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Abstract In eukaryotes, protein phosphorylation is specifically catalyzed by numerous protein

kinases (PKs), faithfully orchestrates various biological processes, and reversibly determines cellular

dynamics and plasticity. Here we report an updated algorithm of Group-based Prediction System

(GPS) 5.0 to improve the performance for predicting kinase-specific phosphorylation sites

(p-sites). Two novel methods, position weight determination (PWD) and scoring matrix optimiza-

tion (SMO), were developed. Compared with other existing tools, GPS 5.0 exhibits a highly com-

petitive accuracy. Besides serine/threonine or tyrosine kinases, GPS 5.0 also supports the prediction

of dual-specificity kinase-specific p-sites. In the classical module of GPS 5.0, 617 individual predic-

tors were constructed for predicting p-sites of 479 human PKs. To extend the application of GPS

5.0, a species-specific module was implemented to predict kinase-specific p-sites for 44,795 PKs in

161 eukaryotes. The online service and local packages of GPS 5.0 are freely available for academic

research at http://gps.biocuckoo.cn.
Introduction

Protein phosphorylation plays a critical role in almost all of
biological processes and greatly expands the proteome diver-

sity. By covalently attaching phosphate moieties to serine, thre-
onine, and/or tyrosine residues in a dynamic manner,
phosphorylation can reversibly change the structure, enzymatic

activity, and subcellular trafficking of proteins [1,2]. In eukary-
otes, phosphorylation reaction is differentially and specifically
catalyzed by numerous protein kinases (PKs), and each PK

only modifies a limited subset of substrates to ensure the signal-
ing fidelity [3–5]. Aberrances in either PKs or phosphorylated
substrates are highly associated with human diseases such as

cancer [6,7]. Therefore, the identification of kinase-specific
phosphorylation sites (p-sites) is fundamental for understand-
ing the regulatory mechanisms of phosphorylation.

Besides experiments, bioinformatics provides an alternative

means for computational prediction of potential PK-specific
nces and
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p-sites from protein sequences [8–15] (Table S1). In 2004, we
developed a novel algorithm, group-based phosphorylation
site predicting and scoring (GPS) 1.0, based on the hypothesis

that similar short peptides exhibit similar biological functions
[8]. Accordingly, we refined the algorithm and constructed
an online service of GPS 1.1, which can predict p-sites for 71

PK clusters [9]. Later, we presented GPS 2.0 and 2.1 (renamed
as Group-based Prediction System), in which two methods
matrix mutation (MaM) and motif length selection (MLS)

were designed to improve the prediction accuracy, whereas
the scoring strategy was not changed [10,11]. Using 3417
known PK-specific p-sites as a training data set, GPS 2.1 con-
tains 213 individual predictors, and can hierarchically predict

specific p-sites for 408 human PKs [11]. We also developed
GPS 2.2, 3.0, and 4.0 algorithms, which are used for the pre-
diction of post-translational modification (PTM) sites other

than p-sites [16–18]. In particular, it should be noted that other
bioinformaticians also put great efforts into the prediction of
kinase-specific p-sites. At least 36 computational programs

have been developed (Table S1).
In this study, we collected 15,194 experimentally identified

PK-specific p-sites as the training data set. Updated from the

GPS 2.1 algorithm, we replaced theMLSmethod by developing
a new approach named position weight determination (PWD).
PWD uses the logistic regression (LR) [19] to rapidly determine
position-specific weight values of flanking sequences around p-

sites. The LR algorithm is also used tomodify theMaMmethod
into scoring matrix optimization (SMO) for improving the
accuracy of prediction. The leave-one-out (LOO) validation

and n-fold cross-validations were conducted to evaluate the per-
formance of GPS 5.0, which shows a highly competitive accu-
racy in comparison with other existing tools. In GPS 5.0, we

separately constructed 466 and 93 individual predictors to com-
putationally analyze phosphoserine (pS)/phosphothreonine
(pT) and phosphotyrosine (pY) residues specifically modified

by serine/threonine kinases and tyrosine kinases, respectively.
Since a number of serine/threonine and tyrosine kinases also
modify pY and pS/pT sites, respectively, we further constructed
58 additional predictors for these dual-specificity PKs. In GPS

5.0, we developed two modules including the classical module
and the species-specific module. In the classical module, we con-
structed 617 single predictors for computationally identifying

specific p-sites of 479 human PKs. The species-specific module
can predict p-sites of 44,795 PKs in 161 eukaryotes. We antici-
pate GPS 5.0 can help to generate high-confidence candidates

for the discovery of new phosphorylation events.

Method

During the past decade, the GPS algorithm has been continu-
ously maintained and improved [8–11]. Our fundamental
hypothesis is that similar short peptides bear similar biochemi-

cal properties for the modification. Thus, we defined a phospho-
rylation site peptide PSP(m, n) as a pS, pT, or pY amino acid
flanked by m residues upstream and n residues downstream.

Then we used an amino acid substitution matrix, e.g., BLO-
SUM62, to calculate the similarity between two PSP(m, n) pep-
tides. This basic scoring strategy has been reserved in all versions
of GPS algorithms, although GPS 2.1 implemented two meth-

ods, MLS and MaM, for performance improvement [11]. For
each PK cluster, MLS determines an optimal motif length
around p-sites since different PKs recognize distinct motifs with
different lengths, whereasMaMgenerates an optimalmatrix for
better estimating PSP(m, n) similarity. Since different positions

around p-sites might contribute differentially to the phosphory-
lation specificity, GPS 2.2 added a method of weight training
(WT) to determine a weight value for each position after the

MLS manipulation [16]. To process large data sets, we added
a k-means clustering procedure in GPS 3.0 to cluster PTM sites
into multiple groups [17], whereas GPS 4.0 adopted a particle

swarm optimization (PSO) to rapidly determine parameters in
the steps of MLS, MaM, and/or WT [18].

Here, we hypothesized that long flanking regions around p-
sites might be generally and differentially important for the

recognition of PKs, which are bulky molecules to interact with
phosphorylatable residues. Thus, the weight value at each posi-
tion rather than the motif length could be directly and rapidly

optimized by the LR algorithm [19]. Because the numbers of p-
sites for most PK clusters are lower than 1000 (Tables S2 and
S3), the k-means clustering is not necessary. In this regard,

GPS 5.0 was updated from GPS 2.1, and comprises two parts,
including the scoring strategy and performance improvement.

In the step of the scoring strategy, the average similarity

score (S) between a PSP(30, 30) peptide P and peptides around
all known p-sites in the training data set is defined as:

S ¼ 1

N

XL�31

j¼�30

ð
XN
i¼1

Mtrain½Pj;Tij�Þ �Wj ð1Þ

where L is the length of the PSP(30, 30) peptide (L = 61 rep-
resenting a relatively long flanking region). N is the number of
known p-sites in the positive data set. Tij is the amino acid at
position j around a known p-site Ti (i = 1, 2, 3, . . ., N). Wj is

the weight value of position j, andMtrain denotes the optimized
amino acid substitution matrix in this study.

The performance improvement procedure comprises two

steps, and we updated MLS and MaM into PWD and SMO,
respectively.
PWD

We first used the amino acid substitution matrix BLOSUM62
(MBLOSUM62) to calculate an average similarity score at the

position j of a PSP(30, 30) peptide P as Sj
’:

S
0
j ¼ Wj

1

N

XN
i¼1

MBLOSUM62½Pj;Tij� ð2Þ

Initially, the weight value of each positionWj in the PSP(30,
30) peptide was set to 1. Then we used the one-vs-rest (OVR)
classifier with the ridge (L2) penalty of the LR algorithm to

optimizeWj values, by using the ‘‘newton-cg” solver in the class
LogisticRegressionCV of scikit-learn v0.21.0 (https://scikit-
learn.org/), an extensively used machine learning (ML) toolbox

[19]. To avoid over-fitting, such a procedure was repeated for
100 times and 10-fold cross-validation was conducted to
determine the inverse of regularization strength at each time.

Receiver operating characteristic (ROC) curves were illus-
trated, and area under curve (AUC) values were calculated.
The optimal Wj vectors were determined based on the highest

AUC value:

Wj ¼ W�30; � � � ;W�1;W0;W1; � � � ;W30 ð3Þ

https://scikit-learn.org/
https://scikit-learn.org/
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In order to evaluate position-specific contributions of flank-
ing regions around p-sites for different PK clusters, theWj vec-
tors were normalized into �1 to 1 based on the maximum

absolute value.

SMO

The average similarity score of an amino acid a in the given
PSP(30, 30) peptide P and a residue b in peptides around all
known p-sites is defined as Sab:

Sab ¼ 1

N

XL�31

j¼�30

Cj �MBLOSUM62 a; b½ � �Wj ð4Þ

where Cj is the number of ab amino acid pairs at position j. In
BLOSUM62, there are 24 types of characters including 20

types of amino acids and 4 non-canonical characters (B, aspar-
tic acid or asparagine; Z, glutamic acid or glutamine; X, any
one type of 20 amino acids; *, the ending of protein sequence).

Thus, a number of [24 � (24 + 1)]/2 = 300 unique Sab scores
(Sab = Sba) were generated. Then, the same LR algorithm was
used to optimize all of Sab scores to produce a new matrix
Mtrain:

Mtrain ¼ SAA;SAC;SAD; � � � ;S��ð Þ300 ð5Þ
Implementation

First, we took 3417 experimentally identified p-sites used in
GPS 2.1 [11], and further conducted a literature curation to
Figure 1 Experimental procedure of the study

First, experimentally identified PK-specific p-sites were collected from p

all known p-sites were hierarchically classified based on their upstrea

algorithm [11] by developing two logistic regression-based methods

accuracy. Besides the classical module, we also designed a species-speci

service and local packages of GPS 5.0 were implemented in PHP, Ja

determination; SMO, scoring matrix optimization. Pos., known p-sit

besides known p-sites.
collect 10,225 site-specific kinase–substrate relations (ssKSRs).
Also, we obtained 12,031 known PK-specific p-sites from the
file ‘‘Kinase_Substrate_Dataset.gz” (Last modified on May

02, 2019) of PhosphoSitePlus (https://www.phosphosite.org/),
a widely used phosphorylation database [20]. In total, our
benchmark data set contained 23,195 ssKSRs for 15,194

unique p-sites (Figure 1 and Table S4).
As previously described [10], we downloaded the hierarchi-

cal classifications of human PKs at various levels (group,

family, subfamily, and single PK) from Kinase.com/KinBase
(http://kinase.com/web/current/kinbase/genes/SpeciesID/9606/),
thus far the best annotated resource for PKs [21]. Due to the
fact that multiple aliases are present for each human PK, here

we only used the standard gene names taken from iEKPD
(http://iekpd.biocuckoo.org), which adopted the classification
rationales of Kinase.com/KinBase to characterize and classify

eukaryotic PKs at group and family levels [22]. Based on the
regulatory PK information, we classified known PK-specific
p-sites into different PK clusters at group, family, subfamily,

and single PK levels. The PK clusters with <3 p-sites were
not further considered. It is well known that serine/threonine
and tyrosine kinases usually modify pS/pT and pY sites,

respectively. However, we found that a considerable number
of serine/threonine and tyrosine kinases could additionally
phosphorylate pY and pS/pT sites with important functions,
respectively. For example, interferon-induced, double-

stranded RNA-activated protein kinase (EIF2AK2/PKR) in
the Other/PEK family is a typical serine/threonine PK that
phosphorylates a human tumor suppressor p53 on S392

through physical interaction to regulate gene expression [23].
ublic databases and literature, and redundancy was cleared. Then,

m regulatory PKs. For model training, we updated the GPS 2.1

, PWD and SMO, which considerably improved the prediction

fic module to extend the application of GPS 5.0. Finally, the online

vaScript, and JAVA. PK, protein kinase; PWD, position weight

es for training; Neg., S/T or Y sites in positive phosphoproteins

https://www.phosphosite.org/
http://kinase.com/web/current/kinbase/genes/SpeciesID/9606/
http://iekpd.biocuckoo.org
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EIF2AK2/PKR also exhibits tyrosine kinase activity and
modifies human cyclin-dependent kinase 1 (CDK1) at Y4 to
promote its ubiquitination and proteasomal degradation [24].

Moreover, human proto-oncogene tyrosine-protein kinase
receptor RET in the tyrosine kinase (TK)/Ret family regulates
the tyrosine kinase activity of focal adhesion kinase (FAK)

through phosphorylating its Y576 and Y577 [25]. Human
RET also modifies an important stress-responsive activating
transcription factor 4 (ATF4) at four threonine residues,

including T107, T114, T115, and T119, to inhibit ATF4-
mediated apoptosis [26]. Thus, we added a class of ‘‘Dual”
for the prediction of atypical p-sites of these dual-specificity
PKs (Figure 1).

Then, the GPS 5.0 algorithm was adopted to individually
train a computational model for each PK cluster. In the clas-
sical module, we totally constructed 617 single predictors for

computationally identifying specific p-sites of 479 human
PKs, including 58 predictors for the dual-specificity PKs
(Figure 1). For the development of the species-specific module,

eukaryotic PKs pre-classified at group and family levels were
taken from iEKPD [22]. For each eukaryotic organism, PKs
Figure 2 Performance evaluation of GPS 5.0

A. Prediction performance comparison between GPS 5.0 (red line) a

ScanSite 4.0 [12] (blue, green, yellow green, and purple dots), NetPho

cyan dots), KinasePhos 2.0 [29] (gray dot), and MusiteDeep [13] (ligh

CK2 (CMGC/CK2), PKA (AGC/PKA), and MAPK (CMGC/MAPK)

that could only be predicted by GPS 5.0, including CAMK/PKD, T

(DYRK_Y). The ROC curves of LOO, 4-fold, 6-fold, 8-fold, and 10-f

and cyan, respectively. CDK, cyclin-dependent kinase; CMGC, [CD

kinase (GSK) and CDC-like kinase (CLK)]; CK2, casein kinase 2; AG

CaM kinase; PKD, protein kinase D; TK, tyrosine kinase; Tec, tyro

specificity tyrosine phosphorylation-regulated kinase; Sn, sensitivity; S

under curve; LOO, leave-one-out.
were reserved if their corresponding predictors at the family
level could be obtained. In total, the species-specific module
could predict the PK-specific p-sites of 44,795 PKs in 161

species (Figure 1).
As previously described [10], we randomly generated 10,000

PSP(30, 30) peptides based on the frequencies of the 20 amino

acid residues in the training data set to estimate the false pos-
itive rate (FPR) of predictions. For each PK cluster, the pro-
cess was repeated 20 times, and the average value was

determined as the final FPR. The high, medium, and low
thresholds were adopted with FPRs of 2%, 6%, and 10%,
respectively, for serine/threonine kinases. Likewise, FPRs of
4%, 9%, and 15% were adopted for high, medium, and low

thresholds for tyrosine kinases. The online service of the
classical module of GPS 5.0 was implemented in PHP and
JavaScript. We also integrated two web servers, IUPred [27]

and NetSurfP [28], to predict surface accessibilities, disorder
regions, and secondary structures of inputted proteins. The
stand-alone packages of GPS 5.0 were developed in JAVA

for supporting three major operation systems including
Windows, Linux, and Mac OS (Figure 1).
nd other existing predictors, including GPS 2.1 [11] (cyan line),

s3.1 [14] (brown dot), KinasePhos 1.0 [15] (yellow, light blue, and

t blue line) for four PK families, including CDK (CMGC/CDK),

. B. ROC curves and AUC values of GPS 5.0 for a number of PKs

K/Tec, CMGC/DYRK (DYRK_ST), and dual/CMGC/DYRK

old cross-validations are colored in red, blue, green, yellow green,

K, mitogen-activated protein kinase (MAPK), glycogen synthase

C, protein kinase A, G, and C; PKA, protein kinase A; CAMK,

sine kinase expressed in hepatocellular carcinoma; DYRK, dual-

p, specificity; ROC, receiver operating characteristic; AUC; area
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Performance evaluation and comparison

As previously described [10], four standard measurements
including accuracy (Ac), sensitivity (Sn), specificity (Sp), and

Matthews correlation coefficient (MCC) were adopted to
evaluate the performance and robustness of the GPS 5.0.
The self-consistency validations were calculated for all PK

clusters (Tables S2 and S3). Also, 10-fold cross-validations
were performed for 245 PK categories wit �30 p-sites
(Table S2), and LOO validations were conducted for other

PK categories (Table S3). The high congruence of different
validation results indicated the promising accuracy and robust-
ness of GPS 5.0 (Tables S2 and S3).

To further demonstrate the superiority of GPS 5.0, we com-

pared the prediction performance of GPS 5.0 with that of
other existing predictors, such as GPS 2.1 [11], ScanSite 4.0
[12], NetPhos3.1 [14], KinasePhos 1.0 [15], KinasePhos 2.0

[29], and MusiteDeep [13] (Figure 2). Due to the page limita-
tion, four typical PK families including CDK, casein kinase
2 (CK2), protein kinase A (PKA), and mitogen-activated

protein kinase (MAPK) were selected for demonstration
(Figure 2). For each PK family, we directly submitted its cor-
responding training data set into each tool to calculate the per-
formance and compared with the 10-fold cross-validation

result of GPS 5.0. The ROC curves of GPS 2.1 [11] and
MusiteDeep [13] were illustrated, while the Sn and 1 � Sp val-
Figure 3 Performance comparison between GPS 5.0, GPS 2.1, and o

A. AUC values of MLS, PWD, MaM, and SMO for the four PK fami

used in GPS 2.1 (brown), whereas PWD and SMO are developed to rep

(pink) and three types of ML algorithms including SVMs (purple), RF

were calculated from the 10-fold cross-validations. MLS, motif length

support vector machine; RF, random forest; KNN, k-nearest neighbo
ues of ScanSite 4.0 [12] were calculated at high, medium, low,
and minimum thresholds separately. The default cut-off scores
of NetPhos3.1 [14] and KinasePhos 2.0 [29] were adopted,

whereas Sn values of KinasePhos 1.0 [15] with Sp at 100%,
95%, and 90% were computed separately. As shown in
Figure 2A, we found that GPS 5.0 achieved a highly compet-

itive accuracy with MusiteDeep, a deep learning-based predic-
tor [13]. The prediction performance of GPS 5.0 was much
better than that of other tools, including GPS 2.1 [11] (Fig-

ure 2A). It should be noted that MusiteDeep only constructed
5 PK-specific predictors at the family level, whereas GPS 5.0
could predict for much more PK families, such as CaM
kinase/protein kinase D (CAMK/PKD) and TK/Tec

(Figure 2B). The pS/pT and pY sites differentially modified
by dual-specificity tyrosine phosphorylation-regulated kinase
(DYRK) could also be accurately predicted (Figure 2B).

For the four PK families of CDK, CK2, PKA, and MAPK,
we further compared the performance of the two new methods
in GPS 5.0 with that of previous approaches implemented in

GPS 2.1. For each PK family, the AUC values of MLS,
PWD, MaM, and SMO were exclusively calculated from the
10-fold cross-validations. Our results demonstrate that PWD

and SMO perform better than MLS and MaM in p-site predic-
tion as indicated by higher AUC values for all four PK families
tested (Figure 3A). In addition, three ML algorithms in scikit-
learn, including support vector machines (SVMs), random for-
ther ML algorithms

lies including CDK, CK2, PKA, and MAPK. MLS and MaM are

lace MLS and MaM in GPS 5.0 (green). B. AUC values of GPS 5.0

(brown), and KNN (green) for the four PK families. AUC values

selection; MaM, matrix mutation; ML, machine learning; SVM,

r.
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est (RF), and k-nearest neighbor (KNN), were adopted for
training models and compared with GPS 5.0. As shown in Fig-
ure 3B, GPS5.0 achieved higher AUC values of the 10-fold

cross-validations than other algorithms for all four PK families
tested.

Usage of GPS 5.0

For convenience, the stand-alone packages of GPS 5.0 are rec-

ommended (Figure 4). The main interface is the classical mod-
ule of GPS 5.0, which contains three parts, including the
hierarchical classification tree of PK categories shown in the
left panel (Figure 4A), which enables the selection of PKs at

four levels including group, family, sub-family, and single
PK. In the lower-right panel, users could provide one or mul-
tiple protein sequences in FASTA format and select a thresh-

old (Figure 4B). By left-clicking on the ‘Submit’ button, the
prediction results will be presented in the upper-right panel
as a tabular list containing position, code, PK, flanking pep-

tide, score, and cutoff for a predicted p-site (marked in red)
(Figure 4C). Alternatively, user could load a demo sequence
by clicking the ‘Example’ button, or clear the inputs by click-
ing the ‘Clear’ button (Figure 4).
Figure 4 Interface of the classical module in GPS 5.0 software packa

A. The hierarchical classification tree of individual PK predictors. B. T

C. The prediction results are shown in a tabular format, including posit

scores, and pre-defined cutoff values for predicted kinase-specific p-sit
In GPS 5.0, human Beclin-1, an important autophagy-
related (ATG) protein and tumor suppressor [30,31], was
chosen as an example for the prediction of kinase-specific

p-sites. It has been reported that the S234 and S295 of
Beclin-1 are phosphorylated by Akt, which inhibits autophagy
by regulating the interaction between Beclin-1 and 14-3-3 pro-

teins [30]. The predictions of GPS 5.0 are highly consistent
with experimental results. Two additional p-sites, S10 and
S90, were predicted under a medium threshold. Whether the

two p-sites are really phosphorylated by Akt remains to be
experimentally validated.

Also, GPS 5.0 web server was developed in a user-friendly
manner (Figure 5A, Figure S1). For each PK predictor, a

sequence logo is illustrated by theR package ggseqlogo [32] with
the PSP(30, 30) items of its positive data set, and a simplified
logo icon is added for each prediction result (Figure S1A). A col-

umn entitled ‘‘Source”was added to denote whether a potential
ssKSR was previously reported by the literature (Exp.) or just a
prediction (Pred.) (Figure S1A). Besides the presentation and

statistics of the predicted results, structural features such as sec-
ondary structures, surface accessibilities, and disorder regions
could also be predicted and shown by IUPred and NetSurfP

(Figure S1). In IUPred, the disorder propensity values range
from 0 to 1, and an amino acid residue with a calculated score
ge

he protein sequence of human Beclin-1 is presented as an example.

ions, amino acid types, regulatory PKs, flanking regions, predicted

es.
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>0.5 would be considered as disordered [27]. In NetSurfP, the
relative surface area (RSA) was calculated for measuring the
surface accessibility, and an amino acid with an RSA value

>0.25 would be taken as an exposed residue [28]. From protein
sequences, NetSurfP could also predict three types of potential
secondary structures, including a-helix, b-strand, and coil, for

each amino acid residue [28].
To further exhibit the superiority of GPS 5.0, other known

PKs that phosphorylate human Beclin-1 were collected from

the literature [31,33–36]. Unc-51-like kinase 1 (ULK1) has
been reported to induce autophagy through phosphorylating
Beclin-1 at S15 [33], while S90 is phosphorylated by CAMK2
to promote the ubiquitination of Beclin-1 for the activation

of autophagy [34]. Also, it is known that two pY sites (Y229
and Y233) in Beclin-1 are phosphorylated by epidermal
growth factor receptor (EGFR), which is primarily responsible

for the suppression of autophagy [31]. The prediction results of
GPS 5.0 covered most of the known kinase-specific p-sites.
Moreover, two additional p-sites, S64 and S177 of Beclin-1,
Figure 5 Prediction of kinase-specific p-sites in human Beclin-1

A. Multiple PK predictors including AGC/Akt, CAMK/CAMK2, TK

service of GPS 5.0. Such a manipulation could also be carried out in G

Known PKs and p-sites are shown in red, while newly predicted PKs a

relations; EGFR, epidermal growth factor receptor; ULK, Unc-51-lik
were predicted by GPS5.0 to be specifically modified by
ULK1 (Figures 5B and S1).
Future developments

In this study, we updated a highly useful tool named GPS 5.0

for the prediction of PK-specific p-sites, including a classical
module (Figure 4) and a species-specific module (Figure S2).
In the former, there were 617 individual predictors constructed

for predicting p-sites of 479 human PKs, whereas kinase-
specific p-sites of 44,795 PKs could be predicted for 161
eukaryotes in the latter. In GPS 5.0, two novel methods,
PWD and SMO, were developed to improve the training effi-

ciency and performance of the previous developed GPS 2.1
algorithm [11].

For each PK predictor, the information content Ri was cal-

culated in bits for the position i in the alignment as previously
described [37]:
/EGFR, and Other/ULK/ULK/ULK1 were selected in the online

PS local packages. B. Predicted ssKSRs between PKs and p-sites.

nd p-sites are marked in blue. ssKSR, site-specific kinase–substrate

e kinase 1.
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Ri ¼ EAll � EPos ¼ �
X20
n¼1

pnlog2pn � �
X20
n¼1

qnlog2qn

 !
ð6Þ

where EAll and EPos indicate Shannon entropies measured
from the PSP(30, 30) items in all phosphorylated proteins

and in the PK-specific positive data set, respectively. The sym-
bol n denotes one of the 20 types of amino acid residues,
whereas pn and qn indicate the observed frequencies of n
estimated from the background and foreground data sets,

respectively. The Ri values were separately calculated for ser-
ine/threonine PKs and tyrosine PKs, while the middle p-sites
were not included for the computation. Then, Pearson correla-

tion coefficient (PCC) values are pairwisely calculated between
the Ri scores and the outputs of PWD training processes for
617 individual PK predictors (Table S5). The average PCC

value was 0.606, which was increased to 0.656 if only PK pre-
dictors with �30 p-sites were considered. Several instances for
the correlation between the information content and the PWD
output were shown (Figure S3). For example, weight values for

AGC/Akt at positions �5 and � 3 were determined as 0.8454
and 1.0000. Such a result follows the canonical motif
R-X-R-X-X-S/T of the Akt family [38] (Figure S3). Also, only

the position +1 for Atypical/PIKK/ATM was determined as
1.0000, which is consistent with the S/T-Q motif of
ATM/ATR [39]. Moreover, the weight values of 0.5677 and

1.0000 at positions �2 and +1 are consistent with the
P-X-S/T-P motif of CMGC/MAPK [40], and the weight value
of 1.0000 at the +3 position supports a known motif Y-X-X-P

of TK/Abl [41] (Table S5 and Figure S3). In this regard,
higher position weights derived from PWD are generally con-
sistent with information contents of known PK consensus
motifs.

Since December 2004, the online service of GPS 1.1 and
local packages of GPS 2.0 as well as 2.1 have been freely acces-
sible to academic use for nearly 15 years [9–11]. In future, GPS

5.0 will be continuously maintained and improved. The com-
putational models will be updated if new experimentally char-
acterized kinase-specific p-sites are available. In addition, we

are currently testing various types of methods including both
traditional ML algorithms and deep-learning algorithms,
which will hopefully further improve the accuracy of GPS. It

is also worth mentioning that only sequence information has
been considered at the current stage, and we will test structural
features and further integrate both sequence and structural
features to improve the performance. We believe that GPS

5.0 could serve as a high-profile tool and provide useful infor-
mation for further studies of phosphorylation.

Availability
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