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Abstract: Machine learning approaches were introduced for better or comparable predictive ability
than statistical analysis to predict postoperative outcomes. We sought to compare the performance of
machine learning approaches with that of logistic regression analysis to predict acute kidney injury
after cardiac surgery. We retrospectively reviewed 2010 patients who underwent open heart surgery
and thoracic aortic surgery. Baseline medical condition, intraoperative anesthesia, and surgery-related
data were obtained. The primary outcome was postoperative acute kidney injury (AKI) defined
according to the Kidney Disease Improving Global Outcomes criteria. The following machine
learning techniques were used: decision tree, random forest, extreme gradient boosting, support
vector machine, neural network classifier, and deep learning. The performance of these techniques
was compared with that of logistic regression analysis regarding the area under the receiver-operating
characteristic curve (AUC). During the first postoperative week, AKI occurred in 770 patients (38.3%).
The best performance regarding AUC was achieved by the gradient boosting machine to predict the
AKI of all stages (0.78, 95% confidence interval (CI) 0.75–0.80) or stage 2 or 3 AKI. The AUC of logistic
regression analysis was 0.69 (95% CI 0.66–0.72). Decision tree, random forest, and support vector
machine showed similar performance to logistic regression. In our comprehensive comparison of
machine learning approaches with logistic regression analysis, gradient boosting technique showed
the best performance with the highest AUC and lower error rate. We developed an Internet–based
risk estimator which could be used for real-time processing of patient data to estimate the risk of AKI
at the end of surgery.
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1. Introduction

Generalized linear models, such as logistic regression analysis, have been used to predict
postoperative morbidity. However, the logistic regression model requires the statistical assumption
of a linear relationship between the covariates and the risk of morbidity. Furthermore, the limitation
of overfitting and multicollinearity of regression analysis preclude the analysis of many
explanatory variables. These limitations have restricted the analysis model to select a small set
of variables that are known to be clinically relevant.

Recently, the machine learning technique has been applied in areas of medicine, including
detecting a specific clinical finding on medical imaging and has shown excellent performance with
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high sensitivity and specificity [1,2]. Additionally, there were reports about the use of machine learning
techniques to predict postoperative clinical outcomes including specific morbidity or in-hospital
mortality [3–5]. Machine learning techniques showed better performance and low error rates to predict
clinical outcomes compared to the logistic regression or Cox regression analysis. However, there was
also a study reporting that the machine learning technique did not show a better performance that
a previous risk prediction model for in-hospital mortality [5].

Postoperative acute kidney injury (AKI) after cardiovascular surgery is known to be a relevant
complication because it is associated with increased long-term mortality and development of chronic
kidney disease [6–8]. To find a risk factor and develop a risk prediction model, previous studies
reported the results of multivariable logistic regression analysis [9–17]. Although many risk factors
and risk scores were reported by multivariable logistic regression analysis, their performance in terms
of the area under the receiver operating characteristic curves (AUC) was about 0.70 to 0.83 with room
for further improvement [9,10,13,14,18]. Furthermore, previous prediction models may have included
an insufficient number of perioperative variables owing to overfitting and multi-collinearity of the
logistic regression analysis. Additionally, the potential non-linear relationship between the covariates
and the risk of outcome cannot be considered. However, machine learning techniques are relatively
free of these limitations of statistical analysis and may demonstrate better performance than that of
logistic regression analysis.

Therefore, we attempted to directly compare the performance and error rate of prediction with
machine learning techniques with that of prediction with multivariable logistic regression analysis.
We hypothesized that prediction with machine learning techniques involving many perioperative
variables may demonstrate better performance and low error rate than that of logistic
regression analysis. We evaluated as many machine learning techniques as possible that are
currently available in the statistical software package R (version 3.4.4., R Development Core Team,
Vienna, Austria) because the R software package is easily and freely accessible to investigators and
many packages for machine learning approaches are currently available.

2. Materials and Methods

2.1. Study Design

This retrospective observational study was approved by the institutional review board of Seoul
National University Hospital (1805-170-948). We retrospectively reviewed the electronic medical
records of 2010 consecutive patients who underwent coronary artery surgery, valve replacement,
or thoracic aortic surgery at our institution between 2008 and 2015. The need for informed consent
was waived because of the retrospective design of the study.

2.2. Anesthesia, Surgical Technique

General anesthesia was maintained using a target-controlled infusion of propofol and remifentanil,
or inhalational anesthetics during the study period. Standard monitoring devices were applied,
including pulmonary artery catheters (Swan-Ganz CCOmbo CCO/SvO2™; Edward Lifesciences LLC,
Irvine, CA, USA), in all patients.

2.3. Data Collection

On the basis of previous studies, data related to demographic or perioperative variables
known to be related to postoperative renal dysfunction were collected (Table 1) [6,9–17,19–23].
The following perioperative clinical variables were collected: patient demographics, medical history,
medication history, baseline laboratory finding, surgery type, operation time, type of anesthesia,
intraoperative fluid and colloid administration, intraoperative transfusion amount, and intraoperative
hemodynamic variables.
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Table 1. Patient characteristics and postoperative renal function in the dataset.

Variables All Training Set Test Set p-Value

Patient population, n 2010 1005 1005

Demographic data
Age (years) 64 (56–71) 64 (56–71) 64 (55–71) 0.884
Female (n) 553 (27.5) 279 (27.8) 274 (27.3) 0.803

Body-mass index (kg/m2) 23.8 (21.6–25.9) 23.9 (21.7–25.9) 23.7 (21.5–25.9) 0.563

Surgery type
Coronary artery bypass (n) 911 (45.3) 473 (47.1) 438 (43.6) 0.117
Valvular heart surgery (n) 1052 (52.3) 503 (50.0) 549 (54.6) 0.060
Thoracic aortic surgery (n) 47 (2.3) 29 (2.9) 18 (1.8) 0.104

Emergency (n) 51 (2.5) 26 (2.6) 25 (2.5) 0.887
Previous cardiac surgery (n) 149 (7.4) 75 (7.5) 74 (7.4) 0.932

Medical history
Hypertension (n) 1057 (52.6) 538 (53.5) 519 (51.6) 0.396

Diabetes mellitus (n) 588 (29.3) 302 (30.0) 286 (28.5) 0.433
Three vessel disease (n) 602 (30.0) 306 (30.4) 296 (29.5) 0.626

Previous coronary stent insertion (n) 235 (11.7) 118 (11.7) 117 (11.6) 0.945
Cerebrovascular accident (n) 228 (11.3) 101 (10.0) 127 (12.6) 0.078

COPD (n) 100 (5.0) 49 (4.9) 51 (5.1) 0.837
Pulmonary hypertension (n) 129 (6.4) 60 (6.0) 69 (6.9) 0.413
Chronic kidney disease (n) 121 (6.0) 57 (5.7) 64 (6.4) 0.512

Preoperative Medication
ACEi (n) 114 (5.7) 58 (5.8) 56 (5.6) 0.847
ARB (n) 249 (12.4) 122 (12.1) 127 (12.6) 0.735

β-blocker (n) 289 (19.4) 199 (19.8) 190 (18.9) 0.611
Diuretics (n) 297 (14.8) 133 (13.2) 164 (16.3) 0.059

Calcium channel blocker (n) 287 (14.3) 151 (15.0) 136 (13.5) 0.339
Statins (n) 506 (25.2) 255 (25.4) 251 (25.0) 0.837
Aspirin (n) 957 (47.6) 498 (49.6) 459 (45.7) 0.090

Baseline laboratory findings
Preoperative LVEF (%) 58 (52–63) 58 (53–63) 57 (52–63) 0.427

Hematocrit (%) 38 (34–42) 38 (34–42) 38 (34–42) 0.844
Serum creatinine (mg/dL) 0.94 (0.80–1.12) 0.93 (0.80–1.10) 0.94 (0.80–1.13) 0.613

Serum Albumin (g/dL) 4.1 (3.8–4.3) 4.1 (3.9–4.3) 4.1 (3.8–4.3) 0.183
Serum uric acid (mg/dL) 4.6 (3.7–5.6) 4.6 (3.7–5.7) 4.5 (3.6–5.5) 0.190
Blood glucose (mg/dL) 115 (96–146) 116 (96–146) 113 (96–147) 0.500

Surgery and anaesthesia details
Operation time (h) 6.25 (5.33–7.25) 6.25 (5.41–7.27) 6.25 (5.33–7.24) 0.654
Anesthesia time (h) 7.50 (6.25–8.50) 7.50 (6.50–8.50) 7.50 (6.50–8.42) 0.608

Total intravenous anesthesia (n) 1858 (92.4) 937 (93.2) 921 (91.6) 0.206
Inhalational anesthesia (n) 152 (7.6) 68 (6.8) 84 (8.4) 0.206

Intraoperative crystalloid infusion (L) 2150 (1150–3000) 2200 (1100–3100) 2150 (1200–2950) 0.656
Intraoperative colloid use (mL) 900 (350–1500) 1000 (350–1550) 800 (350–1500) 0.067

pRBC transfusion during surgery (units) 2 (0–3) 2 (0–3) 2 (0–3) 0.725
FFP transfusion during surgery (units) 0 (0–3) 0 (0–3) 0 (0–3) 0.589

Intraoperative mean arterial pressure (mmHg) 72 (67–78) 72 (67–78) 72 (67–78) 0.974
Intraoperative mean cardiac index (L/min) 2.3 (2.1–2.7) 2.3 (2.1–2.7) 2.3 (2.1–2.7) 0.257

Intraoperative mean SvO2 (%) 73 (69–76) 73 (69–76) 73 (68–76) 0.207
Intraoperative diuretics use (n) 204 (10.1) 91 (9.1) 113 (11.2) 0.107

Postoperative renal function
AKI according to KDIGO criteria (n) 0.596

Stage 1 591 (29.4) 282 (28.1) 309 (30.7)
Stage 2 114 (5.7) 60 (6.0) 54 (5.4)
Stage 3 65 (3.2) 33 (3.3) 32 (3.2)

Hemodialysis dependent (n) 125 (6.2) 60 (6.0) 65 (6.5) 0.644
GFR at postoperative day one

(ml/min/1.73m2) 79 (58–94) 79 (57–95) 78 (58–94) 0.864

Data are presented as median (interquartile range) or number (%). COPD = chronic obstructive pulmonary disease,
ACEi = angiotensin-converting-enzyme inhibitor, AKI = acute kidney injury, ARB = angiotensin II receptor blocker,
LVEF = left ventricular ejection fraction, pRBC = packed red blood cell transfusion, FFP = fresh-frozen plasma,
SvO2 = mixed venous oxygen saturation, KDIGO = kidney disease improving global outcomes, GFR = glomerular
filtration rate.
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The primary outcome variable was postoperative AKI defined according to the Kidney Disease
Improving Global Outcomes (KDIGO) criteria, which was determined according to the maximal
change in serum creatinine level during the first seven postoperative days [6,24]. The most recent
serum creatinine level measured before surgery was used as the baseline value. The detailed diagnostic
criteria are shown in Table S1. We did not use the urine output criteria because previous studies
suggested that different cutoffs of oliguria may be required for AKI after surgery [25,26]. We also
analyzed the stage 2 or 3 AKI as secondary outcomes because stage 1 AKI may only be transient and
functional and stage 2 or 3 AKI is more strongly associated with patient mortality [27]. The prediction
of severe stages of AKI would be practically more important.

2.4. Statistical Analysis

R software version 3.4.4. (R Development Core Team, Vienna, Austria) was used for
our analysis. The following R packages for machine learning approaches were used: Tree, rpart,
ROSE (Random Over-Sampling Examples), randomForest, DMwR (Data Mining with R), XGBoost
(eXtreme Gradient Boosting), e1071, UBL (utility-based learning), Kernlab, nnet, neuralnet, and h2o.
Tree, rpart, and ROSE packages with CART (Classification And Regression Tree) analysis were used
for decision tree analysis; randomForest and DMwR were used for random forest; XGboost was
used for extreme gradient boosting; e1071, UBL, and kernlab were used for support vector machine;
nnet and neuralnet were used for neural network regression; and h2o was used for deep belief
networks (Text S1). Seventy-two explanatory variables including variables in Table 1 were used
to machine learning. Our sample was randomly divided into a training and test set with a ratio
of 1:1. The coefficients of machine learning techniques were trained with the training set and tested
with the test set. Our primary analysis attempted to compare the predictive accuracy of machine
learning approaches with traditional analytic techniques for classification, and previous risk scores for
AKI after cardiac surgery [9–16]. To evaluate and compare the predictive accuracy of prediction by
machine learning techniques and logistic regression models, we calculated the areas under the receiver
operating characteristics curve (AUCs) [28,29] and compared AUCs of all classifiers and models using
De Long’s method [30]. We also compared the error rate, which was defined as the sum of the number
of cases with false positive and false negative divided by the size of the test set. The error rates of the
logistic regression model and other previous risk scores were calculated by using a cutoff where the
sum of sensitivity and specificity was maximal.

For decision tree analysis, the number of terminal nodes was determined considering the scree
plot showing the relationship between the tree size and coefficient of variance. We considered several
decision trees with some terminal nodes that were associated with a small coefficient of variance.
The final decision tree model that is clinically acceptable was chosen. The decision tree was pruned
based on cross-validated error results using the complexity parameter associated with the minimal error.
The ROSE package generates a synthetic balanced dataset with both over- and under-sampling and
allows strengthening of the subsequent estimation of any binary outcomes [31].

The randomForest package provided a variable importance plot which shows the relative
importance of the explanatory variables according to the mean decrease in accuracy or Gini. DMwR
package is a technique to improve predictive ability by increasing the number of positive cases, which
is called SMOTE (Synthetic Minority Over-sampling Technique). The XGBoost provides extreme
and efficient gradient boosting [32–34]. The e1071 package was used for the support vector machine.
The UBL package provides an over-sampling technique of SMOTE, which was also used to handle the
class imbalance in the training set for the support vector machine [35]. The parameters of the support
vector machine for classification was tuned based on balance data after SMOTE. The best parameters
were determined to be a gamma of 0.1 at a cost of 10. The kernlab package provided the least square
support vector machine. The neuralnet package provided the neural network classification and the
number of hidden layers was defined as 6 with minimal error. The h2o deep learning package was
used for deep learning.
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Multivariable logistic regression analysis, including the variables in Table 1, was performed
to identify independent predictors used for the development of a multivariable prediction model.
To avoid multicollinearity, variables that were closely correlated with each other were excluded before
being entered into the multivariable analysis. Backward stepwise variable selection was conducted
using cutoff of p < 0.10. Previous risk scores of Palomba, Wijeysundera, Mehta, Thakar, Brown, Aronson,
Fortescue, and Rhamanian et al. [9–16] were also applied to our study data and their performance
was also compared with logistic models of ours, as well as other machine learning techniques.
As a sensitivity analysis, logistic regression analysis without stepwise variable selection was performed
to evaluate the performance.

Missing data were noted in <8% of records. We imputed the missing values according to
the incidence of the missing values for each predictor. If the incidence of the missing was <2%,
the missing values were substituted by the mean of continuous variables and by the mode for the
incidence variable. The missing values of variables with a missing ratio of >2% and <8% were replaced
using multiple imputations. Multiple imputations were performed separately in the training and
test dataset. Multiple imputed training and test datasets were combined for a single run of the machine
learning classifiers or logistic regression analysis.

We developed a risk estimator based on our gradient boosting model [36]. This estimator
calculates the risk of developing AKI after cardiac surgery and classifies the risk into three classes of
low, moderate, and high risk of AKI.

3. Results

A total of 2010 cases including 911 (45.3%) coronary artery bypass and 1052 (52.3%) valve
replacement surgery cases were included in our analysis. During the first seven postoperative days,
AKI, as determined according to the KDIGO criteria, was observed in 770 patients (38.3%) and stage 2
or 3 AKI developed in 179 patients (8.9%). The incidence of AKI was 37.3% (375/1005) for the training
set and 39.3% (395/1005) for the test set. The incidences of stage 2 or 3 AKI were 9.3% (93/1005)
and 8.6% (86/1005) for training and test set, respectively. Patient demographics and surgery-related
variables in both training and test set are compared in Table 1.

The error rate and AUCs of all machine techniques, logistic regression model, and risk scores to
predict AKI of all stages in the test data set were compared in Table 2 and Figure 1. Extreme gradient
boosting classification showed the lowest test error rate (26.0%) and the largest AUC (0.78, 95%
confidence interval (CI) 0.75–0.80), which was significantly greater than AUCs of other machine
learning techniques or risk scores compared (p < 0.001). The deep belief network classifier showed the
highest test error rate (47.2%) and smallest test AUC (0.55) among all machine learning techniques
compared. The error rate and AUCs to predict AKI of stage 2 or 3 in the test set were compared
in Table S2. Gradient boosting classification showed lowest test error rate (8.5%) and the largest
AUC (0.74). The results of multivariable logistic regression analysis with and without stepwise variable
selection was shown in Table 3 and Table S3. The AUC of the multivariable logistic prediction model
with stepwise variable selection was 0.69 (95% CI 0.66 to 0.72) and the model without variable selection
showed similar AUC (Table 2).
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Table 2. Comparison of area under receiver-operating characteristic curve among the different models.

Model Software or
R Packages

Error Rate of
Test Data Set

AUC in the
Test Set

Machine learning techniques
Decision tree, CART tree, rpart 28.9% 0.71 (0.67–0.74)
ROSE decision tree ROSE 30.6% 0.66 (0.65–0.72)

Random forest model randomForest 30.4% 0.68 (0.64–0.71)
Random forest SMOTE model DMwR 33.5% 0.68 (0.65–0.71)

Gradient boosting classification XGBoost 26.0% 0.78 (0.75–0.80) *
Support vector machine, classifier e1071 31.4% 0.67 (0.63–0.70)

Support vector machine, SMOTE model UBL 33.3% 0.68 (0.65–0.71)
Support vector machine, least square Kernlab 30.2% 0.69 (0.66–0.72)

Neural network classifier nnet 38.4% 0.64 (0.61–0.68)
Neural network classifier neuralnet 43.9% 0.57 (0.53–0.61)

Deep belief network h2o 47.2% 0.55 (0.51–0.59)

Risk scores from logistic regression analysis
Logistic regression model, stepwise

variable selection R 33.6% 0.69 (0.66–0.72)

Logistic regression model, without
variable selection R 32.8% 0.70 (0.68–0.73)

AKICS score R 43.4% 0.57 (0.53–0.60)
Wijeysundera and colleagues R 45.2% 0.55 (0.51–0.59)

Metha and colleagues R 45.8% 0.55 (0.52–0.59)
Thakar and colleagues R 45.3% 0.56 (0.53–0.60)
Brown and colleagues R 43.1% 0.58 (0.54–0.61)

Aronson and colleagues R 43.3% 0.58 (0.51–0.62)
Fortescue and colleagues R 44.2% 0.56 (0.52–0.60)

Rhamanian and colleagues R 47.0% 0.55 (0.52–0.58)

Error rate was defined as sum of the number of cases with false positive and false negative divided by all
test set. * Significantly greater than AUC of all the other techniques, AUC = area under the receiver operating
characteristic curve, CART = Classification And Regression Tree, ROSE = Random Over-Sampling Examples,
SMOTE = Synthetic Minority Over-sampling Technique, DMwR = Data Mining with R, XGBoost = eXtreme
Gradient Boosting, UBL = utility-based learning, AKICS = acute kidney injury following cardiac surgery.

Figure 1. Comparison of AUC among the different machine learning models and logistic regression model.
AKICS = acute kidney injury after cardiac surgery.
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Table 3. Development of multivariable logistic regression model to predict acute kidney injury using
stepwise variable selection.

Variable Beta-Coefficient Odds Ratio 95% CI p-Value

Age per 10 year 0.128 1.14 1.04–1.61 0.004
History of hypertension 0.320 1.38 1.12–1.69 0.002

Baseline chronic kidney disease 0.907 2.48 1.62–3.78 <0.001
Preoperative E/e´ > 15 0.454 1.58 1.27–1.96 <0.001

Preoperative hematocrit, % −0.062 0.94 0.92–0.96 <0.001
Surgery time, per 1 h 0.073 1.08 1.01–1.15 0.036

Intraoperative red blood cell
transfusion, unit 0.056 1.06 1.01–1.11 0.022

Intraoperative fresh frozen plasma
transfusion, unit 0.085 1.09 1.03–1.15 0.001

Intraoperative diuretics use 0.630 1.88 1.36–2.60 <0.001

Multivariable logistic regression analysis was performed using all the variables in Table 1. Stepwise backward
variable selection process was used for this analysis using cutoff of p-value of less than 0.10. Nagelkerke’s R2 was 0.32
and Hosmer-Lemeshow goodness-of-fit test showed good calibration (chi-square = 12.1, p = 0.231). CI = confidence
interval, E/e´ = ratio of early transmitral flow velocity to early diastolic velocity of the mitral annulus.

Simple decision tree model showing the classification of patients with and without AKI is shown
in Figure 2. The importance matrix plot of gradient boosting is shown in Figure 3 and the amount
of Intraoperative red blood cells transfusion and preoperative hematocrit level were ranked the first
and second. The variables of importance plot of random forest model was shown in Figure S1.
The same variables were ranked first and second in terms of both mean decreases in accuracy and Gini.
The matrix of classification of extreme gradient boosting was visualized in Figure S2. Figure S3 shows
an example of the support vector machine classification plot.

Figure 2. Simple decision tree model showing the classification of patients with (1) and without (0)
acute kidney injury (AKI). The numbers with two decimals in each cell means the probability of
developing AKI in each classification tree. The blue or green color becomes dense when it is more
likely to develop acute kidney injury or not. The % number in the boxes denotes the percentage of
patients with each discriminating variable from CART (Classification And Regression Tree) analysis.
Intraop = intraoperative, preop = preoperative, pRBC = packed red blood cells, Hct = hematocrit,
Cr = creatinine, FFP = fresh frozen plasma, E_or_e_prime = preoperative ratio of early transmitral flow
velocity to early diastolic velocity of the mitral annulus.
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Figure 3. Importance matrix plot of the gradient boosting machine. This figure shows the
importance of each covariates in the final model. ARB = angiotensin receptor blocker, BMI = body-mass
index, CABG = coronary artery bypass graft, CCB = calcium channel blocker, CKD = chronic
kidney disease, Cr = creatinine, CVA = history of cerebrovascular accident, EF = ejection fraction,
E_or_e_prime = preoperative ratio of early transmitral flow velocity to early diastolic velocity of the mitral
annulus, FFP = fresh frozen plasma, hct = hematocrit, HTN = hypertension, intraop = intraoperative, mean
SvO2 = intraoperative mean mixed venous oxygen saturation, three_VD = three vessel coronary disease,
preop = preoperative, pRBC = packed red blood cells.

4. Discussion

We compared the predictive accuracy of the prediction for AKI after cardiovascular surgery among
the machine learning techniques, traditional statistical approach, and previous risk scoring models.
We included currently available machine learning techniques, including decision tree, random forest,
support vector machines, neural networks, and deep belief networks. Logistic regression analysis was
used as the traditional approach. The results showed that extreme gradient boosting machine showed
the lowest error rate and largest AUC among all techniques and risk scores, which was consistent for
the prediction of stage 2 or 3 AKI. Extreme gradient boosting machine based prediction may result
in significant improvement in the prediction of AKI after cardiac surgery. A risk estimator based on
our gradient boosting model was developed for clinical use to determine the risk of AKI at the end
of surgery.

Extreme gradient boosting showed the best predictive ability in our analysis [32,33,37]. While the
random forest builds an ensemble of independent recursive partitioning tress of unlimited depth,
extreme gradient boosting builds a sequential series of shallow trees, where each tree corrects for
the residuals in the predictions made by all the previous tress (Figure S2). Gradient boosting uses
techniques to reduce overfitting such as shrinkage and column resampling. After each step of boosting,
the algorithm scales the newly added weights, which reduces the influence of each tree and allowing
the model to learn better. Column resampling considers only a random subset of descriptors in
building a given tree, which also fastens the training process by reducing the number of descriptors
to consider [32]. It may be determined in further multicenter larger studies whether the better
performance of boosting could be applied to data of other institutions or other surgical populations.
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Decision tree analysis showed a similar performance to that of logistic regression model in
our study. Decision trees are a hierarchical model that are comprised of decision rules based on
the optimal feature cutoff values. It recursively classifies independent variables into different small
groups based on the Gini impurity measure or entropy, while logistic regression analysis analyzes the
interaction of included variables [38–40]. The odds ratio of a specific risk factor in a logistic regression
model is applied to all study population rather than a single subgroup, while each branch of the
decision tree may have different covariates from another branch. Variable selection in the process
of decision tree is not based on probabilistic methods, which may result in overestimation of the
importance of explanatory variables or may miss other potential confounders [41]. Decision trees can
improve the predictive ability achieved by logistic regression models under certain circumstances.
With sufficiently many terminal nodes with a low coefficient of variance, the decision tree model
enables the detection of some individual cases that would have been unnoticed applying conventional
logistic regression models. However, the clinical interpretation of variable selection and their cutoffs
is often difficult, because the decision tree classification does not consider the clinical relevance.
Decision trees are susceptible to fluctuations in the training set and are, thus, prone to overfitting
and poor generalizability [4]. Additionally, decision tree models may not be practically useful if it
includes too many variables. However, for the low error rate and high AUC, more classifying variables
are needed.

The performance of random forest was also similar to that of logistic regression analysis in
our dataset. Random forest is considered to have advantages, especially in handling electronic
medical records. It is an extension to traditional decision tree classifiers [42], and attempts to mitigate
the limitations of decision tree through an ensemble-based technique using multiple decision trees.
Each tree is constructed from a random subset of the original training data and a random subset
of a total number of variables is analyzed at each node for splitting. Random forests can minimize
the problem of overfitting by taking the mode of decisions of a large number of these randomly
generated trees [43]. Other advantages of random forests to analyze electronic medical records include
running efficiently on large samples with thousands of input variables, the ability to accommodate
different data scales, and robustness to the inclusion of irrelevant variables. There was no significant
performance gain of the random forest over that of the simple decision tree in our study, which may be
because the number of input variables was insufficient to demonstrate any difference in performance.

The deep neural network model showed a good performance to predict in-hospital mortality in
a previous study, although it was not superior to previous risk score [5]. Contrary to our expectations,
the performance of neural network in our study was inferior to the performances of all other machine
learning techniques. This may be explained because our data for learning the relationship between the
covariates and risk of AKI may not be sufficient. Although the multilayer perceptron is mathematically
proven to be able to approximate any nonlinear function, it requires a large amount of learning data.
Therefore, the dataset of our study may not be large enough and the number of covariates was not
sufficient to train the multilayer perceptron [44].

The performance of previous eight risk scoring models was poor in our test dataset [9–16].
The AUCs of these risk scores were similar possibly because similar predictors were used to construct
the risk score [6], and the poor performance may be due to the small number of predictors and lack of
intraoperative variables, such as transfusion amounts or hemodynamic variables. A previous study
showed that the performance of the logistic regression model could be improved when we consider
many perioperative variables as possible [19].

Several previous studies reported that the AUCs of machine learning techniques were not
superior to previous risk scores or logistic regression models to predict postoperative mortality [5,45].
However, our study demonstrated that the AUCs of machine learning techniques could be significantly
greater than the AUC of logistic regression model to predict AKI. Previous studies compared the
predictive ability for in-hospital mortality in a population with a very low incidence (<1%) [5,45].
The difference in AUC or error rate may be small for an outcome with low incidence, and this small
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difference in performance would be difficult to be demonstrated. It seems that any difference in
error rate and AUC would be more pronounced in our study sample with a postoperative AKI of
higher incidence (38.3%). This could also be the reason why the SMOTE model of random forests or
support vector machines did not significantly increase the AUC in our test dataset. SMOTE model
increases the incidence of outcome cases and balancing the case with and without outcome variables.
However, our test set already had a nearly balanced dataset for AKI.

The importance matrix plot of the gradient boosting machine shows the similar predictors that
were known to be associated with the development of AKI after cardiac surgery [6,9–14,16,19–21,46].
However, the plot additionally gives the relative importance of each predictor, which was similar to
the variance importance plot of random forest model. This analysis may help to find a new risk factor
for postoperative morbidity or mortality.

Our study has several limitations. First, our analysis used only single-center data and included
a relatively small number of cases and covariates. The performance of machine learning techniques
might be different when they are applied to a much larger sample with a different distribution of
the covariates. The external validity of our results may be limited. Furthermore, important predictors
may be different according to different institutions. However, the relative performance of logistic
regression and machine learning techniques would be similar to our results. Each institution may need
to develop their own prediction model with the machine learning approach, by using historical data
from their electronic medical records and updating the model periodically. Real-time processing of
patient data would produce risk prediction for each patient after surgery. Second, machine learning
techniques are often difficult to interpret the results. Inferences about the explanatory variables are
more difficult than logistic regression analysis [4]. However, the gradient boosting machine and
random forest provided for some interpretability through the importance matrix plot and variable
importance plot. Third, it is not certain that our results could translate into improved clinical outcomes
for the patients. Most of our important variables reported are not clinically modifiable and accurate
risk prediction may not be followed by improved patient outcomes. However, further prospective
trials may evaluate whether adjustment of potentially modifiable predictors, such as hemodynamic
variables could decrease the risk of AKI [46–48].

5. Conclusions

In conclusion, our study demonstrated that the machine learning technique of extreme gradient
boosting showed significantly better performance than the traditional logistic regression analysis or
previous risk scores in predicting both AKI of all stages and stage 2 or 3 AKI after cardiac surgery.
Gradient boosting machine may be used for real-time processing of patient data to estimate the risk of
AKI after cardiac surgery at the end of surgery. Our Internet-based risk estimator may help to evaluate
the risk of AKI at the end of surgery. However, prospective multicenter trials are required to validate
the better prediction by gradient boosting. Further studies may apply extreme gradient boosting
machine to the other important clinical outcomes after cardiac surgeries and may prospectively validate
our results.

Supplementary Materials: The following are available online at http://www.mdpi.com/2077-0383/7/10/322/s1,
Figure S1, Variable importance plot using the random forest model. The abbreviations were the same as the legends
of Figure 3; Figure S2, Gradient boosting tree plot showing the matrix of classification. Extreme gradient boosting
builds a sequential series of shallow trees; Figure S3, Support vector machine classification plot. This figure
shows a simple two-dimensional visual illustration of support vector machine classification. Each triangle and
circle means a binomial classification of acute kidney injury or not. The open circle or triangle means a correct
classification and closed circle or triangle means an incorrect classification. This figure was drawn by Kernlab
package of R; Table S1, KDIGO (Kidney Disease Improving Global Outcomes) serum creatinine diagnostic criteria
of acute kidney injury; Table S2, Comparison of area under receiver-operating characteristic curve among the
different models for predicting stage 2 or 3 acute kidney injury; Table S3, Results of multivariable logistic regression
analysis for acute kidney injury without stepwise variable selection; Text S1, R source code to perform machine
learning techniques.
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