods

Bayesian parameter inference
For Bayesian parameter inference, under the given likelihood

function f(Dobs|h,M) and the prior distribution of parameters

p(h|M), we try to obtain the posterior distribution of parameters

p(h|Dobs,M), represented as

p hjDobs,Mð Þ

~
f Dobsjh,Mð Þp hjMð Þ

P DobsjMð Þ !f Dobsjh,Mð Þp hjMð Þ:

M is a model and fixed in parameter inference. h is a set of

parameters (i.e. multidimensional vector) in the model M. Dobs is

an observed experimental data. In the equation, P(Dobs|M) is a

normalization constant, and also called as a marginal likelihood.

In the ABC framework [14,24,26], instead of the true posterior

distribution, we try to obtain the augmented posterior distribution

pABC(h,Dsim|Dobs,M) [24]. The augmented posterior distribution

can be represented as

pABC h,DsimjDobs,Mð Þ!fw DobsjDsim,h,Mð Þf Dsimjh,Mð Þp hjMð Þ:

Dsim is the simulated data, also called as the auxiliary parameter

[24]. fw(Dobs|Dsim,h,M) is the weighting function [24]. The

weighting function is set to be large value when the observed

data and the simulated data are ‘‘close’’, small value when they are

‘‘distant’’, and constant when they are ‘‘equal’’ (Dobs = Dsim) [24].

As the weighting function, so-called indicator function is often

used [14,22–24,26]. Indicator function is represented as

fw DobsjDsim,h,Mð Þ!I d Dobs,Dsimjh
� �

ƒe,M
� �

:

d(Dobs,Dsim|h) is a distance measure between the observed data and

the simulated data. e§0 is a tolerance. The indicator function

equals to 1 if the observed data and the simulated data are close

(!e) and 0 if not (.e). If e is small enough, the augmented

posterior distribution is a good approximation of the true posterior

distribution [14,24]. Thus, we can use the augmented posterior

distribution alternative to the true posterior distribution for

parameter inference.

Bayesian model selection
The marginal likelihood P(Dobs|M) plays an important role in

Bayesian model selection [11,17,37,38]. The marginal likelihood is

represented as

P DobsjMð Þ~
ð

H

f Dobsjh,Mð Þp hjMð Þdh:

In Bayesian model selection, a model M is a variable. To compare

models M1 and M2, we can use the Bayes factor [37] represented

as

B12~
P DobsjM1ð Þ
P DobsjM2ð Þ :

From the Bayes’ theorem, the Bayes factor is the ratio of posterior

odds and prior odds as follows [37]:

B12~
P DobsjM1ð Þ
P DobsjM2ð Þ~

P M1jDobsð Þ=P M2jDobsð Þ
P M1ð Þ=P M2ð Þ :

P(M) is the prior probability of the model M. P(M|Dobs) is the

posterior probability of the model M. When the prior probabilities

of the competing models are equal (P(M1) = P(M2)), the Bayes

factor equals to the ratio of the posterior probabilities

B12~
P DobsjM1ð Þ
P DobsjM2ð Þ~

P M1jDobsð Þ
P M2jDobsð Þ :

Depending on the Bayes factor, we can conduct Bayesian model

selection [15,17,37,38].

To conduct Bayesian model selection in the ABC framework,

we need to define the marginal likelihood in the ABC framework.

For definition, we start from the augmented posterior probability

of a model represented as

PABC M,DsimjDobsð Þ

~
P Mð Þ

Ð
H fw DobsjDsim,h,Mð Þf Dsimjh,Mð Þp hjMð Þdh

P Dobsð Þ :

On another front, we have the relationship

P MjDobsð Þ
P Mð Þ ~

P DobsjMð Þ
P Dobsð Þ :

The numerator of the right hand side of the equation corresponds

to the conventional marginal likelihood. We can obtain the similar

Population Annealing for Parameter Inference and Model Selection
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relationship with the augmented posterior distribution as

PABC M,DsimjDobsð Þ
P Mð Þ

~

Ð
H fw DobsjDsim,h,Mð Þf Dsimjh,Mð Þp hjMð Þdh

P Dobsð Þ :

Thus, we can assume the marginal likelihood in the ABC

framework as

ð
H

fw DobsjDsim,h,Mð Þf Dsimjh,Mð Þp hjMð Þdh:

The validity of the approximation can be confirmed by setting the

weighting function to the indicator function as

fw DobsjDsim,h,Mð Þ~I Dobs~Dsimð Þ:

The indicator function equals to 1 if the observed data equals to

the simulated data and 0 if not. By this setting, the marginal

likelihood in the ABC framework is consistent with the conven-

tional marginal likelihood as follows:

ð
H

fw DobsjDsim,h,Mð Þf Dsimjh,Mð Þp hjMð Þdh

~

ð
H

I Dobs~Dsimð Þf Dsimjh,Mð Þp hjMð Þdh

~

ð
H

f Dobsjh,Mð Þp hjMð Þdh

~P DobsjMð Þ

Thus, if we set the weighting function to the indicator function as

fw DobsjDsim,h,Mð Þ!I d Dobs,Dsimjh
� �

ƒe,M
� �

,

and e is small enough, the marginal likelihood in the ABC

framework is a good approximation of the conventional marginal

likelihood. This is same as the case of the augmented posterior

distribution for parameter inference in the ABC framework.

Therefore, the Bayes factor can be defined and calculated in the

ABC framework as

BABC
12 ~

Ð
H fw DobsjDsim,h,M1ð Þf Dsimjh,M1ð Þp hjM1ð ÞdhÐ
H fw DobsjDsim,h,M2ð Þf Dsimjh,M2ð Þp hjM2ð Þdh

:

Depending on the Bayes factor BABC
12, we can conduct Bayesian

model selection in the ABC framework.

Population annealing: algorithm
Population annealing [28,29] is one of the population Monte

Carlo algorithm [30] as same as SMC. Thus, in principle,

population annealing can avoid its sampler being trapped in a low

probability area as same as SMC [23]. Although population

annealing is usually used in statistical mechanics to sample from a

canonical distribution [28,31], we show that population annealing

can be used to compute Bayesian posterior distributions.

Population annealing uses particles to approximately represent

a target probability distribution. Each particle has one set of

concrete values of a multidimensional variable x, which corre-

sponds to a sample from the target distribution. For population

annealing, we define the intermediate distributions fIM(x) as same

as annealed importance sampling [39]. The first intermediate

distribution fIM
0(x) is set to the probability distribution of which

sampling is easy. The last intermediate distribution fIM
N(x) is set to

the target distribution i.e. Bayesian posterior distribution in

Bayesian approach. In population annealing, the first intermediate

distribution is gradually changed to the last intermediate

distribution through a number of intermediate distributions fIM
n(x)

(0,n,N) between the first one (n = 0) and the last one (n = N). In

the case of statistical mechanics, the intermediate distributions are

canonical distributions with different temperatures of the system.

Thus, annealing is directly corresponds to the gradual decrease of

temperature of canonical distributions. Application to Bayesian

statistics mimics the process [39]. In population annealing,

particles are moved and their weights are changed to follow the

intermediate distribution in each annealing step. Population

annealing algorithm proceeds as follows [28,29]:

PA1. Generate xk,fIM
0(x) (1!k!K) independently and set the

initial value of weight to w0
k = 1/K, where K is the total number of

particles.

PA2. Repeat the following procedure from n = 1 to n = N for

each particle independently.

(a) Update weights by following equation

log wk
n~log wk

n{1zlog
f n
IM xk
� �

f n{1
IM xkð Þ

wk
n~wk

n{1

f n
IM xk
� �

f n{1
IM xkð Þ

� �
,

and normalize.

(b) Update xk independently by finite number of MCMC

movements as the stationary distribution is consistent with

the n-th intermediate distribution fIM
n(x).

(c) Resample particles at appropriate timing by following

procedure.

For each particle, set the probability as

Pk~
wk

nXK

k~1
wk

n

:

Sample new particles with replacement following the

probabilities and set the weight as wn
k = 1/K.

(d) Set n = n+1 and return to (a).

In the PA algorithm, we transposed the MCMC process and the

resampling process in the original PA algorithm [28]. As MCMC

process in PA2 (b), we use the Metropolis-Hastings algorithm

(Text S1) [40,41]. To use population annealing in the ABC

framework, we need to use ABC-MCMC (See Text S1) in PA2 (b)

[22,24]. To decide the appropriate timing of resampling in PA2

(c), we used effective sample size (ESS) as same as Sisson et al’s

study [23]. ESS is defined as

ESS~
1XK

k~1
wk
� �2

:

ESS represents the bias of particles’ weights. Particles are

resampled when the ESS value falls below a threshold. In this

study, we set the threshold to K/2. The output of the PA algorithm

is the K particles which each of them has xk associated with weight

wN
k (1!k!K). These weights are set to follow the target

distribution fIM
N(x). By counting xk associated with weights wN

k,

we can obtain the target distribution fIM
N(x).

Population Annealing for Parameter Inference and Model Selection
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Population annealing: application to Bayesian parameter
inference

Population annealing can be used to conduct Bayesian

parameter inference. In the case of parameter inference, a

multidimensional variable x corresponds to a set of parameters h
and a fixed model M. The target distribution for sampling is the

posterior distribution of parameters p(h|Dobs,M) (See Text S2 as a

example based on [17,39]) or the augmented posterior distribution

pABC(h,Dsim|Dobs,M) in the ABC framework. In the ABC

framework, we firstly set the weighting function to the indicator

function. Then we can define the intermediate distribution as

follows:

f n
IM hð Þ!I d Dobs,Dsimjh

� �
ƒen,M

� �
f Dsimjh,Mð Þp hjMð Þ

e0w:::wenw:::weNð Þ

As the tolerance en decreases, the intermediate distribution

gradually changes from the first intermediate distribution (e = e0)

to the last intermediate distribution (e = eN) corresponding to the

augmented posterior distribution of parameters as the similar

manner in ABC-SMC [15,18]. The concrete schedule of en is set

depending on the problem.

Population annealing: application to Bayesian model
selection

Population annealing can be used to conduct Bayesian model

selection in the ABC framework. We firstly set the weighting

function to the indicator function. Under this setting, with a large

number K, the marginal likelihood in the ABC framework can be

approximated as follows:

ð
H

fw DobsjDsim,h,Mð Þf Dsimjh,Mð Þp hjMð Þdh

~

ð
H

I d Dobs,Dsimjh
� �

ƒe,M
� �

f Dsimjh,Mð Þp hjMð Þdh

~Ef Dsimjh,Mð Þp hjMð Þ I d Dobs,Dsimjh
� �

ƒe,M
� �� �

&
1

K

XK

k~1

I d Dobs,Dsimjh,k

� �
ƒe,M

� �

E[?] indicates an expectation value. Dsim|h,k is a sample from

f(Dsim|h,M)p(h|M). Thus, under a fixed total number of particles

K, the number of particles satisfying the condition d(Dobs,Dsim)!e
is proportional to the marginal likelihood in the ABC framework.

Population annealing enables us to count the number of particles

satisfying the condition. Because we use the indicator function,

each particle has a common value of weight (non-zero weight) or

zero weight in population annealing. Thus, starting with a fixed

total number of particles K, the number of particles which have

non-zero weight at the end of population annealing is proportional

to the marginal likelihood in the ABC framework. This is because

the particles at the end of the algorithm follow the last

intermediate distribution corresponding to the target distribution

f N
IM hð Þ!pABC h,DsimjDobs,Mð Þ!I d Dobs,Dsimð ÞƒeN ,Mð Þ

f Dsimjh,Mð Þp hjMð Þ:

However, even though starting with a fixed total number of

particles, resampling processes recover the number of non-zero

weight particles to the total number of particles K. Thus, each time

of resampling, the number of non-zero weight particles before

resampling kresample should be memorized. By multiplying kresample/

K to the number of particles at the end of the algorithm, we can

estimate the marginal likelihood in the ABC framework. In this

study, we adopted this solution. This solution is based on the

similar idea of the ‘‘ABC-SMC approximation of the marginal

likelihood’’ [18]. Another solution against resampling is to

eliminate the resampling process from population annealing. In

this study, we did not adopt that solution. This is because the

resampling process is considered to be important to avoid the

fluctuation of the weight factor and conduct stable calculations

[28].

The computation of the number of particles satisfying the

condition d(Dobs,Dsim)!e can be also done by ABC rejection

sampler (Text S1) [15,23,24,42]. Fixing the total number of

sampling trials, the number of accepted particles in ABC rejection

sampler is proportional to the marginal likelihood in the ABC

framework. However, it is known that the acceptance rate often

gets lower in the case that the prior distribution is very different

from the posterior distribution [15]. We can avoid the problem by

population annealing, because the intermediate distributions

gradually changes from the prior distribution to the posterior

distribution in population annealing.

Simulations with the posterior parameter ensemble
In this study, instead of sampling a number of parameters from

the posterior distribution, we ran the simulations with all the

output particles of population annealing. This is fundamentally

same as the simulations with the posterior parameter samples

[11,13]. In population annealing, each particle at the end of the

algorithm (output particles of population annealing) has concrete

values of parameters hk associated with weight wN
k (1!k!K).

These weights are set to follow the target posterior distribution.

Thus, the simulations with hk weighted by wN
k for all the K

particles correspond to the simulations with the parameter

ensemble sampled from the posterior distribution. Practically, this

can be done with use of the same particles used to obtain the

posterior distribution of parameters. In this manner, population

annealing is a convenient algorithm to generate the posterior

parameter ensemble and conduct the ensemble simulation.

Results

Flow of the tests
In this section, we explain the flow of the tests which start from

the next section. To test the validity of our method, we applied our

method to the two test problems. In the first test, we introduced

two mathematical models of the feed-forward loop network motif

[32–36] in the next ‘‘Mathematical models and simulation setting

of the feed-forward loop network motif’’ section. Then, we

artificially generated the observed data from one of the models

with the given answer values of parameters. Next, in the

‘‘Parameter inference, reproduction and prediction of the dynam-

ics of the feed-forward loop models’’ section, we firstly tried to

estimate the answer values of parameters by computing the

posterior distribution of parameters. Secondly, we tested whether

the simulations with posterior parameter ensemble can reproduce

the data used for parameter inference. In addition, we tested

whether the simulations with posterior parameter ensemble can

correctly predict the newly generated data which was not used for

parameter inference. Next, in the ‘‘Model selection between the

feed-forward loop models’’ section, we tested whether the true

model that the observed data was generated from was correctly

selected or not by computing the Bayes factor. Lastly, in the

Population Annealing for Parameter Inference and Model Selection
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remaining sections, we showed the results of the second test. In the

second test, we used the insulin dependent AKT pathway model

[47,48]. In the test, we tried to reproduce the experimental time-

series data of phosphorylated AKT. We also conducted Bayesian

model selection between the wild type AKT pathway model and

the mutant AKT pathway model. Importantly, we used the open

experimental data in the second test.

Mathematical models and simulation setting of the feed-
forward loop network motif

Mathematical models of the feed-forward loop network

motif. For the first test, we used the mathematical models of the

feed-forward loop network motif [32–36]. Network motifs are

building blocks of transcription network found in diverse

organisms [34]. One of the significant network motifs is the

feed-forward loop (FFL), which consists of three components, X, Y
and Z. There are totally eight possible structures of FFL, which

can be divided into coherent FFL or incoherent FFL [33,34]. In

addition, there are AND logic and OR logic for the activation of Z
by X and Y [33,34]. In the current test study, we used one of the

coherent FFL and one of the incoherent FFL with AND logic

(Figure 1.A, B). Their dynamics can be represented by the

following ordinary differential equations [33].

Coherent FFL

dY

dt
~bY

X

KXY

� �h

1z
X

KXY

� �h
{aY Y

dZ

dt
~bZ

X

KXZ

� �h

1z
X

KXZ

� �h

Y

KYZ

� �h

1z
Y

KYZ

� �h
{aZZ

Incoherent FFL

dY

dt
~bY

X

KXY

� �h

1z
X

KXY

� �h
{aY Y

dZ

dt
~bZ

X

KXZ

� �h

1z
X

KXZ

� �h

1

1z
Y

KYZ

� �h
{aZZ

In the equations, X is an input signal, set to a step function or a

pulse in the test. Y and Z are variables. Each model contains eight

parameters, aY, aZ, bY, bZ, KXY, KXZ, KYZ and h. In this test study,

we did not specifically define the units of these parameters and

time for simplicity.

Generation of the artificial observed data. To use in the

test, we artificially generated the observed data from the coherent

FFL model (Figure 1.A). To generate the data, we firstly set the

answer values of parameters hanswer = (aY, aZ, bY, bZ, KXY, KXZ,

KYZ) = (1, 1, 1, 1, 0.1, 0.1, 0.5). In parameter inference, we tried to

infer these seven values. In model selection, these seven

parameters were free parameters. Remaining Hill coefficient was

set to h = 2. This value was always given and fixed in this test

study. With these answer values and the fixed value of Hill

coefficient, the coherent FFL and the incoherent FFL models

showed distinct dynamics of Z in response to the step stimulation

of X (Figure 1.A, B). Secondly, we added Gaussian noise with

mean 0 and variance 0.01 as observation noise to the time-series

data of Z in Figure 1.A. The generated data was represented as

Dobs = {Zt
obs, t = 1,10} (red points in Figure 1.C, concrete values

are shown in Table S1). The observed data Dobs was used for all

the computations of parameter inference and model selection in

the first test with FFL models.

Prior distribution and weighting function. For Bayesian

parameter inference and model selection, we set the prior

distribution of each parameter to independently follow the

uniform distribution on a common logarithmic scale. Logarithmic

scale is often used in systems biology [13,14,43,44]. The upper-

bound and the lower-bound of each uniform distribution were set

to 10-folds value and 1/10-folds value of each answer value of

parameter respectively i.e. log10aY , U[0.1,10], log10aZ ,
U[0.1,10], log10bY , U[0.1,10], log10bZ , U[0.1,10], log10KXY

, U[0.01,1], log10KXZ , U[0.01,1], log10KYZ , U[0.05,5]. Here,

U represents the uniform distribution.

In this test study, we set the weighting function to the indicator

function [14,22–24,26] represented as

fw DobsjDsim,h,Mð Þ!I d Dobs,Dsimjh
� �

ƒe,M
� �

,

and set the distance d(Dobs,Dsim|h) as

d Dobs,Dsimjh
� �

~
X10

t~1

Zt
obs{Zt

simjh

� 	2

:

Dsim|h = {Zt
sim|h, t = 1,10} is a simulated time-series data of Z

with h.

Numerical simulation. The total number of particles in

population annealing was set to K = 100000. As the default

annealing schedule, the tolerance was gradually decreased as

follows:

e0,e1,e2,e3,e4,e5ð Þ~ ?, 1, 0:5, 0:25, 0:2, 0:15ð Þ

The proposal distribution of ABC-MCMC in population anneal-

ing was set to the uniform distribution on a common logarithmic

scale. In concrete terms, at each step of ABC-MCMC, one of the

parameters was randomly chosen, and the uniform random

number between 20.25 to 0.25 was added on a common

logarithmic scale. For each particle, ABC-MCMC movements in

population annealing were set to 7 steps. This is the number of the

inferred parameters.

For time-series calculations, the ordinary differential equations

were numerically solved by the fourth-order Runge-Kutta method

with a time step of 0.01. Both of the initial amounts of Y and Z
were set to 0 in all the calculations. X was set to the step function

(X = 1 during the entire simulation) or the pulse (X = 1 until

time = 5, then X = 0).

Parameter inference, reproduction and prediction of the
dynamics of the feed-forward loop models

Coherent FFL model. Firstly, we conducted parameter

inference of the coherent FFL model by population annealing.

Population Annealing for Parameter Inference and Model Selection
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The computed joint posterior distribution of the inferred

parameters was marginalized and shown in Figure 2. In each

marginal distribution, the red-colored class corresponds to the

answer value of each parameter. In Figure 2, aZ and bZ seemed to

be inferred well to some extent compared to other parameters.

However, marginal distributions of other parameters were almost

similar to the uniform distributions, which are same as the prior

distributions in this study. If our purpose of parameter inference is

the estimation of the correct values of unknown parameters with

high credibility, we failed in accomplishing our purpose in this

case.

However, if our purpose is the reproduction or the prediction of

the system dynamics, instead of choosing one set of representative

values of parameters, we can run the simulations with the posterior

parameter ensemble. In this study, we ran the simulations with use

of all the 100000 output particles (parameter sets) computed by

population annealing. The simulations with posterior parameter

ensemble give the probability density consists of the simulated

trajectories. Reproductions of the observed data used for

parameter inference were shown in Figure 3. We ran the

simulations in response to the step stimulation of X (Figure 3.A)

as same as the generation process of the observed data. In

Figure 3.B, the area of the probability density consists of the

simulated trajectories (blue-colored area) could capture the

observed data used for parameter inference (red points). When

the annealing schedule was changed to the smaller tolerances (e0,
e1, e2, e3, e4, e5) = (‘, 1, 0.5, 0.25, 0.15, 0.11), the area of the

probability density got narrower (Figure 3.C). When the annealing

schedule was changed to the larger tolerances (e0, e1, e2, e3, e4,
e5) = (‘, 2, 1, 0.75, 0.5, 0.25), the area of the probability density

got broader and captured all the red points (Figure 3.D). As

shown, the area of the probability density differs depending on the

annealing schedules. This result is unsurprising because the last e
values strongly restrict the acceptable trajectories to the observed

data. Thus, we are recommended to try a number of annealing

schedules to check the influence of the schedules on the simulated

Figure 1. Feed-forward loop network motif models. (A) Structure and dynamics of the coherent FFL model in response to the step stimulation
of X. (B) Structure and dynamics of the incoherent FFL model in response to the step stimulation of X. (C) Generated observed data. The observed
data (red points) was generated from the coherent FFL model by adding observation noise into the green-colored trajectory. The green-colored
trajectory is same as that of in (A).
doi:10.1371/journal.pone.0104057.g001
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data. In either case, the posterior parameter ensemble could

reproduce the observed data well.

Furthermore, we examined whether the simulations with the

posterior parameter ensemble can capture the data which was not

used for parameter inference. We newly generated the observed

data of Z (red points in Figure 4, concrete values are shown in

Table S2) in response to the pulse stimulation of X (Figure 4.A)

adding the same Gaussian noise in Figure 1.C. Then we ran the

Figure 2. Marginal probability distributions of the parameters in the coherent FFL model. The joint probability distribution approximated
by 100000 particles was marginalized for each parameter. Red-colored classes represent the ‘‘answer’’ value of each parameter.
doi:10.1371/journal.pone.0104057.g002

Figure 3. Reproduction of the observed data by the coherent FFL model. Simulations with the posterior parameter ensemble of the
coherent FFL model in response to the step stimulation of X. (A) Input step stimulation of X. (B) Annealing schedule: (e0, e1, e2, e3, e4, e5) = (‘, 1, 0.5,
0.25, 0.2, 0.15). (C) Annealing schedule: (e0, e1, e2, e3, e4, e5) = (‘, 1, 0.5, 0.25, 0.15, 0.11). (D) Annealing schedule: (e0, e1, e2, e3, e4, e5) = (‘, 2, 1, 0.75, 0.5,
0.25). Blue-colored area is the probability density consists of the simulated trajectories. Red points are the observed data.
doi:10.1371/journal.pone.0104057.g003
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simulations in response to the pulse stimulation of X with use of all

the 100000 particles which were the output of population

annealing. In Figure 4.B, the probability density consists of the

simulated trajectories could capture and predict the observed data

which was not used for parameter inference. In addition, when the

annealing schedule was changed to the smaller tolerances (e0, e1,
e2, e3, e4, e5) = (‘, 1, 0.5, 0.25, 0.15, 0.11) (Figure 4.C) or the

larger tolerances (e0, e1, e2, e3, e4, e5) = (‘, 2, 1, 0.75, 0.5, 0.25)

(Figure 4.D), the areas of the probability densities could capture

and predict the observed data with different rigors.

As a whole, the simulations with the posterior parameter

ensemble could, not only reproduce the data used for parameter

inference, but also capture and predict the data which was not

used for parameter inference. Because the posterior parameter

ensemble corresponds to the output particles of population

annealing, population annealing is an efficient and convenient

algorithm for the simulations with posterior parameter ensemble.

Incoherent FFL model. Next, we conducted parameter

inference of the incoherent FFL model by population annealing.

Note that parameter inference was conducted with the observed

data generated from the coherent FFL model in Figure 1.C, not

from the incoherent FFL model. The joint posterior distribution of

the inferred parameters was marginalized and shown in Figure 5.

We can see the distinct tendencies of marginal distributions

between the coherent FFL model and the incoherent FFL model.

For example, the marginal distribution of aZ had a tail in smaller

values. This is opposite to that of the coherent FFL (Figure 2). bY

and KYZ also showed the opposite tendency between the

incoherent FFL model and the coherent FFL model (Figure 2).

These differences were considered to come from the difference of

the interaction from Y to Z (Figure 1.A, B). Although there were

these kinds of small differences, most of the marginal posterior

distributions of the incoherent FFL model were similar to the

uniform distributions. This result is similar to the result of the

coherent FFL model.

In addition, as shown in Figure 6.B, C and D, the simulations

with the posterior parameter ensemble of the incoherent FFL

model in response to the step stimulation of X (Figure 6.A) showed

similar results to those of the coherent FFL model (Figure 3). We

again note that the observed data used for parameter inference

was generated from the coherent FFL model, not from the

incoherent FFL model. This result indicates that, by setting the

values of parameters suitably, even the false model (incoherent

FFL model) can reproduce the observed data with comparable

level to the true model (coherent FFL model). This result also

emphasizes the importance of the concrete values of kinetic

parameters for the dynamics of the system [45], not only the

network structures. One attention point is the case of the

annealing schedule (e0, e1, e2, e3, e4, e5) = (‘, 1, 0.5, 0.25, 0.15,

0.11) (Figure 6.C). In this case, the probability density became

slightly parabolic. This might be a kind of over-fitting to the data.

Figure 4. Prediction of the observed data by the coherent FFL model. Simulations with the posterior parameter ensemble of the coherent
FFL model in response to the pulse stimulation of X. (A) Input pulse stimulation of X. (B) Annealing schedule: (e0, e1, e2, e3, e4, e5) = (‘, 1, 0.5, 0.25, 0.2,
0.15). (C) Annealing schedule: (e0, e1, e2, e3, e4, e5) = (‘, 1, 0.5, 0.25, 0.15, 0.11). (D) Annealing schedule: (e0, e1, e2, e3, e4, e5) = (‘, 2, 1, 0.75, 0.5, 0.25). Blue-
colored area is the probability density consists of the simulated trajectories. Red points are the observed data.
doi:10.1371/journal.pone.0104057.g004
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However, the prediction of Z dynamics in response to the pulse

stimulation of X (Figure 7.A) did not succeed well (Figure 7.B, C

and D). After the decrease of X at time = 5, part of the trajectories

of Z could not capture the observed data well. Thus, if we have the

observed data in response to the pulse stimulation of X, we might

be able to naively select the true model (coherent FFL model) in a

visual way. However, it is not always possible to obtain the

Figure 5. Marginal probability distributions of the parameters in the incoherent FFL model. The joint probability distribution
approximated by 100000 particles was marginalized for each parameter.
doi:10.1371/journal.pone.0104057.g005

Figure 6. Reproduction of the observed data by the incoherent FFL model. Simulations with the posterior parameter ensemble of the
incoherent FFL model in response to the step stimulation of X. (A) Input step stimulation of X. (B) Annealing schedule: (e0, e1, e2, e3, e4, e5) = (‘, 1, 0.5,
0.25, 0.2, 0.15). (C) Annealing schedule: (e0, e1, e2, e3, e4, e5) = (‘, 1, 0.5, 0.25, 0.15, 0.11). (D) Annealing schedule: (e0, e1, e2, e3, e4, e5) = (‘, 2, 1, 0.75, 0.5,
0.25). Blue-colored area is the probability density consists of the simulated trajectories. Red points are the observed data.
doi:10.1371/journal.pone.0104057.g006
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convenient data for model selection. To deal with this kind of

problem, we can conduct Bayesian model selection.

Model selection between the feed-forward loop models
Next, we conducted Bayesian model selection, comparing the

coherent FFL model with the incoherent FFL model. To conduct

Bayesian model selection, we computed the Bayes factor in the

ABC framework represented as

BABC
CI

~

Ð
H I d Dobs,Dsimjh

� �
ƒe,Mcoherent

� �
f Dsimjh,Mcoherentð Þp hjMcoherentð ÞdhÐ

H I d Dobs,Dsimjh
� �

ƒe,Mincoherent

� �
f Dsimjh,Mincoherentð Þp hjMincoherentð Þdh

:

Larger BABC
CI indicates that the coherent FFL model is selected

with stronger evidence against the incoherent FFL model. In the

current test study, model selection was conducted with the

observed data generated from the coherent FFL model (Fig-

ure 1.C). Thus, BABC
CI should be a large value, at least larger than

1 to propose the validity of Bayesian model selection by population

annealing.

Computation of BABC
CI was done under different annealing

schedules in population annealing. Annealing schedules were set to

same as those in parameter inference. For each annealing

schedule, the mean and the standard deviation of 10 independent

computations of BABC
CI were shown in Table 1. In Table 1, as the

value of the last e got smaller, BABC
CI got larger. This result

indicates that, as the models need to reproduce the observed data

more rigorously, the coherent FFL model is selected with stronger

evidence against the incoherent FFL model. In addition, BABC
CI

was always larger than 1. This result is consistent with the fact that

the observed data used for model selection was generated from the

coherent FFL model, and the prediction that the coherent FFL

model must be selected in this case. Thus, Bayesian model

selection by population annealing is valid.

We also conducted Bayesian model selection by ABC rejection

sampler (Text S1). For comparison, the value of e in ABC rejection

sampler was set to the same value of the last e of population

annealing. The total number of sampling trials were set to 100000,

same as the number of particles in population annealing. As shown

in Table 1, the means of Bayes factors computed by ABC rejection

sampler were similar to those computed by population annealing.

In the case of large or middle values of e, the standard deviations of

Bayes factors computed by ABC rejection sampler were also

similar to those of computed by population annealing. However,

in the case of small value of e, the standard deviation of the Bayes

factor computed by ABC rejection sampler was larger than that of

computed by population annealing. Small standard deviation

indicates a stable computational result. Thus, these results

demonstrate the efficiency of population annealing for computa-

tion of the Bayes factors.

Figure 7. Prediction of the observed data by the incoherent FFL model. Simulations with the posterior parameter ensemble of the
incoherent FFL model in response to the pulse stimulation of X. (A) Input pulse stimulation of X. (B) Annealing schedule: (e0, e1, e2, e3, e4, e5) = (‘, 1, 0.5,
0.25, 0.2, 0.15). (C) Annealing schedule: (e0, e1, e2, e3, e4, e5) = (‘, 1, 0.5, 0.25, 0.15, 0.11). (D) Annealing schedule: (e0, e1, e2, e3, e4, e5) = (‘, 2, 1, 0.75, 0.5,
0.25). Blue-colored area is the probability density consists of the simulated trajectories. Red points are the observed data.
doi:10.1371/journal.pone.0104057.g007
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Mathematical model and simulation setting of the AKT
pathway model

Mathematical model of the AKT pathway model. For the

second test, we focused on the insulin dependent AKT pathway

model [47,48]. This is because the model is more complicated

than the FFL models, and the test with the model seems to be

difficult. In addition, the experimental data about the pathway are

open in Noguchi et al.’s web page [48].

Insulin is an important hormone which regulates various

metabolic processes [49]. Especially, regulation of sugar metab-

olism is a very important role of insulin because defect in insulin

action is related to type 2 diabetes mellitus [49]. As an intracellular

signal transduction pathway, the AKT pathway plays an

important role for the action of insulin [49,50]. Using a

combination of experiments and mathematical modeling, Kubota

et al. and Noguchi et al. demonstrated that temporal patterns of

insulin selectively control glucose metabolism through the AKT

pathway [47,48].

For the second test, we decided to use a part of the original

insulin dependent AKT pathway models. The original models

incorporates additional metabolic pathways downstream of AKT

[47,48]. However, for simplicity, and because the downstream

pathways differs between Kubota et al.’s model [47] and Noguchi

et al.’s model [48], we employed the insulin-AKT module which is

common in the original models. In the employed AKT model

(Figure 8.A), the input signal is insulin and the output signal is

phosphorylated AKT (pAKT in Figure 8.A). The dynamics of the

model is represented by 6 differential equations with 16 rate

constants and 9 initial amounts of the components. In this study,

we used the same differential equations of the original models

[47,48]. In addition, we used the same values of the initial amounts

of components shown in Noguchi et al.’s paper [48]. Remaining

16 rate constants were free parameters in the test.

Experimental data of AKT dynamics. A part of the

experimental results are open in Noguchi et al.’s web page [48].

In the experimental results, we used the time-series data of pAKT

in response to the step stimulation of 1 nM insulin (red points in

Figure 8.B) [48]. In their experiments, pAKT level is measured at

eight time points (time = 0, 10, 30, 60, 120, 240, 360, 480 minutes)

[48]. When the rate constants in the model are set to their default

values shown in Noguchi et al.’s paper [48], the simulated

trajectory could capture the experimental time-series data of

pAKT except for the point at 480 minutes (green trajectory in

Figure 8.B). Thus, we decided to use the experimental time-series

data of pAKT except for the point at 480 minutes in the test.

Those time-series data of pAKT were used for all the computa-

tions in the remaining sections.

Prior distribution and weighting function. As same as the

case of the feed-forward loop network motif models, we set the

prior distribution of each parameter to independently follow the

uniform distribution on a common logarithmic scale. The upper-

bound and the lower-bound of each uniform distribution were set

to 104 and 1026 respectively for all the 16 rate constants

(parameters) in the model.

In this test study, we set the weighting function to the indicator

function [14,22–24,26] represented as

fw DobsjDsim,h,Mð Þ!I d Dobs,Dsimjh
� �

ƒe,M
� �

,

and set the distance d(Dobs,Dsim|h) as

d Dobs,Dsimjh
� �

~
X

t~0,10,30,60,
120,240,360

pAKTt
obs{pAKTt

simjh

� 	2

:

h represents the 16 rate constants in the model. Dobs = {pAKTt
obs,

t = 0, 10, 30, 60, 120, 240, 360} is the experimental time-series

data of pAKT except for the point at 480 minutes in Noguchi et

al.’s study [48]. Dsim|h = {pAKTt
sim|h, t = 0, 10, 30, 60, 120, 240,

360} is a simulated time-series data of pAKT with h.

Numerical simulation. The total number of particles in

population annealing was set to K = 10000. As the default

annealing schedule, the tolerance was gradually decreased as

follows:

e0,e1,e2,e3,e4,e5,e6,e7,e8,e9,e10,e11,e12,e13,e14ð Þ

~ ?, 1:5, 1:0, 0:75, 0:5, 0:25, 0:1, 0:09, 0:08, 0:07, 0:06, 0:05,ð

0:04, 0:03, 0:02Þ

The proposal distribution of ABC-MCMC in population anneal-

ing was set to the uniform distribution on a common logarithmic

scale. In concrete terms, at each step of ABC-MCMC, one of the

parameters was randomly chosen, and the uniform random

number between 20.25 to 0.25 was added on a common

logarithmic scale. For each particle, ABC-MCMC movements in

population annealing were set to 16 steps. This is the number of

the free parameters.

For time-series calculations, the ordinary differential equations

were numerically solved by the fourth-order Runge-Kutta method

with a time step of 0.001 minutes. Initial amounts of the

components in the model were set to the values shown in Noguchi

et al.’s paper [48]. As the input signal of the model, insulin is set to

the step function (Insulin = 1 nM during the entire simulation) in

all the computations.

Table 1. Bayes factor BABC
CI computed with different annealing schedules in population annealing and different last epsilons in

ABC rejection sampler.

annealing schedule/last e BABC
C I (PA) BABC

C I (ARS)

AS1/0.25 1.36760.033 1.39160.031

AS2/0.15 1.89660.089 1.93560.096

AS3/0.11 9.61861.175 10.07962.830

Abbreviations are as follows: PA: population annealing, ARS: ABC rejection sampler. AS1: annealing schedule 1 = (‘, 2, 1, 0.75, 0.5, 0.25), AS2: annealing schedule 2 = (‘,
1, 0.5, 0.25, 0.2, 0.15), AS3: annealing schedule 3 = (‘, 1, 0.5, 0.25, 0.15, 0.11).
doi:10.1371/journal.pone.0104057.t001
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Figure 8. AKT pathway model. (A) Structure of the AKT pathway model. The input signal is insulin. The output signal is pAKT. Solid arrows
represent mass flows. Solid arrows directional to a lined circle represent degradation processes. Solid arrows with black circles represent association/
dissociation processes. Dotted arrows represent enhancement of the processes. (B) Experimental data (red points) and simulated trajectory (green
trajectory) of pAKT in response to the step stimulation of 1 nM insulin. (C), (D), (E) Reproduction of the experimental data. Simulations were run with
the posterior parameter ensemble in response to the step stimulation of 1 nM insulin. (C) Annealing schedule: (e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11,
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Reproduction of the experimental time-series data of
insulin dependent AKT dynamics

We tested whether the posterior parameter ensemble can

capture the experimental time-series data of insulin dependent

AKT dynamics. We ran the simulations with use of all the 10000

output particles (parameter sets) of population annealing. Repro-

ductions of the experimental data were shown in Figure 8.C, D, E.

In Figure 8.C, the area of the probability density consists of the

simulated trajectories (blue-colored area) could capture the

experimental time-series data of pAKT (red points). When the

annealing schedule was changed to the smaller tolerances (e0, e1,
e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14, e15) = (‘, 1.5, 1.0,

0.75, 0.5, 0.25, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02,

0.01), the area of the probability density got narrower (Fig-

ure 8.D). When the annealing schedule was changed to the larger

tolerances (e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11) = (‘, 1.5, 1.0,

0.75, 0.5, 0.25, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05), the area of the

probability density got broader (Figure 8.E). In any of these cases,

the simulations with the posterior parameter ensemble could

reproduce the real experimental data of AKT dynamics,

demonstrating the efficiency of our method.

Model selection of the AKT pathway model
Lastly, we conducted Bayesian model selection of the AKT

pathway model. As shown in Figure 8.B, pAKT shows strong

transient and weak sustained response, so-called a partial adaptive

response. From the network structure of the model, we can predict

the mTOR-related negative feedback plays an important role for a

partial adaptive response. Thus, for comparison with the wild type

model shown in Figure 8.A, we prepared the mutant model which

lacks the mTOR-related negative feedback. Lack of the negative

feedback was realized by setting the values of related rate constants

to zero.

To conduct Bayesian model selection, we computed the Bayes

factor in the ABC framework represented as

BABC
WM

~

Ð
H I d Dobs,Dsimjh

� �
ƒe,Mwild

� �
f Dsimjh,Mwildð Þp hjMwildð ÞdhÐ

H I d Dobs,Dsimjh
� �

ƒe,Mmu tan t

� �
f Dsimjh,Mmu tan tð Þp hjMmu tan tð Þdh

:

Larger BABC
WM indicates that the wild type model is selected with

stronger evidence against the mutant model. If the mTOR-related

negative feedback is destroyed, the model will not be able to

reproduce a partial adaptive response. Thus, BABC
WM should be a

large value, at least larger than 1 to propose the validity of

Bayesian model selection by population annealing.

Computation of BABC
WM was done under different annealing

schedules in population annealing. Annealing schedules were set to

same as those in parameter inference. For each annealing

schedule, the mean and the standard deviation of 10 independent

computations of BABC
WM were shown in Table 2. In Table 2, the

means of BABC
WM were always larger than 1 independent of the

annealing schedules. This result indicates that the wild type model

was selected with stronger evidence against the mutant model

independent of the annealing schedules. This is consistent with the

predictions that the mTOR-related negative feedback is important

for a partial adaptive response of pAKT, and the wild type model

must be selected in this case. These results demonstrate the validity

of Bayesian model selection by population annealing.

We also conducted Bayesian model selection by ABC rejection

sampler (Text S1). For comparison, the value of e in ABC rejection

sampler was set to the same value of the last e of population

annealing. The total number of sampling trials were set to 10000,

same as the number of particles in population annealing. As shown

in Table 2, ABC rejection sampler could compute the Bayes factor

in the case of large value of e. However, the standard deviation was

larger than that of computed by population annealing. In addition,

in the cases of middle or small value of e, the number of acceptable

particle in each independent run was mostly zero. In these cases,

we could not calculate the Bayes factors (‘‘-’’ in Table 2). These

results demonstrate the efficiency of population annealing for

computation of the Bayes factors.

Discussion

In this paper, we introduced Bayesian model selection and

parameter inference by population annealing. Firstly, we showed

that population annealing can be used to compute the Bayesian

posterior distributions. Secondly, we showed that the simulations

with the posterior parameter ensemble could reproduce the

artificial observed data and the experimental data used for

parameter inference. In addition, the simulations with the

posterior parameter ensemble could capture and predict the

observed data which was not used for parameter inference. For

both reproduction and prediction, population annealing enables us

to run the simulations with the posterior parameter ensemble.

These results also emphasize the importance to consider the

ensemble or samples of parameters from the posterior distributions

for parameter inference and subsequent simulations [11,13].

Lastly, we showed that the true model was correctly selected by

computing the Bayes factor in the test with the FFL models. In the

test with the AKT pathway model, the wild type model was

correctly selected as expected. In addition, compared to ABC

rejection sampler, population annealing showed smaller standard

deviations of the Bayes factors. These results indicate that

population annealing provides more stable computational result

of the Bayes factor than ABC rejection sampler. All of these results

support the efficiency of population annealing for Bayesian model

selection, parameter inference and subsequent simulations with

the parameter ensemble.

In the first test with the FFL models, we used the time-series

data consists of 10 time points of Z. In the second test with the

AKT pathway model, we used the time-series data consists of 7

time points of pAKT. These data scales may seem to be small. Our

results may seem to be influenced by the smallness of the data

scale. However, the results with the small data were not so largely

different from the results obtained with the large data in this study

(Text S3, Figure S1). These results indicate that, even though the

available data scale is small, our approach can give us reasonable

computational results. This is very important for real data analysis

because it is not always possible to obtain the large experimental

data.

In parameter inference of the FFL models, most of the marginal

distributions of parameters were almost similar to the uniform

distributions, which were same as the prior distributions in this

e12, e13, e14) = (‘, 1.5, 1.0, 0.75, 0.5, 0.25, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02). (D) Annealing schedule: (e0, e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11,
e12, e13, e14, e15) = (‘, 1.5, 1.0, 0.75, 0.5, 0.25, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01). (E) Annealing schedule: (e0, e1, e2, e3, e4, e5, e6, e7, e8, e9,
e10, e11) = (‘, 1.5, 1.0, 0.75, 0.5, 0.25, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05). Blue-colored area is the probability density consists of the simulated trajectories.
Red points are the experimental data.
doi:10.1371/journal.pone.0104057.g008
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study. If our purpose of parameter inference is the estimation of

the correct values of parameters with high credibility, we should

conclude the parameter inference was failed in this case. However,

if our purpose is the reproduction or the prediction of the system

dynamics, instead of choosing one set of representative values of

parameters, we can run simulations with the posterior parameter

ensemble. In this study, we want to propose the validity of this

approach.

In the simulations with the posterior parameter ensemble, the

area of the probability density consists of the simulated trajectories

differs among the annealing schedules. This is because the last e
values restrict the acceptable trajectories to the observed data. In

both of the tests, we set the distance between the observed data

and the simulated data as the sum of squared errors. In this case,

the computation in the ABC framework is comparable to the

maximum-likelihood estimation that errors are assumed to follow

Gaussian distribution. This is because minimizing the distance (the

smallest e wherever possible) is equivalent to maximizing the

Gaussian likelihood function, as pointed out by Toni et al [15].

However in the ABC framework, we can compute, not the

maximum-likelihood estimate as a point, but the posterior

distribution as a distribution. This allows us to examine the

interactions among parameters [21] and to run the simulations

with the posterior parameter ensemble. This seems to be an

advantage of ABC. In addition, we can change the annealing

schedules in population annealing. This allows us to control the

rigor of reproduction of the observed data or experimental data

flexibly. Although we need to check the influence of the annealing

schedules on the simulated data, flexibility of annealing schedule is

one of the advantages of population annealing.

In model selection, ABC rejection sampler showed larger

standard deviations than those computed by population annealing

(Table 1, 2). In addition, ABC rejection sampler could not

compute the Bayes factors in some cases (Table 2). As is known,

the acceptance rate of ABC rejection sampler often gets lower in

the case that the prior distribution is very different from the

posterior distribution [15]. This was reconfirmed in this study,

because larger standard deviations were obtained when e was

smaller (Table 1), which strongly restricts the distributions of

parameters. On the other hand, population annealing can avoid

the problem and provide the stable computational result of the

Bayes factor. This is because the intermediate distributions

gradually changes from the prior distribution to the posterior

distribution in population annealing.

In this study, with use of the indicator function, we could

estimate the marginal likelihood in the ABC framework by

population annealing. However, this is valid when the number of

non-zero weight particles is proportional to the marginal

likelihood. Thus, when the premise is not satisfied, this method

cannot be applied. For example, this is the case that the likelihood

function is assumed as Gaussian distribution, not in the ABC

framework. However, as the solution of this problem, thermody-

namic integration by various kinds of Monte Carlo methods have

already been developed and used to compute the Bayes factor

[13,17,38]. Thus, those methods and population annealing can

support each other to compute the Bayes factor.

For model selection, we needed to compute the marginal

likelihoods of the competing models one-by-one. However, SMC

can perform model selection among a number of competing

models at one time [15,18]. One solution to overcome this weak

point in population annealing is to use reversible jump MCMC

[46] which sampler can jump among parameter subspaces of

different dimensions. By jumping among a number of competing

models with different parameter dimensions, we can conduct

Bayesian model selection by population annealing at one time.

This will be a future expansion of population annealing.

Although population annealing still has a room for improve-

ment, population annealing will help us to conduct Bayesian

model selection, parameter inference and subsequent simulations

with the posterior parameter ensemble for better understanding

and prediction of various biological phenomena in system level as

shown in this study.

Supporting Information

Figure S1 Reproduction and prediction of the large
scale observed data. (A) Simulations with the posterior

parameter ensemble of the coherent FFL model in response to

the step stimulation of X. (B) Simulations with the posterior

parameter ensemble of the incoherent FFL model in response to

the step stimulation of X. (C) Simulations with the posterior

parameter ensemble of the coherent FFL model in response to the

pulse stimulation of X. (D) Simulations with the posterior

parameter ensemble of the incoherent FFL model in response to

the pulse stimulation of X. Blue-colored area is the probability

density consists of the simulated trajectories. Red points are the

observed data.

(PDF)

Table S1 Observed data in response to the step
stimulation of X.

(PDF)

Table S2 Observed data in response to the pulse
stimulation of X.

(PDF)

Text S1 Supporting algorithms.

(PDF)

Table 2. Bayes factor BABC
WM computed with different annealing schedules in population annealing and different last epsilons in

ABC rejection sampler.

annealing schedule/last e BABC
WM (PA) BABC

WM (ARS)

AS1/0.05 1.56760.496 2.60061.750

AS2/0.02 2.65060.959 -

AS3/0.01 1.89560.933 -

Abbreviations are as follows: PA: population annealing, RS: ABC rejection sampler. AS1: annealing schedule 1 = (‘, 1.5, 1.0, 0.75, 0.5, 0.25, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05),
AS2: annealing schedule 2 = (‘, 1.5, 1.0, 0.75, 0.5, 0.25, 0.1, 0.09, 0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02), AS3: annealing schedule 3 = (‘, 1.5, 1.0, 0.75, 0.5, 0.25, 0.1, 0.09,
0.08, 0.07, 0.06, 0.05, 0.04, 0.03, 0.02, 0.01).
doi:10.1371/journal.pone.0104057.t002
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Text S2 Population annealing in the conventional
framework.
(PDF)

Text S3 Test with large data.
(PDF)
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