
Hemolysis Is Associated with Low Reticulocyte
Production Index and Predicts Blood Transfusion in
Severe Malarial Anemia
Rolf Fendel1,2,3., Christian Brandts1,4,5., Annika Rudat1,4, Andrea Kreidenweiss1,2, Claudia Steur1, Iris
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Abstract

Background: Falciparum Malaria, an infectious disease caused by the apicomplexan parasite Plasmodium falciparum, is
among the leading causes of death and morbidity attributable to infectious diseases worldwide. In Gabon, Central Africa,
one out of four inpatients have severe malarial anemia (SMA), a life-threatening complication if left untreated. Emerging
drug resistant parasites might aggravate the situation. This case control study investigates biomarkers of enhanced
hemolysis in hospitalized children with either SMA or mild malaria (MM).

Methods and Findings: Ninety-one children were included, thereof 39 SMA patients. Strict inclusion criteria were chosen to
exclude other causes of anemia. At diagnosis, erythrophagocytosis (a direct marker for extravascular hemolysis, EVH) was
enhanced in SMA compared to MM patients (5.0 arbitrary units (AU) (interquartile range (IR): 2.2–9.6) vs. 2.1 AU (IR: 1.3–3.9),
p,0.01). Furthermore, indirect markers for EVH, (i.e. serum neopterin levels, spleen size enlargement and monocyte
pigment) were significantly increased in SMA patients. Markers for erythrocyte ageing, such as CD35 (complement receptor
1), CD55 (decay acceleration factor) and phosphatidylserine exposure (annexin-V-binding) were investigated by flow
cytometry. In SMA patients, levels of CD35 and CD55 on the red blood cell surface were decreased and erythrocyte removal
markers were increased when compared to MM or reconvalescent patients. Additionally, intravascular hemolysis (IVH) was
quantified using several indirect markers (LDH, a-HBDH, haptoglobin and hemopexin), which all showed elevated IVH in
SMA. The presence of both IVH and EVH predicted the need for blood transfusion during antimalarial treatment (odds ratio
61.5, 95% confidence interval (CI): 8.9–427). Interestingly, this subpopulation is characterized by a significantly lowered
reticulocyte production index (RPI, p,0.05).

Conclusions: Our results show the multifactorial pathophysiology of SMA, whereby EVH and IVH play a particularly
important role. We propose a model where removal of infected and non-infected erythrocytes of all ages (including
reticulocytes) by EVH and IVH is a main mechanism of SMA. Further studies are underway to investigate the mechanism and
extent of reticulocyte removal to identify possible interventions to reduce the risk of SMA development.

Citation: Fendel R, Brandts C, Rudat A, Kreidenweiss A, Steur C, et al. (2010) Hemolysis Is Associated with Low Reticulocyte Production Index and Predicts Blood
Transfusion in Severe Malarial Anemia. PLoS ONE 5(4): e10038. doi:10.1371/journal.pone.0010038

Editor: Aric Gregson, University of California Los Angeles, United States of America

Received October 6, 2009; Accepted February 25, 2010; Published April 6, 2010

Copyright: � 2010 Fendel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The study was supported by a grant (DFG MO 1071/4-1 and BR 1945/6-1) from the Deutsche Forschungsgemeinschaft (http://www.dfg.de/). The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: benjamin.mordmueller@uni-tuebingen.de

. These authors contributed equally to this work.

Introduction

Malaria due to Plasmodium falciparum is the most important

parasitic disease worldwide; approximately 270 million people get

infected and 1 to 3 million deaths occur every year, most of them

in sub-Saharan Africa [1]. Most severely affected are children up

to the age of 5 years [2]. Complications leading to death include

severe malarial anemia (SMA), cerebral malaria, hypoglycemia,

lactic acidosis and convulsions. SMA is particularly common in

regions with high malaria endemicity. The World Health

Organization defines SMA as hemoglobin (Hb) level of below

5 g/dl plus a parasite count of more than 10,000 per ml blood [3].

In Lambaréné, Gabon, a hyperendemic area, SMA is one of the

most common complications of malaria which requires adjunct

therapy [4]. An epidemiological survey undertaken at the same

time period than the presented study showed that 25% of all 1

month to 10 years old hospitalized malaria patients had severe

anemia, 95% of whom were younger than 5 years old [5]. The

recent literature shows a decline of malaria incidence both in

urban and rural regions of Gabon, which is the same in some other
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African regions [6,7,8]. This decrease of malaria incidence might

indicate the success of recent drug policies and of prevention

measures like treated bed nets. In The Gambia, the overall decline

of malaria endemicity also led to a reduced frequency of SMA [7].

Nevertheless, recent non-published surveys show that the frequen-

cy of SMA in Lambaréné stays rather stable. This might be

explained by the supraregional importance of the Albert

Schweitzer Hospital in Lambaréné. The severe cases often come

from small villages located far away from the hospital, which are

not covered by national malaria prevention programs.

Treatment of SMA consists of blood transfusion and antima-

larial treatment. In most sub-Saharan African countries, safe blood

transfusions are difficult to perform because of inadequate blood

banks, difficult access to well tested donors, and prejudices due to a

bad reputation of blood transfusions [9]. In addition, testing,

processing, and storage of blood products is generally far from a

high standard and poses a substantial risk of transfusion reactions

and transmission of infectious diseases [10]. To avoid the risk

associated with blood transfusions it was proposed to postpone

transfusion as long as SMA patients are clinically stable [2,11,12].

Other measures to reduce the need for transfusions than risk-

group identification have not been tested thus far.

A rational approach to identify alternative treatments is difficult

because the etiology of SMA is not known. Current hypotheses about

the development of SMA were reviewed recently [13,14], and the

only consensus is about the lack of detailed knowledge we have,

especially because animal models are only partly informative and few

clinical studies investigated SMA sensu stricto (Hb concentration ,5 g/

dl or hematocrit ,15% and no other cause of anemia).

Generally, disturbance of the equilibrium between production

and clearance of red blood cells (RBCs) leads to anemia. Although

decreased erythropoiesis may have an additive role [15,16],

cumulated data suggests that enhanced clearance of RBCs is

critical for the development of SMA. Direct parasite-mediated

destruction of RBCs does not explain the amount of anemia in

SMA and mathematical modeling predicts that lysis of non-

parasitized erythrocytes has an important role in the development

and the degree of anemia [17,18], which confirms the clinical

notion that SMA in African children is not associated with high

parasitemias. Old or altered RBCs are removed by phagocytosis

(extravascular hemolysis, EVH) or lysis (intravascular hemolysis,

IVH), although in most hemolytic disease states both mechanisms

act at the same time. EVH is usually deduced from indirect and

imprecise markers such as spleen size, whereas IVH can be

estimated from serum concentrations of biomarkers such as

haptoglobin, hemopexin, lactate dehydrogenase (LDH), or

alpha-hydroxybutyrate dehydrogenase (a-HBDH). We recently

developed a method to measure erythrophagocytic activity of

monocytes from malaria patients more accurately [19] and used it

in the present study to characterize RBC removal during SMA.

Several mechanisms have been proposed to contribute to RBC

destruction during malaria, including increased release of oxygen

radicals [20], presumably leading to stiffening of the RBC

membrane [21,22], and exhaustion of complement receptor 1

(CD35) and decay accelerating factor (CD55) on RBC mem-

branes, which leads to sensitization for phagocytosis [23,24]. All

these concepts postulate an ‘‘accelerated aging’’ phenotype of

RBCs during malaria that leads to clearance of RBCs by

unspecific mechanisms. If, in contrast, predominantly reticulocytes

and young RBCs would be removed from the circulation (such as

in thalassemias) by a malaria-induced factor, its contribution to the

development of SMA would be disproportionally high and might

Figure 1. Study-flow chart.
doi:10.1371/journal.pone.0010038.g001
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explain the strong effect of antimalarial treatment alone on

recovery from SMA [25].

In the present report we show that SMA patients have increased

levels of erythrophagocytosis and IVH. The odds for a blood

transfusion in addition to antimalarial treatment are high when

erythrophygocytosis plus IVH are elevated. Interestingly, these

patients are characterized by significantly low levels of reticulo-

cytes. This indicates that the age-structure of the removed RBC

population is crucial for the development of clinically unstable

SMA. Understanding the etiology of this might lead to an

alternative management of this complication.

Materials and Methods

Ethics statement
This study was conducted according to the principles expressed

in the Declaration of Helsinki and approved by the ethics

committees of the International Foundation for the Albert

Schweitzer Hospital in Lambaréné as well as the ethics committees

of the Universities of Münster and Tübingen, Germany. Written

informed consent was obtained from parents or guardians of all 91

study patients. All patients were children of pre-school age and, in

addition to written informed consent by the parent, assent was

sought where possible.

Patients and study design
The study took place at the Medical Research Unit (MRU) of

the Albert Schweitzer Hospital in Lambaréné, Gabon between

December 2003 and July 2005. In total 91 children, aged between

one and six years, were admitted to the study. Admission criteria

were positive thick blood smears of above 1,000 P. falciparum

parasites per ml, mean corpuscular volume above 65 fl and no

sickle cell disease. Patients were recruited and stratified into three

Hb-concentration strata with matched age between strata

(Figure 1). For statistical analysis, patients were allocated to a

severe malarial anemia group (SMA, RBC ,2.8 Mio/ml), and a

moderate malarial anemia group (RBC .2.8 Mio/ml). All patients

were hospitalized and treated with quinine and clindamycin, the

current standard for the treatment of SMA at the Albert

Schweitzer Hospital [26]. Patients received blood transfusion or

any other supportive treatment upon clinical judgment of the

clinician. Patients were actively followed up for two months

(treatment period day 0 to day 4, control visits on day 14, day 28

and day 56) to allow hematological values to return to baseline. If

they had a parasitemic episode during follow-up, patients were

followed for another 2 months after their last infection. From each

patient, 5 ml of heparinized blood and 1 ml of EDTA blood was

obtained directly before treatment antimalarial treatment and

blood transfusion. Total leukocyte counts and RBC values were

measured using a Cell Dyn 3000 (Abbott). Differential blood

counts and counting of hemozoin - positive phagocytes were done

on thin blood smears [27,28]. Reticulocyte counting was done on

brilliant cresyl blue stained samples, and reticulocyte production

index was calculated according to standard procedures [29]. The

presence of hemoglobin F, S or C was assessed by hemoglobin

electrophoresis and Kato-Katz smears were done to test for

intestinal parasites including hookworm infections. Spleen volume

was measured by ultrasonography on admission and after

reconvalescence. The relative spleen volume was calculated as

the quotient of spleen volume on admission and after reconvales-

cence. In addition, palpable subcoastal spleen enlargement was

estimated on admission. The simplified Multiple Organ Dysfunc-

tion Score (sMODS; Table S1, Table S2, Table S3 and Table S4)

was estimated as previously described [30]. Care - givers of the

patients were asked for the duration of illness of the children and

detailed clinical history was taken.

Phagocytosis assay
Blood was processed within one hour after sampling and

phagocytosis assay were done as previously described [19]. Briefly,

monocytes were isolated by CD14+ positive selection using magnetic

cell sorting (Miltenyi). RBCs from the same patient and, for the

positive and negative control, from one malaria naı̈ve 0+ voluntary

blood donor were centrifuged, washed and stained with 5 nM

carboxy-fluorescein-diacetate-succinimidyl ester (CFDA). One batch

of control RBCs was opsonized with human anti-D IgG (1:20) to

serve as a positive control, the other was left untreated to serve as

negative control. The patients’ RBCs were not further treated. For

phagocytosis assay, 26105 monocytes were incubated for 4 hours at

37uC/5% CO2 with 100 fold numeric excess of the respective RBC

Table 1. Clinical data of anemic and non-anemic patients on admission.

Total study population (n = 91) Group MM (n = 52) Group SMA (n = 39) p-value

Hb (g/dl) 8.0 (4.9–10.0) 10 (8.7–10.5) 4.9 (4.4–5.3) -a

Hct (%) 23.9 (14.9–29.0) 28.1 (25.9–30.6) 14.3 (12.3–16.0) -a

RBCs (106 cells/ml) 3.27 (2.19–3.90) 3.87 (3.50–4.30) 1.93 (1.60–2.30) -a

Parasitemia (per ml) 20,200 (6,960–76,000) 23,800 (8,880–69,000) 12,000 (5,880–101,600) 0.81b

Reticulocytes (%) 2.4 (1.4–5.2) 1.8 (1.3–2.5) 5.3 (2.3–10.6) ,0.0001b

MCV (fl) 72.6 (68.6–76.8) 71.8 (67.9–76.0) 74.0 (69.3–78.1) 0.15b

Age (months) 32 (22–50) 36 (23–53) 27 (20–43) 0.13b

Weight (kg) 13.0 (10.8–15.0) 13.5 (11.0–15.0) 11.4 (9.8–14.0) 0.04b

Height (cm) 89 (81–100) 90 (83–104) 87 (76–96) 0.12b

# Sex (male/female) 45/46 26/26 19/20 1c

# Sickle cell trait 8 6 2 0.46c

# Blood transfusion 17 0 17 ,0.0001c

MM: mild malaria, SMA: severe malarial anemia, Hb: hemoglobin, Hct: hematocrit, RBCs: red blood cells, MCV: mean corpuscular volume, results are in median
(interquartile ranges) and count data (#).
aparameter used for group definition - no p-value calculated, bKruskal-Wallis rank sum test, cx2-test.
doi:10.1371/journal.pone.0010038.t001
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preparation in RPMI plus 10% fetal calf serum. After incubation,

non-phagocytozed RBCs were lysed and monocytes containing

ingested RBCs were analyzed by flow cytometry. Data was expressed

as relative phagocytosis to negative control. Hence, data is presented

as relative phagocytosis activity for positive control and the sample

from the same patient (autologous RBCs).

Surface staining of RBCs
Surface markers of RBCs were measured by flow cytometry. All

antibodies were obtained from BD Biosciences if not stated otherwise.

Fifty ml blood were washed once in phosphate buffered saline

complemented with 2 mM EDTA and 0.5% BSA (PBS-EB) and 5 ml

of RBC pellet was stained subsequently with one of the following

antibodies: FITC anti-human C3c (DakoCytomation), FITC anti-

human CD35, FITC anti human CD55, FITC anti human CD59,

FITC anti-human IgG (Biozol), or appropriate isotype controls.

Samples were incubated for 30 minutes at room temperature in the

dark, washed thrice in PBS and measured by flow cytometry.

Another 5 ml of blood was washed once in annexin V binding buffer

(10 mM HEPES, pH 7.4, 140 mM NaCl, 5 mM CaCl2), stained

with annexin V and measured immediately by cytometry.

Serum parameters
Neopterin (MP Biomedicals) and hemopexin (GenWay Biotech)

quantification was performed by ELISA using commercially available

kits according to the respective manufacturers’ specifications. LDH,

a-HBDH and haptoglobin were measured by the central laboratory

of the University Hospital Münster according to standard procedures.

Flow cytometry
Flow cytometry analysis of RBC surface markers and phago-

cytosis was done on a Partec CyFlow SL Cytometer equipped with

a 488 nm laser and detection at 515–550 nm. Data was acquired

and analyzed with FlowMax FCM v2.4f (Partec, Germany). Mean

fluorescence intensities were quantified using Weasel v2.6

(Cytometry Lab, The Walter and Eliza Hall Institute of Medical

Research, Australia). Monocytes and RBCs were gated on FSC –

SSC plots, the rate of fluorescent positive cells and fluorescence

intensity was acquired on FL-1-histograms.

Statistical analysis
The study was designed as a case-control study to identify

variables that discriminate malaria patients with and without

SMA. Variables associated with RBC production, RBC removal,

clinical and parasitological presentation were measured and

recorded. All patients received the same antimalarial treatment.

Recruitment in three age-matched Hb-strata resulted in two

populations with different degree of anemia. Post-hoc grouping of

severe and non-severe malaria was done by least square fit.

Severely anemic patients that required blood transfusions were

analyzed as a subgroup. All statistical analysis was done using JMP

v5.0.1 (SAS Institute) and R v2.7 [31]. Level of significance was set

at two-sided p = 0.05 for all tests. Kruskal Wallis rank sum test was

used to compare continuous data among groups. Adjustment for

confounders (weight, age) has been carried out by logistic

regression analysis where indicated. Values indicated are medians

and interquartile ranges, if not stated otherwise. Counting data

was analyzed by x2 or Fisher’s exact test.

Results

Patients
Throughout the study 495 malaria patients were referred to the

MRU and 91 patients were admitted to this study. Main causes for

exclusion were non-matching age, low MCV (an indicator of iron

deficiency or thalassemia), and logistics. At inclusion, eligible

patients were stratified according to age and hemoglobin

concentration (Figure 1). Analysis of the distribution of RBC

Figure 2. Phagocytosis rate in severe malarial anemia (SMA)
and mild malaria (MM) patients: The plot shows individual
values of relative phagocytosis of autologous samples (pa-
tients monocytes phagocytosing autologous RBCs) and posi-
tive control samples (patients monocytes phagocytosing anti-
D IgG opsonized control RBCs). Thick lines represent median
values. Phagocytosis rates were investigated on admission and after
reconvalescence on day 56. In A) phagocytosis rates are shown for SMA
patients. Phagocytosis rates of autologous samples at day 0 are as high
as positive control. On day 56, autologous sample is significantly lower
than positive control (p,0.05, # SMA - non-transfused, N SMA -
transfused). In B), phagocytosis rates of MM patients are illustrated.
Phagocytosis rates of autologous samples are significantly lower on day
0 as well as on day 56 (p,0.05, D MM).
doi:10.1371/journal.pone.0010038.g002
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numbers in the study population showed a bimodal pattern.

Analysis of the study population was done on a grouped dataset

using a least square fit of RBC number on two normal

distributions to discriminate anemic (SMA; severe malarial

anemia) versus non-anemic (MM; mild malaria) children with a

cut-off value of 2.86106 RBCs/ml.

On admission no significant difference in parasitemia, age, height,

and MCV between SMA and MM patients was observed. Those

with SMA weighted less than MM patients, an observation that is

most probably due to dehydration as on follow-up no significant

difference was found (p = 0.06). To exclude chronic malnutrition as

contributor to SMA, z-scores for ‘‘height for age’’, ‘‘weight for

height’’, and ‘‘weight for age’’ were estimated. No significant

differences were found in any of these scores (data not shown). As

expected, only SMA patients received blood transfusions (n = 17) and

the percentage of reticulocytes was significantly higher in the SMA

compared to the MM group (Table 1). Sickle-cell trait carriers were

equally distributed between the groups. Two SMA patients died. A 3

year old boy presented with respiratory distress and signs of acute

renal insufficiency and died on the first day after admission. The

second, a 22 month old boy, died in a rural hospital about 200 km

from Lambaréné two months after discharge from the MRU.

Extensive efforts to discover the cause of death by verbal autopsy and

studying the patient’s records did not reveal an obvious explanation.

Red blood cell turnover
Extravascular hemolysis. To estimate the level of

erythrophagocytosis, monocytes were isolated and incubated

with fluorescently labeled RBCs from the patient (‘‘autologous

RBCs’’) or from a healthy donor with (‘‘positive control’’) or

without (‘‘negative control’’) opsonisation with human anti-D IgG

antibodies. On admission, erythrophagocytosis of autologous

RBCs was higher in SMA (median: 5.0 AU) compared to MM

patients (median: 2.1 AU, p,0.01), whereas in reconvalescent

children, erythrophagocytosis was not significantly different

(p = 0.94; Figure 2a and b). Erythrophagocytosis of positive

control RBCs was similar in all conditions tested and within the

range of autologous RBCs from SMA patients on admission

(median: 4.3 AU).

Spleen size, a rough estimate of in vivo phagocytic activity, was

increased in SMA patients on admission. Other markers of

monocyte activation such as neopterin [32] (p,0.05) and the

number of hemozoin containing monocytes on thin blood smears

(p,0.0001) were also significantly different between SMA and

MM children (Table 2).

Removal tags on RBCs. A possible cause of enhanced

erythrophagocytosis is the exposure of removal signs on the RBC

surface (Table 3). CD35 and CD55, two complement receptors

on the surface of RBCs were significantly down-regulated in

SMA patients, whereas annexin V binding was increased in

anemic patients. Expression of CD59 and C3 - fragment binding

on the surface were not significantly different between the two

groups. No association of CD35 or CD55 expression with age

was observed.

Intravascular hemolysis on admission. In addition to

EVH, IVH might contribute to the development of SMA. To

investigate IVH we measured haptoglobin, hemopexin, LDH, a-

HBDH, and hemoglobinuria. LDH and a-HBDH concentrations

were increased in SMA compared to MM patients whereas

haptoglobin and hemopexin concentrations were lower (Table 4).

Table 2. Surrogate markers for extravascular hemolysis and disease severity on admission.

Total study population (n = 91) Group MM (n = 52) Group SMA (n = 39) p-valuea

Pigment in Monocytes (%) 10 (4–20) 6 (2–10) 19 (9–28) ,0.0001

Relative spleen volume 2.7 (2.0–3.8) 2.5 (1.9–3.1) 3.0 (2.5–4.2) ,0.05

Spleen (cm) 2 (0–3) 1 (0–2) 2 (2–4) ,0.0001

Neopterin (ng/ml) 7.2 (5.7–9.9) 6.5 (5.3–8.6) 8.1 (6.4–12.3) ,0.05

Lactate (mmol/l) 2.6 (2.0–3.3) 2.3 (1.8–2.9) 2.9 (2.3–4.3) ,0.005

sMODS 14 (13–15) 13 (12–14) 15 (14–17) ,0.0001

MM: mild malaria, SMA: severe malarial anemia, relative spleen volume: calculated as spleen volume at recruitment/spleen volume after reconvalescence (measured by
sonography), Spleen (cm) represents subcoastal spleen enlargement, sMODS: simplified multi organ dysfunction score, results are in median (interquartile ranges).
aKruskal-Wallis rank sum test.
doi:10.1371/journal.pone.0010038.t002

Table 3. Erythrocyte surface makers on admission.

Total study population (n = 91) Group MM (n = 52) Group SMA (n = 39) p-valuea

Annexin V (%) 0.6 (0.3–1.3) 0.5 (0.3–0.7) 1.1 (0.6–1.9) ,0.005

CD35 (MFI) 4.1 (3.9–4.8) 4.3 (4.0–5.0) 4.0 (3.7–4.5) ,0.05

CD55 (MFI) 5.8 (5.1–7.1) 6.4 (5.5–7.8) 5.5 (4.8–6.5) ,0.05

CD59 (MFI) 53.3 (44.5–71.0) 51.4 (44.5–68.5) 56.3 (44.1–71.0) 0.82

C3c (MFI) 3.5 (1.2–5.8) 3.6 (3.2–4.3) 3.6 (3.5–4.0) 0.55

IgG (%) 4.6 (4.0–5.6) 4.3 (3.9–5.3) 5.0 (4.0–5.9) 0.08

MM: mild malaria, SMA: severe malarial anemia, %: percentage of fluorescence positive cells, MFI: mean fluorescence intensity, IgG: immunoglobulin G, results are in
median (interquartile ranges).
aKruskal-Wallis rank sum test.
doi:10.1371/journal.pone.0010038.t003
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No significant difference between the groups was present with

respect to hemoglobinuria (p = 0.28).

Interaction of IVH and erythrophagocytosis. IVH - EVH

interaction and its effect on the severity of anemia was

investigated. To do this, thresholds for elevated intravascular

and extravascular hemolysis were defined and patients were

grouped accordingly. IVH was estimated by two variables:

hemopexin and a-HBDH. High IVH was defined as a

hemopexin level below the median of the all patients (8.7 mg/dl)

plus an a-HBDH of above median level (355 U/l). A combination

of both factors increases specificity of the IVH estimate.

Autologous erythrophagocytosis activity represented EVH. The

threshold for elevated phagocytosis was defined by the median

positive control erythrophagocytosis level seen in all patients

(4.3 AU). Figure 3a shows the interaction between those three

variables. Patients with enhanced hemolysis in all three variables

were grouped together (high hemolysis; HH) and compared to the

remaining individuals.

HH patients had a median of 1.466106 RBCs/ml (IR:

1.286106–2.146106 RBCs/ml), while patients with low hemolysis

had a median of 3.586106 RBCs/ml (IR: 2.546106–

4.236106 RBCs/ml, p,0.001). Most notably, HH patients had

an elevated risk to receive a blood transfusion during hospitaliza-

tion (odds ratio 61.5 (CI: 8.9–427)). Additionally, HH patients had

a significantly elevated sMODS of 17 [IR: 16–19] versus 12 [IR:

11–13] (p,0.0005) in non-HH patients. High hemolysis was not

associated with any of the erythrocyte age markers investigated

(data not shown). Hence erythrocyte aging cannot explain the

higher odds for blood transfusion in these patients.

The reticulocyte production index (RPI) is a marker for

erythropoietic output. It estimates the quantity of reticulocytes in

the peripheral blood, corrected for the degree of anemia and

therefore is a good measure of whether the reticulocyte production

is adequate for the degree of anemia present [29]. In our patient

population, HH - children had a significantly reduced RPI

(figure 3b, p,0.05, logistic regression). This finding indicates that

a subpopulation of malaria patients with high IVH plus EVH have

a high risk of receiving blood transfusions and suffer from

inadequately low reticulocyte numbers.

Follow-up
Markers of disease were measured again after 2 months of a

parasite-free period. All measured variables were not significantly

different between SMA and MM (data not shown). The two

groups evolved into one homogeneous population with little

variability. Hemoglobin levels raised to 10.6 g/dl, the reticulocyte

counts dropped back to normal levels. In both, the SMA and MM

group, phagocytosis levels were significantly lower at day 56 than

at day 0.

Discussion

The etiology of severe malarial anemia, one of the most

frequent complications in malaria, recently regained interest.

Several mechanisms seem to contribute to anemia during malaria,

with pronounced differences in different patient populations and

animal models. Proposed key mechanisms are suppressed

erythropoiesis [15], removal of parasitized erythrocytes [33,34],

enhanced clearance of both parasitized and unparasitized

erythrocytes by the spleen and other phagocytes [35,36,37,38],

and intravascular lysis [23]. The relative contribution and

interaction of these individual factors on SMA is unknown.

Recently, an interesting and challenging hypothesis was presented

on the basis of studies in humans [35,37,39]: complement and

complement regulatory proteins are dysregulated in SMA and lead

to enhanced removal of erythrocytes because complement-binding

receptors (CD35 and CD55) on erythrocytes have been consumed

by excessive amounts of activated complement in serum and leave

the RBC prone to lysis. In addition, this finding provides an

explanation for the increased risk to develop SMA in infancy:

children between 1 and 3 years constitutively express reduced

levels of complement regulators on their RBC surface and

therefore the probability to develop SMA is higher [40].

Nevertheless, these results were not confirmed in a subsequent

study from Ghana [23], where no correlation of CD35 and CD55

expression levels and anemia status were found. Other proposed

mechanisms are based on reduced deformability of RBCs as an

effect of oxidative damage due to proinflammatory cytokines and

parasite products [22,41].

In this study we reproduced some findings of Waitumbi et al.

[35,37,39]: SMA patients had reduced CD35 and CD55

expression on the RBC surface. In addition, we observed

enhanced ex vivo erythrophagocytosis in SMA patients. This

confirms results from previous pilot studies [19]. Increased ex vivo

erythrophagocytosis is accompanied by surrogate markers of

phagocyte activation like neopterin and spleen size. However, we

were unable to detect an association between complement or

immunoglobulin deposition on freshly isolated RBCs. Further-

more, CD35 and CD55 RBC surface expression was not

associated with age. In contrast to complement- and immuno-

globulin-binding, SMA children showed elevated phosphatidyl-

serine exposure on RBC surface, a removal marker that tags old or

damaged RBC for phagocytosis [42,43]. In SMA patients the rate

of RBC removal outcompetes the rate of RBC production. Based

on a static model it has been proposed that half of the drop of

hematocrit due to malaria occurred before admission [44]. This

direct interpretation may be oversimplistic because dynamic rates

(and not a fixed absolute number of removed erythrocytes)

determines the development of anemia. Turn-over of erythrocytes

Table 4. Markers of intravascular hemolysis on admission.

Total study population (n = 91) Group MM (n = 52) Group SMA (n = 39) p-valuea

Haptoglobin (mg/dl) 0 (0–73.5) 41 (0–110) 0 (0–0) ,0.0001

Hemopexin (mg/dl) 8.7 (4.8–10.8) 10.0 (8.8–11.3) 4.2 (1.9–6.3) ,0.0001

LDH (U/l) 432 (325–582) 350 (309–408) 579 (454–858) ,0.0001

a-HBDH (U/l) 355(281–523) 298 (250–348) 522 (414–694) ,0.0001

MM: mild malaria, SMA: severe malarial anemia, LDH: lactate dehydrogenase, a-HBDH: alpha hydroxybutyrate dehydrogenase, results are in median (interquartile
ranges).
aKruskal-Wallis rank sum test.
doi:10.1371/journal.pone.0010038.t004
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follows complex (possibly non-linear) dynamics [45] and future

research may provide us with new insights.

Most hypotheses on the development of SMA and removal of

infected RBC rely on the assumption that mature and old RBCs

are removed from the circulation by EVH and IVH. Our results

point to an alternative direction: association of high hemolysis

(HH) with low RPI infers an important effect on reticulocytes and

young RBCs in SMA. Although we cannot exclude that in

addition erythropoiesis is negatively affected in SMA patients, this

finding is of particular importance because removal of reticulo-

cytes and young erythrocytes (which contribute disproportionately

to the total number of circulating erythrocytes in SMA patients) by

erythrophagocytosis will stunt compensatory erythropoiesis.

We can only speculate on the mechanism of reticulocyte removal.

Possibly, stress erythropoiesis, a phenotype present in diseases like

thalassemia, may be involved. In thalassemia, erythropoietic cells are

oxidatively stressed by the accumulation of precipitated a-globin-

chain tetramers. Consequently, only few erythropoietic cells undergo

full maturation and are removed as reticulocytes either in the bone

marrow or the spleen. Hemozoin, a parasite byproduct released at

the burst of infected erythrocytes after schizogeny, has been proposed

to contribute to SMA. It has been proposed that hemozoin may,

together with an elevated TNF-a concentration, inhibit erythropoi-

esis [15,46]. An effect of hemozoin on early erythropoietic

progenitors was not the focus of this study, but an effect on

reticulocytes and young circulating RBC might be present through

the hemozoin-mediated oxidative stress on RBC membranes [47].

Since SMA in African children is frequently a chronic disease, very

low RBC numbers are supported. This observation led to the clinical

practice to delay blood transfusions as long as possible unless patients

are clinically unstable. In line with our hypothesis of preferential (or at

least equivalent) removal of young erythrocytes and therefore stunting

of compensatory erythropoiesis in SMA, we observed that high IVH

and high EVH increased odds for blood transfusion and associates

with low RPI. So far, increased IVH and EVH in SMA were

attributed to the lysis of infected and prematurely aged RBCs.

Surprisingly little is known about the age structure of RBC

populations in SMA.

A drawback of our study design is that we cannot explore the

early phases of disease development, since SMA is not amenable to

a prospective study design because the required close follow up to

detect early hematological changes prevents the development of

SMA [40].

This study investigated young children in a hyperendemic area

in Central Africa, one of the populations mostly affected by SMA.

Stringent selection of patients and control or exclusion of

interfering factors such as age, iron deficiency, malnutrition or

hemoglobinopathies allowed the specific investigation of SMA. In

conclusion, we propose that hemolytic removal of reticulocytes

and young RBCs stunts compensatory erythropoiesis and

therefore is a critical step for the development of clinically

unstable SMA. Quantitative studies of the age pattern of removed

erythrocyte populations and discovery of molecular events that

determine SMA-associated removal of reticulocytes should give

new and interesting insight in the development of SMA and might

lead to urgently needed new interventions.
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Figure 3. Distribution of enhanced intravascular and extravas-
cular hemolysis across the patient groups and its correlation with
reduced RPI: In figure A), a dot plot of a-HBDH vs. hemopexin
concentration, both makers for IVH, at presentation is shown on
the x and y axis, respectively. The size of the data symbols represents
erythrophagocytosis activity, a direct marker of EVH (the bigger the
symbol, the higher the autologous erythrophagocytosis). Classification
criteria for ‘‘elevated IVH and EVH’’ match for those symbols bigger than
the borderline levels shown in the plot and laying in the white region.
Figure B: The Group having both ‘‘elevated EVH and IVH’’ had significantly
lower reticulocyte productions indices than the other patients (p,0.05). D
MM; # SMA - non transfused; N SMA - blood transfused.
doi:10.1371/journal.pone.0010038.g003
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