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The improved grasshopper 
optimization algorithm and its 
applications
Peng Qin1,3*, Hongping Hu2 & Zhengmin Yang2

Grasshopper optimization algorithm (GOA) proposed in 2017 mimics the behavior of grasshopper 
swarms in nature for solving optimization problems. In the basic GOA, the influence of the gravity 
force on the updated position of every grasshopper is not considered, which possibly causes GOA 
to have the slower convergence speed. Based on this, the improved GOA (IGOA) is obtained by the 
two updated ways of the position of every grasshopper in this paper. One is that the gravity force is 
introduced into the updated position of every grasshopper in the basic GOA. And the other is that 
the velocity is introduced into the updated position of every grasshopper and the new position are 
obtained from the sum of the current position and the velocity. Then every grasshopper adopts its 
suitable way of the updated position on the basis of the probability. Finally, IGOA is firstly performed 
on the 23 classical benchmark functions and then is combined with BP neural network to establish the 
predicted model IGOA-BPNN by optimizing the parameters of BP neural network for predicting the 
closing prices of the Shanghai Stock Exchange Index and the air quality index (AQI) of Taiyuan, Shanxi 
Province. The experimental results show that IGOA is superior to the compared algorithms in term of 
the average values and the predicted model IGOA-BPNN has the minimal predicted errors. Therefore, 
the proposed IGOA is an effective and efficient algorithm for optimization.

Based on the existence of the constraint conditions, optimization models are divided into unconstrained opti-
mization models and constrained optimization models, which widely exist in computer  science1, artificial 
 intelligence2, pattern  recognition3, energy  consumption4, truss structural  systems5, engineering  areas6, nonlin-
ear time  series7, and so on.

Swarm intelligence algorithms recently proposed have been applied to solve the optimization models obtained 
from different actual problems. The genetic algorithm (GA) by Holland in  19928 and the particle swarm opti-
mization (PSO) by Eberhart and Kennedy in  19959 provided some insights for researchers to propose many 
other swarm intelligence algorithms, such as Moth-fame optimization algorithm (MFO)6, Multi-verse optimizer 
(MVO)10, Sine cosine algorithm (SCA)11, Whale optimization algorithm (WOA)12, Grey wolf optimizer (GWO)13, 
Bird mating optimizer (BMO)14, Harris Hawks Optimizer (HHO)15, Grasshopper Optimization Algorithm 
(GOA)16, Dragonfly Algorithm (DA)17, Slap Search Algorithm (SSA)18, Arithmetic Optimization Algorithm 
(AOA)19 and Aquila Optimizer (AO)20. These swarm intelligence algorithms have the exploration phase and the 
exploitation phase. According to the different simulations, every swarm intelligence algorithm has the prominent 
updated method of the individual and the different applied background. Generally, benchmark functions are 
applied to test the performance of these swarm intelligence algorithms. Experimental results show that not all 
swarm intelligence algorithms can solve the whole optimization problems.

Machine learning has been used to solve the prediction and classification problems. For example, Support 
Vector Regression (SVR) and Long Short-Term Memory (LSTM) based deep learning model were combined 
to establish the deep learning method for predicting the AQI values accurately, which helped to plan the met-
ropolitan city for sustainable  development21. And LSTM Recurrent Neural Network was also utilized to pre-
form the stock market  prediction22. Especially, the randomness of the parameters of machine learning leads to 
unstable results of predictions and classifications. The fitter are the parameters, the better are the results. Swarm 
intelligence algorithms can be used to optimize the fitter parameters of machine learning. The problems of opti-
mizing the parameters of neural network by using swarm intelligence algorithm are actually the optimization 
problem. For example, SCA and GA were used to optimize the parameters of BP neural network for predicting 
the direction of the stock market  indices23,24; the improved Exponential Decreasing Inertia Weight-Particle 
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Swarm Optimization Algorithm was utilized to optimize the parameters of generalized radial basis function 
neural network with AdaBoost algorithm for stock market  prediction25; least squares support vector machine 
(LSSVM) with the parameters optimized by the Bat algorithm (BA) was used to forecast the air quality index 
(AQI)26; MVO and PSO algorithms were combined to optimize the parameters of Elman neural network for 
classification of endometrial carcinoma with gene  expression27. Swarm intelligence algorithms were used to be 
hybridized with artificial neural network for predicting the carbonation depth for recycled aggregate  concrete28. 
Swarm intelligence algorithms based technique were employed to perform the sparse signal  reconstruction29.

In particular, GOA proposed in 2017 mimics the behaviour of grasshopper swarms in nature for solving opti-
mization  problems16.  In16, GOA was firstly preformed on a set of test problems including CEC2005 qualitatively 
and quantitatively and then is applied to find the optimal shape for a 52-bar truss, 3-bar truss, and cantilever 
beam. Then, GOA is improved and is applied into the different fields. A novel periodic learning ontology match-
ing model based on interactive GOA proposed  in30 considered the periodic feedback from users during the opti-
mization process, using a roulette wheel method to select the most problematic candidate mappings to present 
to users, and take a reward and punishment mechanism into account for candidate mappings to propagate the 
feedback of user, which is conducted on two interactive tracks from Ontology Alignment Evaluation Initiative. 
 In31, a dynamic population quantum binary grasshopper optimization algorithm based on mutual information 
and rough set theory for feature selection is performed in twenty UCI datasets.  In32, GOA was employed to design 
a linear phase finite impulse response (FIR) low pass, high pass, band pass, and band stop filters.  In33, GOA was 
firstly to find optimal parameters with the aim of fusing low-frequency components and then the Kirsch compass 
operator is used to create an efficient rule for the fusion of high-frequency components, which allows the fused 
image to significantly preserve details transferred from input images.  In34, the main controlling parameter of 
GOA was taken to be a new adaptive function to enhance the exploration and exploitation capability, thus the 
improved GOA is obtained and then is utilized to optimize the hyperparameters of the support vector regres-
sion with embedding the feature selection simultaneously by running on four datasets.  In35, on the one side, the 
theoretical perspectives of GOA were given by its versions of modifications, hybridizations, binary, chaotic, and 
multi-objective; and on the other side, GOA had its applied regions, such as test functions, machine learning, 
engineering, image processing, network, parameter controller.

The influence of the gravity force and the velocity on GOA and its improvements have not be considered 
in the basic GOA, which possibly causes GOA to have the slower convergence speed. Based on this, the two 
updated ways of the position of every grasshopper are proposed in this paper. One is that the gravity force is 
introduced into the updated position of every grasshopper in the basic GOA. And the other is that the velocity 
is introduced into the updated position of every grasshopper and the new position are obtained from the sum of 
the current position and the velocity, which is inspired by PSO. Then every grasshopper adopts its suitable way 
of the updated position on the basis of the probability. Thus the improved GOA (IGOA) is obtained. Performed 
on the 23 classical benchmark functions, IGOA is superior to the compared algorithms GOA, PSO, MFO, SCA, 
SSA, MVO and DA in term of the average values and the convergence speeds. Then, IGOA is tested to optimize 
the parameters of BP neural network for predicting the closing prices of the Shanghai Stock Exchange Index and 
the air quality index (AQI) of Taiyuan, thus the predicted model IGOA-BPNN is built. The experimental results 
show that the IGOA-BPNN has potentiality to optimize the parameters of BP neural network for prediction. 
Therefore, the proposed IGOA is an effective and efficient algorithm for optimization.

The structure of the paper is organized as follows. The original GOA and the improved GOA are introduced 
in “Improved grasshopper optimization algorithm”. Section “The function optimization” shows the comparison 
results of IALO, GOA, PSO, MFO, SCA, SSA, MVO and DA performed on 23 benchmark functions. In “Applica-
tions”, IGOA is also utilized to optimize the parameters of BP neural network (BPNN) for predicting the clos-
ing prices of the Shanghai Stock Exchange Index and the air quality index (AQI) of Taiyuan, Shanxi Province. 
Conclusion and discussion are presented in “Conclusions and discussion”.

Improved grasshopper optimization algorithm
The basic grasshopper optimization algorithm. GOA proposed in 2017 mimicked the behaviour of 
grasshopper swarms in nature for solving optimization  problems16. The mathematical model of simulating the 
behaviour of grasshopper swarms is as  follows36:

where Xi , Si , Gi , and Ai denote the position, the social interaction, the gravity force and the wind advection of 
the ith grasshopper, respectively. The randomness of the position of grasshoppers is considered and then the 
Eq. (1) is written to be Xi = r1Si + r2Gi + r3Ai , where r1, r2, r3 are the random numbers in the interval [0, 1], 
and Si is defined by

where N denotes the number of the grasshoppers in the swarm, dij =
∣

∣Xj − Xi

∣

∣ is the distance between the ith 
grasshopper and the jth grasshopper, d̂ij =

Xj−Xi

dij
 is the unit vector from the ith grasshopper to the jth grasshop-

per and the social force s(r) is defined by

where f  indicates the intensity of attraction and l  is the attractive length scale. In the Ref.16, l = 1.5, f = 0.5.

(1)Xi = Si + Gi + Ai ,

(2)Si =

N
∑

j=1,j �=i

s(dij)d̂ij ,

(3)s(r) = fe−
r
l − e−r

,
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Let d be the distance between two grasshoppers. d = 2.079 is called the comfort zone or comfortable distance 
where there is neither attraction nor repulsion between two grasshoppers. When d < 2.079 , there is repulsion 
between two grasshoppers. When d > 2.079 , there is attraction between two grasshoppers. In particular, when d 
changes from 2.079 to nearly 4, s increases. When d > 4,s decreases. When d > 10 , s trends to 0 and then s has 
no action. Therefore, d is mapped into the distance of grasshoppers in the interval  of1,4. Thus the space between 
two grasshopper is divided into repulsion region, comfort zone, and attraction region.

Gi in the Eq. (1) is defined by

where g is the gravitational constant and êi is a unity vector towards the center of the earth.
Ai in the Eq. (1) is defined by

where u is a constant drift and ŵi is a unity vector in the direction of the wind.
S,G,A in the Eq. (1) are substituted by Eqs. (2)–(5) and the Eq. (1) becomes

But the grasshoppers are as soon as located in the comfort zone and the swarm can not be converged into the 
appointed point. Therefore, Eq. (6) can not be used to solve the optimization model directly.

In order to solve the optimization model, the Eq. (6) is modified to be

where ubd , lbd are the upper bound and the lower bound of the dth component of the ith grasshopper, T̂d is the 
d th component of the optimal grasshopper T̂ , the adaptive parameter c is a decreasing coefficient to shrink the 
comfort zone, repulsion zone, and attraction zone. In Eq. (7), the gravity force is not considered, that is, there is 
no G component. And assume that the wind direction ( A component) is always towards a target T̂d.

In order to balance the exploration stage and the exploitation, the parameter c is defined by

where cmax, cmin are the maximum and the minimum of the parameter c , respectively, t  denotes the current 
iteration and T denotes the maximum iteration. In GOA, cmax = 1, cmin = 0.000001.

The improved GOA. Based on the influence of the gravity force not to be considered in the basic GOA, the 
right side of the Eq. (7) minus the sum of the product between the gravitational constant g and the unit vector 
from the ith grasshopper to the jth grasshopper, thus the new updated position of the grasshopper is obtained 
as follows

The velocity of the ith grasshopper causes its position updated during the hunting process as follows

where a is the acceleration coefficient and rand is the random number between 0 and 1.
Therefore, the ith grasshopper adopts two updated ways Eqs. (9) and (11) of the position. According to the 

selected probability p , the position of the ith grasshopper is updated as follows

where c is the same as that in the basic GOA.
Based on the above, the GOA is improved, written as IGOA. The concrete steps of IGOA are as follows.
Step 1. Initialization. Initialize the grasshopper swarm Xi(i = 1, 2, . . . ,N) , cmax, cmin , minimum and maximum 

of velocity, maximum number of iterations T.
Step 2. Calculate the fitness of every grasshopper and find the optimal grasshopper T̂ . Let t = 1.

Step 3. Update the parameter c by use of Eq. (8).

(4)Gi = −gêi ,

(5)Ai = uŵi ,

(6)Xi =

N
∑

j=1,j �=i

s
(∣

∣Xj − Xi

∣

∣

)Xj − Xi

dij
− gêi + uŵi .

(7)Xd
i = c

N
∑

j=1,j �=i

c
ubd − lbd

2
s
(∣

∣

∣
Xd
j − Xd

i

∣

∣

∣

)Xd
j − Xd

i

dij
+ T̂d ,

(8)c = cmax − t
cmax − cmin

T
,

(9)Xd
i = c

N
∑

j=1,j �=i

c
ubd − lbd

2
s
(∣

∣

∣
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j − Xd
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∣

∣

∣

)Xd
j − Xd

i

dij
−

N
∑

j=1,j �=i

g
Xd
j − Xd

i

dij
+ T̂d .

(10)vdi = cvdi + a× rand × (T̂d − Xd
i ),

(11)Xd
i = Xd

i + vdi ,

(12)Xd
i =
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Step 4. For every grasshopper, the distance between the grasshoppers is firstly mapped into the  interval1,4, 
and the selected probability p is adopted. If p < 0.5 , the position of the grasshopper is updated by use of Eq. (12) 
or Eq. (9). Otherwise, the position of the grasshopper is updated by use of Eq. (12) or Eqs. (10) and (11). If the 
position of the grasshopper is out of the bound, then the position of the grasshopper is updated by use of the 
upper bound and the lower bound.

Step 5. Calculate the fitness value of every grasshopper. Update T̂ if there is a better grasshopper. Let t = t + 1.
Step 6. Judge whether the terminal condition is satisfied. If YES, return the optimal grasshopper T̂ . Otherwise, 

turn Step 3.

The function optimization
In this section, we adopt 23 benchmark functions to test the performance the proposed IGOA by compared with 
GOA, PSO, MFO, SCA, SSA, MVO and DA.

23 benchmark functions. In this subsection, 23 benchmark functions are derived from the Ref.15. Tables 1, 
2 and 3 show the function expression, the dimension, the range and the minimum value of seven unimodal 
functions F1(x)− F7(x) with n dimension (Table 1), six multimodal functions F8(x)− F13(x) with n dimension 

Table 1.  Unimodal functions F1(x)− F7(x) with dimension n.

The function expression Dim Range fmin

F1(x) =
n
∑

i=1

x2i 30 [− 100, 100] 0

F2(x) =
n
∑

i=1

|xi | +
n
∏

i=1

|xi | 30 [− 10, 10] 0

F3(x) =
n
∑

i=1

(

i
∑

j=1

xj

)2

30 [− 100, 100] 0

F4(x) = max
i

{ |xi |, 1 ≤ i ≤ n} 30 [− 100, 100] 0

F5(x) =
n−1
∑

i=1

[

100
(

xi+1 − x2i
)2

+ (xi − 1)2
]

30 [− 30, 30] 0

F6(x) =
n
∑

i=1

(⌊xi + 0.5⌋)2 30 [− 100, 100] 0

F7(x) =
n
∑

i=1

ix4i + random[0, 1) 30 [− 1.28, 1.28] 0

Table 2.  Multimodal functions F8(x)− F13(x) with dimension n.

The function expression Dim Range fmin

F8(x) =
n
∑

i=1

(

−xi sin
√
|xi |

)

30 [− 500, 500] −418.9829× Dim

F9(x) =
n
∑

i=1

[

x2i − 10 cos (2πxi)+ 10
]

30 [− 5.12, 15.12] 0

F10(x) = −20 exp



−0.2

�

�

�

�

1
n

n
�

i=1

x2i



 − exp

�

1
n

n
�

i=1

cos(2πxi)

�

+ 20+ exp

30 [− 32, 32] 0

F11(x) =
1

4000

n
∑

i=1

x2i −
n
∏

i=1

cos
xi√
i
+ 1 30 [− 600, 600] 0

F12(x) =
π
n

{

10 sin
(

πy1
)

+

n−1
∑

i=1

(

yi − 1
)2
[1+ 10 sin

2
(

πyi+1

)

]

+
(

y2n − 1
)2
}

+

n
∑

i=1

u(xi , 10, 100, 4)

u(xi , a, k,m) =

{

k(xi − a)m xi > a
0 −a < xi < a
k(−xi − a)m x < −a

30 [− 50, 50] 0

F13(x) = 0.1

{

sin
2(3πx1)+

n
∑

i=1

(xi − 1)2[1+ sin
2(3πxi + 1)] + (xn − 1)2[1+ sin

2(2πxn)]

}

+

n
∑

i=1

u(xi , 5, 100, 4)

30 [− 50, 50] 0
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(Table 2) and ten functions F14(x)− F23(x) with the fixed dimension (Table 3), respectively. 3D version of some 
functions among these 23 benchmark functions are shown in Fig. 1.

The setup of the parameters. In order to verify the validation of the proposed IGOA in the paper, we 
choose GOA, PSO, MFO, SCA, SSA, MVO and DA to be the comparable algorithms. In the experiments, the 
parameters of these eight algorithms are set up as shown in Table 4.

Table 3.  Benchmark functions F14(x)− F23(x) with fixed dimension.

The function expression Dim Range fmin

F14(x) =







1
500

+
25
�

j=1

1

j+
2
�

i=1

(xi−aij)
6







−1

2 [− 65.536, 65.536] 0.998

F15(x) =
11
∑

i=1

[

ai −
x1(b

2
i +bixi)

b2i +bix3+x4

]2

4 [− 5, 5] 0.0030

F16(x) = 4x21 − 2.1x41 +
1
3
x61 + x1x2 − 4x22 + 4x42 2 [− 5, 5] − 1.0316

F17(x) =
(

x2 −
5.1

4π2 x
2
1 +

5
π
x1 − 6

)2

+ 10
(

1− 1
8π

)

cos x1 + 10 2 [−5, 10] × [10, 15] 0.398

F18(x) =
[

1+ (x1 + x2 + 1)2
(

19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22
)]

×
[

30+ (2x1 − 3x2)
2
(

18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22
)] 2 [− 2, 2] 3

F19(x) = −
4
∑

i=1

ci exp

(

−
3
∑

j=1

aij(xj − pij)
2

)

3 [0, 1] − 3.86

F20(x) = −
4
∑

i=1

ci exp

(

−
6
∑

j=1

aij(xj − pij)
2

)

6 [0, 1] − 3.32

F21(x) = −
5
∑

i=1

[

(X − ai)(X − ai)
T + ci

]−1
4 [0, 10] − 10.1532

F22(x) = −
7
∑

i=1

[

(X − ai)(X − ai)
T + ci

]−1
4 [0, 10] − 10.4028

F23(x) = −
10
∑

i=1

[

(X − ai)(X − ai)
T + ci

]−1
4 [0, 10] − 10.5363

Figure 1.  3D version of the benchmark functions F1(x), F3(x), F8(x), F9(x), F14(x), F18(x) (using Matlab 
R2018a and www. mathw orks. com).

http://www.mathworks.com
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Experimental results. IGOA, GOA, PSO, MFO, SCA, SSA, MVO and DA all run 30 times independently. 
The average values and the standard deviations of the optimal function values of these 23 benchmark functions 
are obtained, shown in Table 5. In this section, we compare IGOA with GOA and PSO and then compare IGOA 
with MFO, SCA, SSA, MVO and DA.

IGOA vs. (GOA, PSO). For the unimodal functions F1(x)− F5(x), F7(x) , the average values of the optimal 
values obtained by IGAO are 4.9537E−03, 2.9389E−01, 3.5429E−02, 1.9125E−02, 2.9610E+01 and 1.6040E−02, 
respectively, which are all less than those obtained by GOA and PSO. But for the unimodal function F6(x) , the 
average value of the optimal value obtained by IGAO is 2.0048E+00, which is less than that obtained by GOA 
and is more than that obtained by PSO.

For the multimodal functions F9(x)− F13(x) , the average values of the optimal values obtained by IGAO 
are 4.2445E−01, 5.2213E−02, 2.9202E−04, 2.2805E−01 and 1.5727E+00, respectively, which are all less than 
those obtained by GOA and PSO. But for the multimodal function F8(x) , the average value of the optimal value 
obtained by IGAO is − 7.1112E+03, which is more than that obtained by GOA and is less than that obtained by 
PSO.

For the functions F14(x), F20(x) , the average values of the optimal values obtained by IGAO are 9.9816E−01 
and − 3.2475E+00, respectively, whose degree closest to the optimal values 9.9800E−01 and − 3.32 is less than 
those obtained by GOA and is more than those obtained by PSO. For the functions F16(x)− F17(x) , the average 
values of the optimal values obtained by IGAO are − 1.0313E+00 and 3.9851E−01, whose degrees closest to the 
optimal values − 1.0316E+00 and 0.3978 are all less than GOA and PSO. For the functions F18(x)− F19(x) , the 
average values of the optimal values obtained by IGAO are 3.0152E+00 and − 3.8583E+00, whose degree closest 
to the optimal values 3 and − 3.86 is less than that obtained by PSO and is more than that obtained by GOA. For 
the functions F15(x), F21(x)− F23(x) , the average values of the optimal values obtained by IGAO are 1.9673E−03, 
− 8.9507E+00, − 9.4709E+00 and − 9.3486E+00, whose degrees closest to the optimal values 0.0030, − 10.1532, 
− 10.4028 and − 10.5363 are more than those obtained by GOA and PSO.

Figure 2 shows the convergence curves of IGOA, GOA and PSO on the first 200 iterations on benchmark 
functions F1(x), F3(x)− F5(x), F10(x)− F11(x), F13(x), F22(x)− F23(x). It is observed from Fig. 2 that the con-
vergence speed of IGOA is faster than those of GOA and PSO. Table 5 and Fig. 2 show that IGOA outperforms 
GOA and PSO.

IGOA vs. (MFO, SCA, SSA, MVO, DA). For the unimodal functions F1(x), F6(x) , the average values of the 
optimal values obtained by IGAO are 4.9537E−03 and 2.0048E+00, which are less than those obtained by MFO, 
SCA, MVO and DA and are more than those obtained by SSA. For the unimodal function F2(x) , the average 
value of the optimal value obtained by IGAO is 2.9389E−01, which is less than that obtained by MFO, SSA, MVO 
and DA and is more than that obtained by SCA. For the unimodal functions F3(x)− F5(x), F7(x) , the average 
values of the optimal values obtained by IGAO are 3.5429E−02, 1.9125E−02, 2.9610E+01 and 1.6040E−02, less 
than those obtained by MFO, SCA, SSA, MVO and DA.

Table 4.  The setup parameters, where t  is the current iteration and T is the maximal iteration.

Algorithm Parameters Value

IGOA

Adaptive parameter c c = cmax − t cmax−cmin

T

Acceleration coefficient a a = 2

Gravitational constant g g = 0.9

GOA Adaptive parameter c c = cmax − t cmax−cmin

T

PSO

Inertia weight w w = 1

Acceleration coefficient c1 c1 = 2

Acceleration coefficient c2 c2 = 2

MFO Constant b for defining the shape of the logarithmic spiral b = 1

SCA Random number r1 r1 = a− at
T , a = 2

SSA Random number c1 c1 = 2e−
(

4t
T

)2

MVO

Wormhole existence probability (WEP) WEP = min+t ×
(

max−min
T

)

, min = 0.2,max = 1

Travelling distance rate (TDR) TDR = 1− t

1
p

T

1
p

, p = 6

DA

Inertia weight w w = max− (max−min)t
L , min = 0.4,max = 0.9

separation weight s s = 2× rand ×
[

0.1− t
(

0.1
L/2

)]

alignment weight a a = 2× rand ×
[

0.1− t
(

0.1
L/2

)]

the cohesion weight c c = 2× rand ×
[

0.1− t
(

0.1
L/2

)]

food factor f s = 2× rand

enemy factor e s = 0.1− t
(

0.1
L/2

)
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For the multimodal functions F9(x)− F13(x) , the average values of the optimal values obtained by IGAO 
are 4.2445E−01, 5.2213E−02, 2.9202E−04, 2.2805E−01 and 1.5727E+00, which are all less than those obtained 
by MFO, SCA, SSA, MVO and DA. For the multimodal function F8(x) , the average value of the optimal value 
obtained by IGAO is − 7.1112E+03, which is more than that obtained by SCA, SSA, MVO and DA and is less 
than that obtained by MFO.

For the function F14(x) , the average value of the optimal value obtained by IGAO is 9.9816E−01, whose degree 
closest to the optimal value 9.9800E−01 is less than that obtained by MVO and is more than that obtained by 
MFO, SCA, SSA and DA. For the function F15(x) , the average value of the optimal value obtained by IGAO is 
1.9673E−03, whose degree closest to the optimal value 0.0030 is less than that obtained by MVO and DA and 
is more than that obtained by MFO, SCA and SSA. For the function F16(x) , the average value of the optimal 
value obtained by IGAO is − 1.0313E+00, whose degree closest to the optimal value − 1.0316E+00 is less than 
that obtained by MFO, SCA, SSA, MVO and DA. For the function F17(x) , the average value of the optimal value 
obtained by IGAO is 3.9851E−01, whose degree closest to the optimal value 0.398 is less than that obtained by 
MFO, SSA, MVO and DA and is more than that obtained by SCA. For the function F18(x) , the average value 
of the optimal value obtained by IGAO is 3.0152E+00, whose degree closest to the optimal value 3 is less than 
that obtained by MFO, SCA, SSA, MVO and DA. For the function F20(x) , the average value of the optimal value 
obtained by IGAO is − 3.2475E+00, whose degree closest to the optimal value − 3.32 is less than that obtained 
by MVO and is more than that obtained by MFO, SCA, SSA and DA. For the functions F19(x), F21(x)− F23(x)
,the average values of the optimal values obtained by IGAO are − 3.8583E+00, − 8.9507E+00, − 9.4709E+00 and 
− 9.3486E+00, which is the closer to the optimal values − 3.86, − 10.1532, − 10.4028 and − 10.5363 than those 
obtained by MFO, SCA, SSA, MVO and DA.

Therefore, it is observed from Table 5 that IGOA outperforms MFO, SCA, SSA, MVO and DA. By the 
comparison in the “IGOA vs. (GOA, PSO)” and “IGOA vs. (MFO, SCA, SSA, MVO, DA)”, IGOA can be used 
to perform the function optimization and is superior to GOA, PSO, MFO, SCA, SSA, MVO and DA, which is 
utilized to verify no free lunch theorem.

Applications
In this section, the proposed IGOA is used to optimize the weights and the bases of the BP neural network, and 
then predicted model IGOA-BPNN is obtained. Finally, the IGOA-BPNN is used to perform the prediction of the 
closing prices of the Shanghai Stock Exchange Index and the air quality index (AQI) of Taiyuan, Shanxi Province.

Predicted model. IGOA proposed in this paper is used to optimize the connected weights and the bases 
of BP neural network, and the predicted model IGOA-BPNN is established. The concrete steps of IGOA-BPNN 
are as follows:

Table 5.  The average values and the standard deviations of the optimal function values of these 23 benchmark 
functions. The bold indicates the optimal value for each benchmark function.

IGOA GOA PSO MFO SCA SSA MVO DA

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

F1(x) 4.9537E−03 6.2281E−03 3.1911E+01 2.0615E+01 4.9941E−01 1.4460E−01 2.6715E+03 5.2062E+03 1.1073E+01 1.1939E+01 2.9954E−07 6.0995E−07 1.3385E+00 4.1450E−01 9.9436E+00 1.8544E+01

F2(x) 2.9389E−01 1.8954E−01 1.6903E+01 2.1972E+01 4.8178E+00 1.5802E+00 3.5520E+01 1.8203E+01 2.0518E−02 2.9848E−02 2.0891E+00 1.5520E+00 1.3798E+01 3.1026E+01 1.3874E+00 9.3868E−01

F3(x) 3.5429E−02 3.0511E−02 3.2628E+03 1.6774E+03 1.2995E+03 1.9513E+03 1.8412E+04 1.1221E+04 9.0526E+03 6.9092E+03 1.3980E+03 7.8768E+02 2.1071E+02 9.9252E+01 2.4895E+02 3.4807E+02

F4(x) 1.9125E−02 1.3662E−02 1.3897E+01 3.7187E+00 2.5083E+00 1.2029E+00 7.0112E+01 7.3626E+00 3.7143E+01 1.1490E+01 1.1536E+01 4.7205E+00 2.1187E+00 8.0179E−01 2.5779E+00 1.5221E+00

F5(x) 2.9610E+01 8.3759E−01 5.0144E+03 7.5023E+03 2.0108E+02 1.6903E+02 2.6751E+06 1.4594E+07 1.3358E+05 3.8131E+05 3.6123E+02 6.0996E+02 5.6637E+02 8.1742E+02 5.3597E+03 1.3222E+04

F6(x) 2.0048E+00 5.6584E−01 5.0258E+01 3.9565E+01 7.0795E−01 2.2043E−01 2.3351E+03 5.0201E+03 1.4226E+01 2.3036E+01 1.5109E−07 2.0707E−07 1.1966E+00 4.2627E−01 9.7154E+00 1.5394E+01

F7(x) 1.6040E−02 1.2312E−02 4.8498E−02 1.9798E−02 2.6354E−01 1.1254E−01 4.9555E+00 6.8998E+00 8.6843E−02 7.5080E−02 1.7798E−01 8.9368E−02 3.5283E−02 1.4744E−02 3.2278E−02 2.1367E−02

F8(x) − 7.1112E+03 6.9924E+02 − 7.3357E+03 7.0508E+02 − 2.9862E+03 3.5442E+02 − 8.5033E+03 7.5759E+02 − 3.7147E+03 2.0745E+02 − 7.6155E+03 8.7803E+02 − 7.5698E+03 8.1819E+02 − 2.7765E+03 3.4388E+02

F9(x) 4.2445E−01 5.6806E−01 1.0498E+02 3.9353E+01 6.2949E+01 1.2413E+01 1.6249E+02 3.1801E+01 3.8650E+01 3.0163E+01 5.3927E+01 1.9322E+01 1.3209E+02 2.3029E+01 3.0467E+01 1.2955E+01

F10(x) 5.2213E−02 3.7227E−02 5.6079E+00 1.4100E+00 4.6567E+00 9.7259E−01 1.3410E+01 8.2129E+00 1.6576E+01 7.2415E+00 2.6304E+00 8.3827E−01 2.3565E+00 3.3404E+00 2.9176E+00 9.5108E−01

F11(x) 2.9202E−04 3.7925E−04 1.1091E+00 9.8949E−02 1.8703E+02 1.9145E+01 1.8909E+01 3.6619E+01 8.8654E−01 3.1146E−01 1.8252E−02 1.4655E−02 8.7141E−01 8.5692E−02 5.5753E−01 2.8875E−01

F12(x) 2.2805E−01 1.7421E−01 9.4889E+00 4.9347E+00 2.5243E+00 9.2169E−01 4.7287E+01 2.1718E+02 1.0826E+05 3.4685E+05 8.0007E+00 4.2546E+00 2.2880E+00 1.3491E+00 2.0946E+00 1.8474E+00

F13(x) 1.5727E+00 5.0315E−01 3.7212E+01 1.8566E+01 2.3815E+00 2.3544E+00 9.0138E+01 2.1255E+02 7.3125E+04 1.9072E+05 1.6785E+01 1.4144E+01 1.7071E−01 7.2391E−02 1.8396E+00 4.2620E+00

F14(x) 9.9816E−01 6.1346E−04 9.9800E−01 5.2481E−16 6.8263E+00 3.5355E+00 2.2837E+00 1.7232E+00 1.9204E+00 1.9052E+00 1.2626E+00 6.8541E−01 9.9800E−01 2.9891E−11 1.2295E+00 6.2117E−01

F15(x) 1.9673E−03 4.2459E−03 1.5969E−02 2.4649E−02 6.3423E−04 2.3951E−04 1.2850E−03 5.3964E−04 1.0897E−03 4.0441E−04 5.4929E−03 8.3801E−03 2.1203E−03 4.9657E−03 3.2414E−03 5.7635E−03

F16(x) − 1.0313E+00 5.1361E−04 − 1.0316E+00 4.5530E−13 − 1.0316E+00 6.5216E−05 − 1.0316E+00 0.0000E+00 − 1.0316E+00 3.3087E−05 − 1.0316E+00 2.5447E−14 − 1.0316E+00 3.1609E−07 − 1.0316E+00 5.0989E−06

F17(x) 3.9851E−01 9.9557E−04 3.9789E−01 2.1858E−12 3.9814E−01 4.8925E−04 3.9789E−01 0.0000E+00 4.0187E−01 9.1717E−03 3.9789E−01 7.7808E−14 3.9789E−01 1.0016E−06 3.9789E−01 2.2095E−07

F18(x) 3.0152E+00 1.2467E−02 5.7000E+00 1.4789E+01 3.0075E+00 7.3803E−03 3.0000E+00 2.9995E−15 3.0001E+00 7.5162E−05 3.0000E+00 3.0698E−13 3.0000E+00 3.0522E−06 3.0000E+00 6.3603E−05

F19(x) − 3.8583E+00 4.3561E−03 − 3.7901E+00 1.6365E−01 − 3.8614E+00 9.7738E−04 − 3.8628E+00 2.7101E−15 − 3.8533E+00 3.0233E−03 − 3.8628E+00 4.2796E−10 − 3.8628E+00 1.6161E−06 − 3.8627E+00 1.0680E−04

F20(x) − 3.2475E+00 6.9085E−02 − 3.2759E+00 6.1787E−02 − 3.0970E+00 3.1959E−01 − 3.2234E+00 5.8608E−02 − 2.9672E+00 2.6799E−01 − 3.2126E+00 5.8889E−02 − 3.2858E+00 5.6233E−02 − 3.2504E+00 9.3598E−02

F21(x) − 8.9507E+00 1.8094E+00 − 4.9683E+00 3.0739E+00 − 5.1417E+00 2.9174E+00 − 6.2239E+00 3.3915E+00 − 2.5289E+00 1.7852E+00 − 7.8105E+00 3.2181E+00 − 7.2965E+00 3.2182E+00 − 7.1090E+00 2.7674E+00

F22(x) − 9.4709E+00 1.4775E+00 − 5.3995E+00 3.4978E+00 − 6.0982E+00 3.5458E+00 − 7.5677E+00 3.5774E+00 − 3.0696E+00 1.7428E+00 − 8.1241E+00 3.3366E+00 − 8.3030E+00 2.8607E+00 − 6.7733E+00 2.9161E+00

F23(x) − 9.3486E+00 1.9572E+00 − 6.2373E+00 3.8686E+00 − 6.1745E+00 3.7598E+00 − 7.9274E+00 3.5389E+00 − 3.7453E+00 1.5528E+00 − 8.1935E+00 3.4369E+00 − 8.7642E+00 3.0618E+00 − 7.6592E+00 3.4776E+00
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Step 1: Input data and divide these data into the training set and the testing data. Normalize the training set 
and the testing set.

Step 2: Initialize the size of the grasshopper swarm, cmax, cmin , minimum and maximum of velocity, the maxi-
mum number of iterations of IGOA, and the number of the nodes in the hidden layer of BP neural network and 
the maximum number of iterations of BP neural network. Choose Mean Square Error (MSE)

to be the fitness function of IGOA, where ys, ts are the predicted value and the target value of the s th sample. 
Let t = 1.

Step 3: Initialize the grasshopper swarm.
Step 4: Map every grasshopper into the connected weights between the input layer and the hidden layer, the 

bases in the hidden layer, the connected weights between the hidden layer and the output layer, the bases in the 
output layer of BP neural network. Then train BP neural network and obtain the predicted values of the training 
set. According to predicted values and the target values, calculate the fitness value of this grasshopper. Find out 
the optimal grasshopper.

Step 5: Update the grasshopper swarm by use of IGOA. Then let t = t + 1.
Step 6: If the termination conditions are satisfied, then turn Step 6, otherwise turn Step 3.
Step 7: Output the optimal grasshopper. Then map the optimal grasshopper into the connected weights 

between the input layer and the hidden layer, the bases in the hidden layer, the connected weights between 
the hidden layer and the output layer, the bases in the output layer of BP neural network. Then train BP neural 
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Figure 2.  The convergence curves of the functions F1(x), F3(x)− F5(x), F10(x)− F11(x), F13(x), F22(x)− F23(x).
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network and obtain the predicted values of the training set. Thus obtain the trained BP neural network. Finally 
input the testing set into the trained BP neural network and obtain the predicted values of the testing set.

The flowchart of IGOA-BPNN is shown in Fig. 3.
In this section, MSE, Mean Absolute Error (MAE)

Root Mean Square Error (RMSE)

Mean Absolute Percentage Error (MAPE)

are taken to the evaluation criteria of model, where ys, ts are the predicted value and the target value of the s th 
sample.

Prediction of Shanghai Stock Index. Data source. In this subsection, Shanghai Stock 000001 from 
December 19, 1990 to June 28, 2021 loaded from the website http:// quotes. money. 163. com/ trade/ lsjysj_ zhishu_ 
000001. html contains 7459 days’ data. Figure 4 shows that the trend of the 7459 days’ closing prices. The features 
of every data sample consist of the closing price, the highest price, the lowest price, the opening price, the previ-
ous closing, the rise and fall amount, the rise and fall range, the trading volume and the transaction amount. 
In this paper, we choose the closing price, the highest price, the lowest price, the opening price, the previous 
closing, the trading volume and the transaction amount to be the features of samples and use the features of the 
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Figure 3.  The flowchart of IGOA-BPNN.
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current day to predict the closing price of the next day. The 7383 data samples from December 19, 1990 to March 
5, 2021 are taken to the training set and the remaining 75 data samples from March 6, 2021 to June 27, 2021 are 
taken to the testing set.

Experimental results. In this subsection, we use the predicted model IGOA-BPNN to predict the closing price 
of Shanghai Stock Index 000001. In order to verify the performance of the predicted model IGOA-BPNN, GOA, 
PSO, MFO, SCA, SSA, MVO and DA are employed to be combined with BP neural network (BPNN) to estab-
lish the comparable predicted models GOA-BPNN, PSO-BPNN, MFO-BPNN, SCA-BPNN, SSA-BPNN, MVO-
BPNN and DA-BPNN, respectively. Meantime, BPNN is also employed to be the comparable predicted model.

Among the BPNN and the BPNN part of these comparable predicted models IGOA-BPNN, GOA-BPNN, 
PSO-BPNN, MFO-BPNN, SCA-BPNN, SSA-BPNN, MVO-BPNN and DA-BPNN, the maximum number 
of iterations is set up to be 5000 and the momentum factor is 0.95. IGOA-BPNN, GOA-BPNN, PSO-BPNN, 
MFO-BPNN, SCA-BPNN, SSA-BPNN, MVO-BPNN, DA-BPNN and BPNN are run independently 30 times, 
respectively, and then MSE, MAE, RMSE, MAPE of the average predicted values of these 75 testing samples are 
obtained, shown in Table 6.

Figure 5 shows the comparison among the actual values and the predicted values of IGOA-BPNN, GOA-
BPNN, PSO-BPNN and BPNN of these 75 testing samples.

From Table 6, the predicted errors MSE = 828.95, MAE = 21.70, RMSE = 3.32, MAPE = 0.62% obtained from 
predicted model IGOA-BPNN are less than those obtained from the predicted models GOA-BPNN, PSO-BPNN, 
MFO-BPNN, SCA-BPNN, SSA-BPNN, MVO-BPNN, DA-BPNN and BPNN, which shows that the proposed 
IGOA in this paper is more suitable for optimizing the parameters of BP neural network for predicting Shanghai 
Stock Index 000001. It is also observed from Table 6 that the predicted performance of the BP neural network 
optimized by swarm intelligence algorithms outperforms the pure BP neural network.

Prediction of air quality index in Taiyuan, Shanxi. Data source. The 1273 day’s data from January 1, 
2018 to June 26, 2021 in this subsection is derived from the website https:// www. aqist udy. cn/ histo rydata/ month 
data. php? city=% e5% a4% aa% e5% 8e% 9f. The features of every data consist of the current air quality index (AQI), 
quality grade, PM2.5, PM10,  SO2, CO,  NO2,  O3. The relation between AQI and quality grade is shown in Table 7. 
The remaining 1264 data samples are kept by deleting the missing data. Figure 6 shows the number of days and 
proportion distribution of excellent, good, light pollution, moderate pollution, heavy pollution and serious pol-
lution in these 1264 days. Figure 7 shows the trends of AQI in these 1264 days.

In this subsection, we choose the current AQI, PM2.5, PM10,  SO2, CO,  NO2 and  O3 to predict AQI of the 
next day and select the 1241 data samples from January 1, 2018 to June 3, 2021 to be training set and the 22 data 
samples from June 4, 2021 to June 25,2021 to be the testing set.

Experimental results. The proposed IGOA-BPNN in this subsection is utilized to predict AQI in Taiyuan, 
Shanxi. Similar to “Experimental results”, among the BPNN and the BPNN part of these comparable predicted 
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Figure 4.  The trends of the 7459 days’ closing prices of Shanghai Stock Index.

Table 6.  The predicted errors of the testing samples on Shanghai Stock Index. The bold indicates the 
minimum error.

IGOA-
BPNN GOA-BPNN PSO-BPNN

MFO-
BPNN SCA-BPNN SSA-BPNN

MVO-
BPNN DA-BPNN BPNN

MSE 828.95 875.57 858.88 854.16 850.04 850.04 880.46 895.94 1255.85

MAE 21.70 22.56 21.93 22.39 23.35 22.29 22.47 22.75 28.54

RMSE 3.32 3.42 3.38 3.37 3.53 3.37 3.43 3.46 4.09

MAPE(%) 0.62 0.65 0.63 0.64 0.67 0.64 0.65 0.66 0.82

https://www.aqistudy.cn/historydata/monthdata.php?city=%e5%a4%aa%e5%8e%9f
https://www.aqistudy.cn/historydata/monthdata.php?city=%e5%a4%aa%e5%8e%9f
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models IGOA-BPNN, GOA-BPNN, PSO-BPNN, MFO-BPNN, SCA-BPNN, SSA-BPNN, MVO-BPNN and DA-
BPNN, the maximum number of iterations is set up to be 5000 and the momentum factor is 0.95. IGOA-BPNN, 
GOA-BPNN, PSO-BPNN, MFO-BPNN, SCA-BPNN, SSA-BPNN, MVO-BPNN, DA-BPNN and BPNN are run 
independently 10 times, respectively, and then MSE, MAE, RMSE, MAPE of the average predicted values of 
these 22 testing samples are obtained, shown in Table 8. Figure 8 shows the comparison among the actual values 
and the predicted values of IGOA-BPNN, GOA-BPNN, PSO-BPNN and BPNN of these 22 testing samples.

From Table 8, the predicted errors MSE = 134.43, MAE = 32.51, RMSE = 7.81, MAPE = 31.91% obtained from 
predicted model IGOA-BPNN are less than those obtained from the predicted models GOA-BPNN, PSO-BPNN, 
MFO-BPNN, SCA-BPNN, SSA-BPNN, MVO-BPNN, DA-BPNN and BPNN, which shows that the proposed 
IGOA in this paper is more suitable for optimizing the parameters of BP neural network for predicting AQI 
in Taiyuan, Shanxi. It is also observed from Table 8 that the predicted performance of the BP neural network 
optimized by swarm intelligence algorithms outperforms the pure BP neural network.
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Figure 5.  Comparison among the actual values and the predicted values of four models.

Table 7.  The relation of AQI and quality grade.

Range of AQI 0–50 51–100 101–150 151–200 201–300 > 300

Quality grade Excellent Good Light pollution Moderate pollution Severe pollution Serious pollution
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Figure 6.  The number of days and proportion distribution of six grades.
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Conclusions and discussion
The updated methods of velocity and position of PSO are introduced into GOA and thus improved GOA is 
obtained, written as IGOA. Then 23 benchmark functions are used to verify the effectiveness of IGOA, and the 
experimental results show that IGAO is superior to MFO, SCA, SSA, MVO and DA. Finally IGOA is utilized 
to optimize the connection weight and bases of BP neural network, and the prediction model IGOA-BPNN is 
established. IGOA-BPNN is applied to the prediction of Shanghai stock index and AQI of Taiyuan, Shanxi. The 
results show that IGOA-BPNN is better than GOA-BPNN, PSO-BPNN, MFO-BPNN, SCA-BPNN, SSA-BPNN, 
MVO-BPNN, DA-BPNN and BPNN.

However, the size of the initial population of IGOA, the parameters of BP neural network, and other machine 
learning methods may lead to different experimental results. Therefore, it is necessary to study the combination 
of swarm intelligence algorithm and different machine learning to establish prediction models to solve practical 
problems.
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Figure 7.  Trends of AQI in these 1264 days.

Table 8.  Prediction errors of AQI test samples in Taiyuan, Shanxi. The bold indicates the minimum error.

IGOA-
BPNN GOA-BPNN PSO-BPNN

MFO-
BPNN SCA-BPNN SSA-BPNN

MVO-
BPNN DA-BPNN BPNN

MSE 1340.43 1392.94 1399.39 1376.57 1352.42 1406.43 1451.88 1373.48 1433.37

MAE 32.51 33.17 33.13 32.91 32.75 33.14 33.84 32.81 33.61

RMSE 7.81 7.96 7.98 7.91 7.84 8.00 8.12 7.90 8.07

MAPE(%) 31.91 32.58 32.46 32.10 32.14 32.44 32.94 32.17 32.71
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Figure 8.  Comparison among the actual values and the predicted values of four models.
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