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A recent paper in Science by Gao et al. extended a comprehensive
comparative genomics approach to identify new antiviral systems
in prokaryotes for combating invading phages.1 These defense
systems manifest a variety of host defense mechanisms by
utilizing enzymatic activities including reverse transcriptases,
adenosine deaminases of RNA editing, and retroms (Fig. 1). Some
of these antiviral systems not only enrich our understanding the
phage-bacterial interaction but also represent a versatile, powerful
tool for biomedical research and biotechnological applications.
Because of the arms race between viruses and prokaryotes,

bacteria and archaea have evolved multiple sophisticated antiviral
defense strategies to combat phages, for example, restriction
modification (RM), abortive infection (Abi) systems, and CRISPR-
Cas systems.2 Gao et al. described computational analysis of all
bacterial and archaeal genomes, encoding over 620 million proteins
to discover new antiviral systems. The authors first used known
antiviral genes cassettes locating ‘defense islands’ as anchors to
search for neighboring uncharacterized genes (Fig. 1), because
defense islands often contain abundant antiviral genes that function
together between different types of antiviral defense systems with
overlap functions to maintain homeostasis. Similar computational
pipeline has been published in another Science paper published in
2018 by Doron et al. to discover bacterial defense systems from 160
million genes and revealing nine new antiphage systems and one
novel anti-plasmid system.3 Using this approach, Gao and
colleagues detected a total of 7472 putative defense gene families,
containing 1687 uncharacteristic function genes, proximity to
known defense systems in defense islands.1 Further studies
identified homologs without use of domain annotations showing
that candidate defense gene clusters are evolutionarily conserved
across multiple genomes across widespread microorganisms,1

indicating the existence of other unidentified defense systems.
To identify these predicted defense gene families, Gao et al.

selected 48 candidates from new defense systems to experimentally
validate antiviral activities through heterologous reconstitution (Fig.
1). To test multiple variants of candidate defense systems, a collection
of one to four homologs of each novel system were chosen to
engineer into Escherichia coli. A diversity of coliphages were used to
infect these engineered E. coli strains to investigate their antiviral
activity. To the authors’ pleasant surprise, 29 of candidate defense
systems (29/48, 60%) provided resistance against phages (Fig. 1), but
phage specificity was typically narrow and varied widely across
systems.1 Of note, whether the other 19 candidate systems contain

no antiviral immunity needs future investigation, because they were
only tested experimentally under specific laboratory conditions and
were expressed in E. coli hosts that do not normally express these
genes, or lack of appropriate phage targets: defense mechanisms are
often effective only against specific phage groups, or inadvertent
choice of unfunctional gene sets for testing. It would be interesting to
verify that these defense systems truly exert defense functions in the
environmental conditions in future.
These validated defense systems demonstrate an abundance

ranging from ~0.1 to ~10% of bacterial and archaeal phyla.1 One of
these, phage restriction by an adenosine deaminase acting on RNA
(RADAR), forms three subtypes: RADAR standalone containing only
adenosine triphosphatase (ATPase) and adenosine deaminase
(rdrAB), Csx27-associated RADAR (rdrABC), and SLATT-associated
RADAR (rdrABCD).1 Authors suggest that RADAR represents an
example of defense via adenosine-to-inosine (A-to-G) RNA editing,
in which both RADAR system and phage infection are required for
the occurrence of RNA editing.1 Broad distribution of editing sites is
noted in both phage transcriptomes and engineered E. coli, resulting
in host growth arrest.1 Therefore, RADAR is analogous to editing-
dependent Abi, in which prokaryotes commit altruistic cellular
suicide to protect larger populations from phage infection. Another
interesting system is defense-associated reverse transcriptases
(DRTs) identified by enrichment of a family of RTs: DRT type 1
(UG1), DRT type 2 (UG2), DRT type 3 (UG3 and UG8), DRT type 4
(UG15), and DRT type 5 (UG16) (Fig. 1), displaying the distinct
pattern of phage resistance.1 In DRT type 1, UG1 encodes nitrilase
domains. Nitrilases are involved in natural product biosynthesis,
including nucleotide metabolism. Authors reveal that nitrilase
domain is key for anti-phage ability, exemplifying a non-defense
domain that was apparently co-opted for a defense function. DRT
type I inhibits late viral gene expression but not early/middle genes
and may have no effect on early phage DNA injection.1 Another RTs-
mediated antiviral defense is dependent on retrons: Retron-TIR (Toll/
interleukin-1 receptor domain), Ec67 (Retron-TOPRIM,
topoisomerase-primase domain), Ec86 (Nuc_deoxy+retron) and
Ec78 (Retron+ATPase+HNH) (Fig. 1).1 Retron affects on producing
extrachromosomal satellite DNA (msDNA). Gao et al.1 find that both
synthesis and structure of msDNA are required for defense activity.
Retron-TIR systems are associated with TIR domain for sensing
pathogen and immune signal transduction, a common feature of
innate immune systems in animals, plants, belonging to Thoeris
system (thsAB).3 The motif in Retron-TIR and Thoeris system may be
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the ancestry of pathogen-associated molecular pattern (PAMP)
receptors to recognize pathogens. These data implicate that antiviral
defense systems incorporate enzymatic activities against phage
infection for recognition and destruction of foreign genetic
elements and transcripts.1

Furthermore, Gao and colleagues also investigated other
defense systems. AVAST systems (antiviral ATPases/NTPases of
the STAND superfamily) are associated with nucleoside tripho-
sphatases (NTPases) of STAND (signal transduction ATPases with
numerous associated domain) superfamily (Fig. 1).1 In eukaryotes,
ATPases and GTPases are key components of programmed cell
death systems, indicating that they may function through altruistic
suicide, similar to Abi. These findings have started to establish
long-term development connection between prokaryotic and
eukaryotic antiviral defense and programmed cell death mechan-
ism. TerY-phosphorylation triad (TerY-P) system, against T7-like
phages, consists of a von Willebrand factor A metal ion binding
protein, a serine/threonine protein phosphatase, and a serine/
threonine-protein kinase.1 Their study hints that TerY-P may
control protein phosphorylation, linking kinases to phosphatases.
Additional DSR systems possess proteins encoding a SIR2 (sirtutin)
deacetylase domain also existing in Thoeris system and prokar-
yotic Argonaute proteins.1,3 ApeA system constitutes HEPN

domains, putative ancestors of Cas13 effectors.1 qatABCD system
includes a four-gene cassette encoding qatA (ATPase), qatB, qatC
(QueC), and qatD (TatD)1 and QueC participates in small-molecule
biosynthesis. Despite similarities in domain architectures among
some of novel defense systems, there also exist few other shared
features or homologs of known functions, which may present
technical hurdles to understand these systems’ functions, and
justify further investigation to reveal in-depth mechanisms of
phage infection and host protection.
The discovery of hidden stockpile of anti-phage systems is

exciting. Gao et al. not only unveil previously uncharacterized
multiformity of prokaryotic antiviral defenses from defense
islands, but also provide a reminiscence that the virtually
unlimited dark matters hidden in the vast majority of microbial
genomes are worthy of continued exploration through the
approach of computational biology, wet-lab experiments and
other novel methods, such as systems biology approaches.
Moreover, new discoveries of prokaryotic defenses naturally
aroused some excitement about developing tool-kits for mole-
cular biology research, and gene-editing, such as RADAR or ApeA
systems for RNA editing. Amazingly, the utility of enzymatic
activities of CRISPR-Cas systems for DNA/RNA editing have been
transformative.4,5 It may be too early to foresee the potential that
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Fig. 1 Identifying antiviral defense systems in prokaryotes. Known defense genes in the ‘defense islands’ of bacterial and archaeal genomes
act as anchor to screen the neighboring conserved unknown genes, predicted on the basis of the sequences of amino acid and domain-
independent annotations, that are then identified as potential novel antiviral systems. The candidates of antiviral systems were cloned into
the engineered E. coli to investigate whether they can protect from infection by different types of phage. Gao et al. confirmed that twenty-
nine defense systems possess antiviral ability. Dot represents the defense system against phage infection: a single-stranded DNA phage
(ssDNA phage), double-stranded DNA phage (dsDNA phage), and single-stranded RNA phage (ssRNA phage)
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the novel defense systems discovered by Gao et al., will have
innovative technological breakthroughs such as those made by
Cas9’s discovery; however, this has ignited tremendous interests in
understanding prokaryotes’ marvelous defense systems.
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