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Abstract

Although scatter correction improves SPECT image contrast and thus image quality, the

effects of quantitation accuracy under various conditions remain unclear. The present study

aimed to empirically define the conditions for the optimal scatter correction of quantitative

bone SPECT/CT images. Scatter correction was performed by applying dual and triple

energy windows (DEW and TEW) with different sub-energy window widths, and effective

scatter source estimation (ESSE) to CT-based scatter correction. Scattered radiation was

corrected on images acquired using a triple line source (TLSP) phantom and an uniform cyl-

inder phantom. The TLSP consisted of a line source containing 74.0 MBq of 99mTc in the

middle, and a background component containing air, water or a K2HPO4 solution with a den-

sity equivalent to that of bone. The sum of all pixels in air, water and the K2HPO4 solution

was measured on SPECT images. Scatter fraction (SF) and normalized mean square error

(NMSE) based on counts from the air background as a reference were then calculated to

assess quantitative errors due to scatter correction. The uniform cylinder phantom con-

tained the same K2HPO4 solution and 222.0 MBq of 99mTc. The coefficient of variation (CV)

was calculated from the count profile of this phantom to assess the uniformity of SPECT

images across scatter correction under various conditions. Both SF and NMSE in SPECT

images of phantoms containing water in the background were lower at a TEW sub-window

of 3% (TEW3%), than in other scatter corrections, whereas those in K2HPO4 were lower at

a DEW sub-window of 20% (DEW20%). Larger DEW and smaller TEW sub-energy win-

dows allowed more effective correction. The CV of the uniform cylinder phantom, DEW20%,

was inferior to all other tested scatter corrections. The quantitative accuracy of bone SPECT

images substantially differed according to the method of scatter correction. The optimal

scatter correction for quantitative bone SPECT was DEW20% (k = 1), but at the cost of

slightly decreased image uniformity.
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Introduction

Bone scintigraphy using 99mTc-labeled phosphate compounds is the most prevalent means of

detecting bone metastases of prostate and breast cancer [1]. Planar whole-body bone scintigra-

phy has high sensitivity, although the specificity is limited to characterizing bone metastases.

Adding single photon emission computed tomography (SPECT) to planar acquisition has

improved diagnostic confidence [2], and when combined with computed tomography (CT),

bone SPECT/CT provides better specificity with more precise localization, and better contrast

between hot and cold lesions [3].

Skeletal 99mTc uptake can now be quantified in absolute units (amount of radioactivity per

unit volume; kBq/mL), thanks to recent advances in SPECT/CT technology [4]. The use of 3D

iterative reconstruction has increased accuracy to within ± 5% of the true radioactivity concen-

tration [5–7]. However, corrections for photon attenuation and scattering, resolution recovery,

instrumental dead time, radioactive decay and cross-calibration are usually required to gener-

ate precise quantitative SPECT images [8]. Quantitative bone SPECT data provide more objec-

tive information that facilitates the discrimination of bone metastases [9], degenerative joint

disease [10], medication-related osteonecrosis of the jaw [11] and rheumatic disease [12].

Correction for attenuation and scattered photons has the greatest impact on SPECT image

quantitation [7, 13, 14]. Integrated SPECT/CT scanner can correct non-uniform attenuation

using CT images. CT acquisition parameters have negligible effect in the accurate attenuation

correction of the SPECT images [15]. The CT-based attenuation correction improves the

quantitative accuracy of SPECT images [16]. In contrast, scatter correction for quantitative

SPECT/CT has not been established. Identifying and subtracting the true number of photons

that undergo scatter and lose energy before entering the detector remains a major obstacle to

achieving accurate SPECT image quantitation [7, 17].

Scattered counts acquired within photopeak window varies between ~ 25% and 40% in
99mTc imaging, which leads to deteriorated image contrast and poor SPECT image quantita-

tion [18]. The most popular methods of correcting scatter in SPECT images are usually based

on energy window-based scatter correction (EWSC), the simplest of which use dual (DEW) or

triple (TEW) energy windows [19, 20]. Empirical and simulated studies using 99mTc have

found that DEW and TEW improve contrast rather than quantitative accuracy in SPECT

images [21–23]. Previous studies reported that contrast and image resolution were consider-

ably improved after DEW and TEW so physicians could look at defects better in 99mTc cardiac

perfusion SPECT images [24, 25]. However, differences in methods of scatter correction and

among conditions such as the width of sub-energy windows can lead to over- or under-correc-

tion that increases image noise and results in poor quantitation [26]. The appropriate determi-

nation of sub-energy window width on energy spectra should be optimal to improve bone

SPECT image quality and quantitative accuracy [27]. Moreover, effective scatter source estima-

tion (ESSE) is combined with measured transmission data for commercial scatter correction

[28]. This is because an effective scatter source is estimated for each projection view based on

object-independent scatter kernels obtained using Monte Carlo simulations [29].

Although all scatter correction methods should improve contrast, and thus the quality of

SPECT images, the effect of quantitation accuracy under various conditions remains unclear.

Phantoms are useful and essential to define the characteristics of the quantitative accuracy of

scatter correction that cannot be determined in clinical studies because they can be con-

structed with known materials and desirable activity concentrations. The present study aimed

to empirically define the optimal conditions for correcting scatter on quantitative bone

SPECT/CT images by measuring the quantitative accuracy of correction methods under vari-

ous conditions using phantoms.
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Materials and methods

Data acquisition and image reconstruction

All imaging data were acquired using a Brightview XCT SPECT/CT system (Philips Health-

care, Cleveland, OH, USA) with a high-resolution flat panel x-ray detector (40 × 30 cm2) with

low-dose cone-beam CT imaging for localization, and attenuation correction of images. The

detector is mounted on the same gantry as the SPECT camera, which allows the acquisition of

SPECT and cone-beam CT images. The SPECT images were acquired under a ± 10% main

energy window at 140 keV with ⅜@ crystal thickness, a low-energy high-resolution collimator

(LEHR), 128 × 128 matrix with 4.8-mm pixels, and 60 projections of 20 s/view over 360˚ in cir-

cular orbit continuous acquisition mode. The Brightview XCT SPECT/CT system allows the

simultaneous setting of 16 energy windows. With a 360˚ rotation of the gantry, a 47-cm diame-

ter transverse field of view (FOV) and a 14.4-cm axial length can be visualized along a patient

during slow rotation (60 s per rotation) as a cone-beam CT image [30]. We reconstructed the

SPECT images using the Philips Astonish (Philips Healthcare) 3D iterative method, with com-

binations of 15 subsets and 2 iterations, attenuation, scatter correction, and resolution

recovery.

Phantoms

The inner diameter and inner length of a NEMA SPECT Triple Line Source Phantom (TLSP;

Data Spectrum Corp., Durham, NC, USA) were both 20 cm and those of an uniform cylinder

phantom were 16 and 15 cm, respectively. The TLSP consisted of triple line sources with a

diameter of ~ 1 mm and a height of 18.4 cm. We removed two of the three line sources, leaving

the remaining source in the center (Fig 1). Thus, the TLSP consisted of the line source contain-

ing 74.0 MBq of 99mTc at the center of the phantom where the attenuating medium was air

(reference), water or a K2HPO4 solution with a density equivalent to that of bone. The uniform

cylinder phantom contained the same K2HPO4 and 222.0 MBq of 99mTc.

Scatter correction

We applied the following scatter correction methods and the energy window settings for

EWSC shown in Table 1 and Fig 2.

Dual-Energy Window (DEW). Data were simultaneously recorded within main energy

window and within a secondary lower Compton sub-window in DEW. The spatial distribution

of the scattered radiation acquired in the Compton window is considered a good estimate of

the distribution of scattered radiation in the main energy window [31]. We applied 5%, 10%,

15%, 20% Compton sub-windows. The correction consisted of subtracting a fraction of the

Compton data from the photopeak data as follows [19] (Eq 1):

Cprim ¼ Ctotal � k � Cs ð1Þ

where Cprim is the estimated unscattered radiation counts in the photopeak window, Ctotal is

the total counts in the photopeak window, and Cs is the total counts in the Compton window.

The scatter multiplier (k) has been determined heuristically for our SPECT acquisition system

and reconstruction algorithm. Koral et al. and Luo et al. reported that the best agreement for

experimental, compared with predicted counts in 99mTc images is k = 1.0 rather than 0.5.

Therefore, we applied k = 1.0 in the DEW [32–34].

Triple Energy Window (TEW). The TEW includes two small sub-windows around the

main energy window that are used to estimate the amount of scatter in the main energy win-

dow. Because various widths of energy sub-windows have been applied [20, 35], we
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investigated the effects of sub-windows with widths of 3%, 5%, 7%, 10%. Scatter correction

was calculated as follows (Eqs 2 and 3):

Cprim ¼ Ctotal �
1

2
klower � Clower � khigher � Chigher

� �
ð2Þ

k ¼
Wprim

Wsub
ð3Þ

Fig 1. Setup of NEMA SPECT triple line source phantom. Overview (a), and CT axial (b) and coronal (c) views of triple line source phantom.

https://doi.org/10.1371/journal.pone.0269542.g001
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where Cprim is the estimated count of unscattered radiation in the photopeak window, Ctotal is the

total count in the photopeak window, klower and khigher are the respective multiplication factors,

and Clower and Chigher are counts in the lower and higher energy sub-windows, respectively, and

Wprim and Wsub are widths (in keV) of the photopeak and energy sub-windows, respectively.

Effective Scatter Source Estimation (ESSE). The ESSE is the standard Philips method of

correcting scatter [28, 32]. Briefly, this method produces an effective scatter source obtained

by convolving the radioactivity distribution with several kernels [36]. The effective scatter

source kernel and the relative scatter attenuation coefficient kernel for convolution are derived

from Monte Carlo simulations and depend on photon energy [37]. Scatter projection data are

then estimated by forward-projecting the effective scatter source.

Data analysis

A circular region of interest (ROI) was placed at the center of the TLSP. The sum of all pixel

counts per slice in air, water and the K2HPO4 solution were measured on SPECT images gen-

erated by the TLSP. The counts per slice were acquired from the average of the counts in 10

slices. The scatter fraction (SF) and normalized mean square error (NMSE) based on counts

from the air background as the reference were calculated to assess quantitative errors due to

scatter correction as follows (Eqs 4 and 5):

SF %ð Þ ¼
Twater or bone � Tairð Þ

Twater or bone
� 100 %ð Þ ð4Þ

NMSEROI %ð Þ ¼
PP

jTair � Twater or bonej
2

PP
jTairj

2
� 100 %ð Þ ð5Þ

where Tair and Twater or bone were the average counts of the ROI in the phantoms containing air

and in that containing water or bone equivalent solution, respectively.

The coefficient of variation (CV) was evaluated at an 80% circular ROI placed at the center

of an uniform cylinder phantom. We calculated the CV from the count profile of this phantom

to assess SPECT image uniformity across all scatter corrections as follows (Eq 6):

CV %ð Þ ¼ SD=mean� 100 ð6Þ

where SD and mean are the standard deviation and means of counts, respectively, in different

scatter corrections. The CV represents the amount of statistical noise in SPECT images, which

reflects uniformity after scatter correction.

Table 1. Overview of energy window widths and scatter correction factors for energy window scatter correction.

Scatter correction Main window (%) Sub window (%) k value

DEW ±10 5 1.0

10

15

20

TEW ±10 3 3.3

5 2.0

7 1.4

10 1.0

DEW, dual-energy window; ESSE, Effective scatter source estimation; TEW, triple energy window.

https://doi.org/10.1371/journal.pone.0269542.t001
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Results

Fig 3A and 3B shows the SF and NMSE, respectively, for each scatter correction. Both SF and

NMSE in SPECT images of phantoms containing water in the background were lower at a

TEW sub-window of 3% (TEW3%) than any other scatter correction, whereas those in the

K2HPO4 solution were lower at a DEW sub-window of 20% (DEW20%). The SF and NMSE

became smaller with larger DEW and smaller TEW sub-energy windows, and ESSE overcor-

rected the scatter radiation in the K2HPO4 solution. Table 2 shows the CV of the uniform cyl-

inder phantom. The CV of ESSE was superior, whereas the CV of DEW20% was inferior to

that of any other assessed method of scatter correction. We visually confirmed the ability of

different scatter correction technologies in scatter radiation images after scatter correction

(Fig 4). Scattered radiation images were obtained by subtracting the reference image with

DEW20% (considered as the most accurate in bone equivalent solutions) from the SPECT

images with scatter corrected under different conditions. The remaining scattered radiation

was visually almost identical between DEW20% and ESSE, although the scattered radiation of

ESSE might be overcorrected.

Discussion

Scatter correction for quantitative bone SPECT images has not yet been standardized. We eval-

uated various scatter correction methods based on EWSC and ESSE using phantoms. Our

findings indicated that the accuracy of scatter correction for SPECT image quality and

Fig 2. Acquired energy windows.

https://doi.org/10.1371/journal.pone.0269542.g002
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quantitation depends on the method applied, sub-energy window width and the background

material that produces scattered radiation. We also found that the scatter correction for quan-

titative bone SPECT was optimal with a DEW20% sub-window (k = 1).

We applied a K2HPO4 solution with a density equivalent to that of bone [38, 39]. The trends

of SF and NMSE between water and the K2HPO4 solution in the background component of

the phantom considerably differed (Fig 3). The effects of photon scatter by bone and the accu-

racy of scatter correction for bone SPECT/CT images in clinical practice can be simulated and

investigated using a bone equivalent solution. Miyaji et al. [40] validated the accuracy of a new

reconstruction method for bone SPECT/CT (xSPECT Bone; Siemens Healthineers), using a

Fig 3. Scatter fraction (a) and normalized mean-square error (b) of SPECT images after scatter correction in phantoms containing water or bone equivalent solution.

DEW 5, 10, 15, 20, are dual energy window sub-windows of 5%, 10%, 15%, 20%; ESSE, effective scatter source estimation; non SC, no scatter correction; TEW 3, 5, 7, 10

are triple energy window sub-windows of 3%, 5%, 7%, 10%.

https://doi.org/10.1371/journal.pone.0269542.g003

Table 2. Coefficients of variation at center of uniform cylinder phantom.

Scatter corrections CV

None 5.27

DEW5% 3.93

DEW10% 3.79

DEW15% 4.71

DEW20% 6.97

TEW3% 4.14

TEW5% 3.95

TEW7% 3.94

TEW10% 3.74

ESSE 3.48

CV, coefficient of variation; DEW, dual energy window; ESSE, effective scatter source estimation; TEW, triple energy

window.

https://doi.org/10.1371/journal.pone.0269542.t002
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K2HPO4 solution, and Yoshii et al. [41] developed a new phantom containing a K2HPO4 solu-

tion that allows consideration of scatter and photon attenuation due to bone in 18F-NaF PET/

CT images.

Both SF and NMSE in SPECT images of phantoms containing background K2HPO4 solu-

tion were lower at DEW15% or DEW20% than with TEW scatter correction (Fig 3). An exper-

imental study of the effects of backscattered radiation from various materials and 99mTc

radionuclide showed that photons were backscattered in energy regions below ~ 120 keV and

did not affect the photopeak [22]. We considered that DEW method, which contained enough

multi-forward and backscattered radiation due to bone in the sub-energy window, would be

an appropriate choice for scatter correction. Several studies using Monte Carlo simulation [27,

42, 43] and clinical data [7, 44] have found that DEW method with an optimized sub-energy

window width and k value offered the most appropriate scatter correction of 99mTc SPECT

images in terms of improved contrast, higher SNR and good quantitation.

The SF and NMSE decreased with wider DEW sub-energy windows. However, CV was

higher in DEW sub-window 20% (Table 2). A wide sub-energy window can measure largely

radiations with large deflection angle and higher order scatter. The correction can improve

image contrast and quantitation by removing too many photons far from the actual source

Fig 4. Images of scattered radiation after scatter correction. Increased red intensity indicates more residual scattered radiation. DEW, dual energy window; ESSE,

effective scatter source estimation; SC, scatter correction; TEW, triple energy window.

https://doi.org/10.1371/journal.pone.0269542.g004
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location, but not enough at the source location. Thus, image uniformity in SPECT images were

considered to be slightly degraded [18]. Moreover, DEW and TEW assume that the sub-energy

window of scattered radiation are minimally contaminated by unscattered radiations, and the

presence of unscattered radiations in the sub-energy window leads to an overestimate of the scat-

ter. Subtraction of this estimate thus reduces scatter radiation in the photopeak, but also reduces

the primary signal and thereby increases the noise (CV) of the scatter corrected data [25].

Although the SPECT image corrected using ESSE appeared essentially identical to that of

DEW20% sub-window, the SF of ESSE was overestimated in SPECT images acquired from

phantoms containing water and background K2HPO4 solution. This might be due to errors

specific to our phantom. The ESSE generates good results in a wide range of application [31,

32, 45, 46] and improves image contrast as well as the quantitative accuracy of radioactivity

estimation. However, our findings were inconsistent with these results. The large attenuation

between the source and the point of Compton interaction in the large phantom used herein

might have resulted in slight errors in the calculation of an effective scatter source for ESSE.

Moreover, the CT value of the background might be higher than actual bone due to the high

concentration of K2HPO4 in the solution.

The present study has several limitations. We analyzed data generated by a phantom simu-

lating patient-specific bone. Further studies should investigate bone 99mTc SPECT images

acquired from actual patients. We validated only scatter correction in SPECT images for quan-

titative accuracy. Most corrections such as photon attenuation and scattering, as well as resolu-

tion recovery influence quantitative SPECT images [7]. The combination effects of various

correction methods in quantitative SPECT images requires further investigation.

Conclusions

The quantitative accuracy of bone SPECT images considerably differed according to the

method of scatter correction. The optimal scatter correction for quantitative bone SPECT was

DEW20% (k = 1) according to our phantom study using water and K2HPO4 solution as scatter

radiation components representing soft tissue or bone, respectively, but at the cost of slightly

decreased image uniformity. The present findings provide useful information about how to

confirm optimal scatter correction for quantitative evaluations of bone SPECT images. Comp-

ton scatter is object-dependent and spatially varying. Further studies should validate bone
99mTc SPECT images acquired from more complex geometry and realistic phantom, e.g.

NEMA IEC body phantom, and actual patients using optimal scatter correction obtained from

our phantom study.
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