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Abstract

Cells use common signaling molecules for the selective control of downstream gene expression and cell-fate decisions. The
relationship between signaling molecules and downstream gene expression and cellular phenotypes is a multiple-input and
multiple-output (MIMO) system and is difficult to understand due to its complexity. For example, it has been reported that,
in PC12 cells, different types of growth factors activate MAP kinases (MAPKs) including ERK, JNK, and p38, and CREB, for
selective protein expression of immediate early genes (IEGs) such as c-FOS, c-JUN, EGR1, JUNB, and FOSB, leading to cell
differentiation, proliferation and cell death; however, how multiple-inputs such as MAPKs and CREB regulate multiple-
outputs such as expression of the IEGs and cellular phenotypes remains unclear. To address this issue, we employed a
statistical method called partial least squares (PLS) regression, which involves a reduction of the dimensionality of the inputs
and outputs into latent variables and a linear regression between these latent variables. We measured 1,200 data points for
MAPKs and CREB as the inputs and 1,900 data points for IEGs and cellular phenotypes as the outputs, and we constructed
the PLS model from these data. The PLS model highlighted the complexity of the MIMO system and growth factor-specific
input-output relationships of cell-fate decisions in PC12 cells. Furthermore, to reduce the complexity, we applied a
backward elimination method to the PLS regression, in which 60 input variables were reduced to 5 variables, including the
phosphorylation of ERK at 10 min, CREB at 5 min and 60 min, AKT at 5 min and JNK at 30 min. The simple PLS model with
only 5 input variables demonstrated a predictive ability comparable to that of the full PLS model. The 5 input variables
effectively extracted the growth factor-specific simple relationships within the MIMO system in cell-fate decisions in PC12
cells.
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Introduction

Cells use common signaling molecules to selectively control

downstream gene expression and cell-fate decisions. The relation-

ship between signaling molecules and gene expression or cellular

phenotypes was previously thought to be a one-to-one correlation.

However, recent studies have revealed that signaling molecules

and downstream gene expression levels and cellular phenotypes

are mutually connected, and their relationship appears to be a

multiple-input and multiple-output (MIMO) system [1–6].

For example, PC12 cells, an adrenal chromaffin cell line, have

been shown to undergo cell differentiation, proliferation and death

in response to various growth factors [7–11]. Nerve growth factor

(NGF) and pituitary adenylate cyclase-activating polypeptide

(PACAP) induce differentiation and neurite extension, epidermal

growth factor (EGF) induces cell proliferation, and the protein

synthesis inhibitor anisomycin induces cell death [9–18]. These

stimuli use common signaling pathways. NGF induces differenti-

ation via the receptor-tyrosine kinase, TrkA, which causes a

sustained activation of downstream signaling pathways, including

both the ERK and AKT pathways [9,10,19]. PACAP activates the

G protein type receptor PAC1, which phosphorylates CREB

through cAMP-dependent protein kinase A (PKA) activation,

leading to cell differentiation [10,20,21]. EGF induces cell

proliferation by activating the tyrosine kinase receptor EGFR,

which transiently activates the ERK and AKT pathways

[9,15,22,23]. Anisomycin activates mitogen-activated protein

kinase (MAPK) cascades, such as JNK and p38, as well as

caspases, including Caspase 3, which leads to cell death.

Moreover, signaling molecules transmit information downstream

via the protein expression of immediate early genes (IEGs),

including c-Fos, c-Jun, EGR1, FosB and JunB [24,25]. Thus, a
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wide range of stimuli encode information into specific temporal

patterns and combinations of the multiple-inputs, such as MAPKs

and CREB, that are further decoded by the multiple-outputs, such

as expression of IEGs to exert biological functions in PC12 cells.

However, the essential and simple relationship in the MIMO

system remains to be elucidated.

To analyze the MIMO system between signaling molecules and

cellular phenotypes, a statistical analysis called partial least square

(PLS) regression has been applied to apoptotic signaling pathways

[1–3,26–28]. The application of PLS regressions to the MIMO

system involve reducing the dimensionality of the inputs and

outputs into latent variables, which are selectively weighted linear

combinations of the inputs and outputs. A linear regression is then

performed between the latent variables of the inputs and the

outputs. Because the latent variables explain the characteristics of

the data using a smaller number of latent variables than the

number of original variables, those latent variables are called

principal components. This method can relate multiple signaling

molecules to multiple downstream functions based on heteroge-

neous multivariate signaling in response to various stimuli. The

principal components in the PLS model consist of linear

combinations of all variables. Because the number of variables is

not reduced and complexity still remains, the result of the PLS

regression is difficult to intuitively understand. To facilitate a

better understanding of the MIMO system, a method for further

reducing the number of variables is required.

In this study, we employed PLS regression and analyzed the

complex relationship between the phosphorylation of signaling

molecules and the expression of IEGs and cellular phenotypes in

PC12 cells in response to various stimuli. The PLS model

highlighted the complex characteristics of the MIMO system and

stimuli specific input-output relationships of cell-fate decisions in

PC12 cells. Furthermore, to reduce the number of input variables

in the PLS model, we applied a backward elimination method to

the PLS regression model and obtained a simple PLS model with 5

input variables. The simple PLS model with only 5 input variables

demonstrated a predictive ability comparable to that of the full

PLS model with 60 variables. The 5 input variables effectively

highlight the simple relationships within the MIMO system and

stimuli specific input-output relationships of cell-fate decisions in

PC12 cells. the simple relationships can be intuitively understood

and easily observed by visual inspection.

Results

The Multiple-input and Multiple-output System in PC12
Cells

We stimulated PC12 cells with various doses of NGF, PACAP,

EGF, and anisomysin and measured time series data of the

phosphorylation of signaling molecules, including ERK (pERK),

CREB (pCREB), JNK (pJNK), AKT (pAKT) and p38 (pp38)

(Figs. 1, Table S1), protein expression levels of immediate early

genes (IEGs), including c-FOS, c-JUN, EGR1, JUNB and FOSB

(Fig. 1, Table S1), and cellular phenotypes, including neurite

lengths, cell viability (respiratory chain activity of mitochondria),

cell cycle (S-phase fraction) and cell death (Caspase3 activity)

(Figs. 1, Table S1). Among many asssays for detection of apoptosis,

we chose caspase3 activity because of the availability for high-

throughput assay. NGF, PACAP, EGF, and anisomycin induced

distinct temporal patterns and combinations of phosphorylation of

signaling molecules, IEGs and cellular phenotypes. We did not

observe obvious cell proliferation by EGF stimulation under the

conditions. Here, we regarded the phosphorylation of signaling

molecules as the inputs and the IEGs and cellular phenotypes as

the outputs.

Construction of the PLS Model
We applied PLS regression to infer the MIMO system

underlying cell-fate decisions in PC12 cells (Fig. 2) [29]. PLS

regression is a regression method for use with MIMO systems that

involve reducing the dimensionality of the inputs and outputs into

latent variables, which are selectively weighted linear combina-

tions of the inputs and the outputs, denoted as principal

components. A linear regression is then performed between the

principal components of the inputs and the principal components

of the outputs (see Materials and Methods). The principal

components were determined to maximize the capture of the

covariance between the input latent variable and the output latent

variable, and the principal components were orthogonal to one

another. Thus, the PLS regression predicts multiple output

variables from multiple input variables.

The input data set consisted of 20660 matrices of phosphor-

ylation of signaling molecules at 12 time points (60 variables) that

involved 5 doses of 4 stimuli (Fig. 2A, Tables 1 and S1, see

Materials and Methods). The output dataset consisted of 20695

matrices of the protein expression of 5 IEGs with 12 time points

and cellular phenotypes of neurite lengths, cell viability and cell

death at 9 time points and cell cycle at 8 time points (95 variables)

that involved 5 doses of 4 stimuli (Fig. 2A, Tables 1 and S1, see

Materials and Methods). We used the LOOCV MSE (leave-one-

out cross validation mean squared error) [30] as the estimated

prediction error to optimize the number of model dimensions

(Fig. 2B) and determined that the LOOCV MSE was minimized

with four principal components. The first principal component

captured approximately 45% of the total variance, the first and

second principal components captured 67% of the total variance,

and the first to fourth principal components captured approxi-

mately 85% of the total variance (Fig. 2C). The Pearson

correlation coefficient between the measured outputs and the

predicted outputs in the four principal components was 0.94

(Fig. 2D).

PLS regression characterizes the input-output system using

‘‘loadings’’, which are the vector projections of the unit direction

vector of the principal component on each variable, and ‘‘scores’’,

which are the projections of sample points on the principal

component direction. In short, loadings represent the contribution

of each variable to the principal component, and scores represent

condition specificity in the principal component.

In the input loadings of the first principal component, pERK,

pCREB and pAKT were positive, whereas pJNK and pp38 were

negative (Fig. 3A), indicating their opposing contributions to the

first principal component. In the input scores of the first principal

component, NGF, PACAP and EGF were positive, whereas

anisomycin was negative (Fig. 3B), indicating that anisomycin was

Figure 1. The inputs and outputs in the MIMO system for cell-fate decisions in PC12 cells. The inputs consisted of the 12 time points of
pERK, pCREB, pJNK, pAKT, and pp38 in response to 5 doses of 4 stimuli (Tables 1 and S2). The outputs consisted of the 12 time points for protein
expression of c-FOS, c-JUN, EGR1, FOSB, and JUNB, and 9 time points for the neurite lengths, cell viability (respiratory chain activity of mitochondria),
cell cycle (S-phase fraction) and cell death (Caspase3 activity) in response to 5 doses of 4 stimuli (Tables 1 and S1). The doses of the growth factors are
indicated by different colors.
doi:10.1371/journal.pone.0072780.g001
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inversely correlated to the other growth factors in the first

principal component. In the output loadings of the first principal

component of the outputs, the neurite length, cell viability, and all

IEGs were positive, whereas cell death and cell cycle were negative

(Fig. 3C). In the output scores, NGF and PACAP were positive,

whereas anisomycin was negative (Fig. 3D), indicating that

anisomycin was inversely correlated with the growth factors in

the first principal component. These results indicate that the first

PLS component divided the data into cell survival/differentiation

and cell death. In the input loadings of the second principal

component, pCREB and pJNK, late pAKT, and pp38 were

positive, whereas pERK and early pAKT were negative. In the

input scores, PACAP and anisomycin were positive, whereas NGF

and EGF were negative. In the output loadings of the second

principal component, cell death, cell cycle and c-FOS, JUNB and

FOSB were positive, whereas the neurite length, cell viability, c-

JUN and EGR1 were negative. In the output scores, PACAP and

anisomycin were positive, whereas NGF and EGF were negative.

These observations indicate that the second principal component

divided the data into ligands of receptor-type tyrosine kinase (NGF

and EGF) and those of other receptor types (PACAP and

anisomycin). The third principal component divided the data into

higher and lower doses of stimuli, and the fourth principal

component divided the data into EGF and others.

The first and second principal components captured approxi-

mately 67% of the variance (Fig. 2C), and we plotted both the

loadings and scores on these two principal components (Fig. 3E–

H). In the first quadrant of the loadings, pCREB and late pAKT in

the inputs were correlated with c-FOS, JUNB and FOSB in the

outputs (Fig. 3E, G). In the second quadrant of the loadings, pJNK

and pp38 in the input were correlated with cell death and cell

cycles in the outputs (Fig. 3 E, G). In the fourth quadrant, pERK

and early pAKT in the inputs were correlated with the neurite

length, cell viability, EGR1 and c-JUN in the outputs. In the

scores, the first, second, and forth quadrant involved PACAP,

anisomycin and NGF, respectively (Fig. 3F, H), indicating that

these quadrants represent stimuli-specific input-output relation-

ships. Thus, the loadings and scores of the first and second

principal components highlight characteristics of the MIMO

system and growth factor specific input-output relationships of cell-

fate decisions in PC12 cells, respectively.

Validation of the PLS Model
We validated the PLS model using additional experimental data

including inhibitors of signaling molecules. We perturbed the

activity of signaling molecules by adding inhibitors and measured

the inputs and cellular phenotypes (Table S2). We used

PD0325901 (MEK inhibitor), H89 (PKA inhibitor), LY294002

(PI3K inhibitor), SB203580 (p38 inhibitor), and SP600125 (JNK

inhibitor) that are thought to inhibit pERK, pCREB, pJNK, pp38

and pAKT, respectively.

Because of prominent effects of NGF and PACAP on neurite

lengths and MTS, and of anisomycin on cell cycle and cell death,

Figure 2. Construction of the PLS model. (A) Construction of the PLS model. Inputs matrix X (20660) regressed against the outputs matrix Y
(20695). Each column and row in X correspond with time course points of MAPKs and CREB, and the doses of stimuli, respectively. Each column and
row in Y correspond with time course points of the IEGs and phenotypes, and with doses of stimuli, respectively. B is the coefficient matrix and E is
the residue matrix of the PLS model. (B) LOOCV MSE (leave-one-out cross validation mean square error) as a function of the number of principal
components. (C) The cumulative contribution percentage of the principal components. (D) Correlation plots between the measured and predicted
outputs. The Pearson correlation coefficient, r, was 0.94. Each dot represents a single time point for one of the outputs.
doi:10.1371/journal.pone.0072780.g002
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Figure 3. Loadings and scores of the principal components of the inputs and outputs. (A) Input loadings. A wedge indicates the temporal
evolution of the indicated molecules from 0 to 360 min (Table 1). (B) Input scores. A wedge indicates the doses of the stimulant. (C) Output loadings.
A wedge indicates the temporal evolution (Table 1). (D) Output scores. A wedge indicates the doses of the indicated molecules (Fig. 1). The red and
blue colors indicate positive and negative values, respectively (A–D). Scatter plots of input loadings (E), input scores (F), output loadings (G) and
output scores (H) of the first and second principal components. The colors correspond to the latent variables (E, G) and stimuli (F, H). The numbers
indicate the time (minute for pERK, pCREB, pJNK, pAKT, pp38, c-FOS, c-JUN, EGR1, JUNB and FOSB and hour for neurite lengths, cell viability, cell cycle
and cell death).
doi:10.1371/journal.pone.0072780.g003
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we chose these stimuli for validation by the inhibitor experiments.

Using the measured inputs in the presence of the inhibitors, the

PLS model predicted the neurite length in the presence of the

inhibitors (Fig. 4A, B). The predicted neurite length showed a high

correlation (r§0.7) with the measured neurite length in response

to NGF (r = 0.78) and PACAP (r = 0.82). The predicted c-FOS, c-

JUN and EGR1 expression levels showed high correlations with

the measured data in response to NGF (r = 0.93 for c-FOS,

r = 0.94 for c-JUN, r = 0.81 for EGR1) (Fig. 4A, B). The predicted

c-FOS FOSB and JUNB expression levels were highly correlated

with the measured data in response to PACAP (r = 0.91 for c-FOS,

r = 0.93 for FOSB, r = 0.78 for JUNB) (Fig. 4B). However, we

observed a low correlation (rƒ0.5) between JUNB and NGF

(r = 0.50) and between EGR1 and PACAP (r = {0.1) (Fig. 4A, B).

This lack of correlation may be attributable to the low expression

levels of the IEGs (Table S2) rather than a low predictive ability of

the PLS model. Thus, the PLS model predicted data that

correlated well with the inhibitor experimental data regarding

the neurite length and protein expression levels of the IEGs. A low

correlation between cell viability and PACAP (r = 0.1) may be

caused by small changes of cell viability, similarly to the low

correlations of some IEGs. A low predictive ability for cell death (r

= 0.16 for anisomycin) may occur due to the complex and drastic

response only in the presense of inhibitors, and thus the model

could not be trained well in the absence of inhibitors.

We previously found that simultaneous addition of NGF and

PACAP leads to synergistic induction of FOSB and JUNB [31].

We validated our model by the experiment with simultaneous

addition of NGF and PACAP, and found that the model

reasonably predicted the induction of FOSB and JUNB (Table

S6, Figure S2). Thus, the PLS model predicted data that

correlated well with the additional experimental data. Considering

the assumption of the linear relationship in the PLS regression, this

suggests that the synergistic effect could lie between receptors and

the inputs, rather than between the inputs and outputs of the

MIMO system, and that there is no strong nonlinear cross-talk in

the MIMO system.

Reduction of the PLS Model by Backward Elimination PLS
Regression

Although PLS regression involves reducing the dimensionality

of the inputs into principal components, the principal components

continue to involve all of the inputs, making it difficult to

intuitively understand how the combination of inputs correlates

with the outputs. To facilitate an intuitive understanding of the

relationship by reducing the number of variables, we employed a

backward elimination variable selection process [32] in the PLS

regression called the backward elimination PLS regression

method. We constructed a set of single variable-eliminated PLS

models and estimated the LOOCV MSE of each model. We

eliminated the variable with the minimum LOOCV MSE. We

then reconstructed each single variable-eliminated PLS model

using the remainder of the variables. We iterated this step

sequentially and we maintain the number of components at four

through the whole process. As a result, as the model was reduced

in order, the LOOCV MSE decreased and reached a minimum

with 22 input variables (Fig. 5A–C, Table 2). The 22-input

variable PLS model provided the best predictive accuracy of any

PLS model. The eliminated inputs are also considered to be

factors that decrease or do not affect the predictive accuracy of the

model. As the input variables were sequentially eliminated, the

error increased and reached a level similar to that of the full PLS

model when 5 input variables remained. The last 5-input variable

model was denoted as the simple PLS model (Fig. 5D). The input

variables in the simple PLS model were pERK at 10 min

(pERK10), pCREB at 5 and 60 min (pCREB5 and pCREB60),

pAKT at 5 min (pAKT5) and pJNK at 30 min (pJNK30). This

result indicates that pERK10, pCREB5, pCREB60, pAKT5 and

pJNK30 were the minimum set of the inputs that showed a

comparable predictive accuracy as that of the entire data set of the

outputs in the full PLS model with 60 input variables. We further

validated the simple model by use of the inhibitor experiments in

Figure 4 and found that the simple model similarly predicted the

inhibitor experimental result as the full and best models (Fig. 6 and

Fig. S1). The variables pERK10, pAKT5 and pJNK30 were

considered to indicate the peak activity of pERK, pAKT and

pJNK, respectively (Fig. 1). The variables pCREB5 and pCREB60

may correspond to pERK and PKA activity, respectively, because

Table 1. Summary of the input (1,200 points) and output (1,900 points) data shown in Fig. 1.

Molecule/Phenotype Time points

Input pERK 0, 2, 5, 10, 15, 30, 60, 90, 120, 180, 270, 360 (min)

pCREB

pAKT

pJNK

pp38

Output c-FOS 0, 2, 5, 10, 15, 30, 60, 90, 120, 180, 270, 360 (min)

FOSB

c-JUN

EGR1

JUNB

Neurite length 6, 9, 12, 18, 24, 30, 36, 42, 48 (hour)

Cell viability 6, 9, 12, 18, 24, 30, 36, 42, 48 (hour)

Cell death 1, 3, 6, 9, 12, 18, 24, 36, 48 (hour)

Cell cycle 4, 8, 12, 16, 20, 24, 28, 32 (hour)

doi:10.1371/journal.pone.0072780.t001
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pCREB is regulated by pERK and PKA. We then plotted the

loadings and scores of the 5 variables in the first and second

principal component axes (Fig. 5E, F). To facilitate simple

interpretation of the simple model with 5 input variables, we

selected the single output variable for each output with maximum

norm that is considered to indicate the maximum amount of

information regarding the output variable. The selected output

variables were cell death at 12 hour (Cell death12), cell cycle at 32

hour (Cell cycle32), JUNB at 270 min (JUNB270), FOSB at

180 min (FOSB180), c-FOS at 60 min (c-FOS60), neurite length

at 48 hour (Neurite length48), cell viability at 48 hour (Cell

viability48), c-JUN at 90 min (c-JUN90) and EGR1 at 90 min

(EGR1-90). We plotted the loadings and scores of the selected

single outputs for each variable (Fig. 5G, H) of the simple PLS

model with 5 input and 9 output variables (Fig. 7A). The variable

pJNK30 correlated with Cell death12 and pCREB5, and

pCREB60 correlated with JUNB270, FOSB180 and c-FOS60.

pERK10 and pAKT5 correlated with c-JUN90 and EGR1-90.

Neurite length48 and Cell viability48 correlated with pCREB5

and pCREB60, and pERK10. Anisomycin, PACAP, NGF and

EGF were plotted in the first, second, third and fourth quadrants,

respectively. The results of the simple PLS model are consistent

with those of the full PLS model, indicating that the simple PLS

model effectively represents the relationships between the inputs

and the outputs underlying cell-fate decisions in PC12 cells.

Discussion

In this study, we employed PLS regression to describe the

relationship between the phosphorylation of signaling molecules

and the expression of IEGs and cellular phenotypes, which has

been applied to similar biological data sets [1–3,26–28,33]. The

loadings and scores of the PLS model highlight characteristics of

the MIMO system and growth factor specific input-output

relationships of cell-fate decisions, respectively, in PC12 cells.

One of the technical highlights of this study is the model

reduction via backward elimination PLS regression. We found that

a reduction of the number of input variables provided better

predictive ability, and the 22-variable model showed the best

predictive ability. We further reduced the number of variables,

and found that the simple PLS model with 5 input variables

showed a comparable predictive ability to that of the full PLS

model with 60 input variables. We also reduced the number of

outputs by selecting the output with the maximum norm, which is

considered to encode the maximum information of each output.

Such reduction methods help provide an intuitive understanding

of the complex relationships in the MIMO system and can be

widely applied to any signaling and cellular phenotypes. The

variable importance in the projection (VIP) scores is indicative of

the importance of each variable in the projection used in a PLS

model and are often used for variable selection [1]. We calculated

the VIP scores of all variables in the full PLS model and found that

the 5 variables in the simple PLS model were included in the top

20 variables selected by VIP (Table S4). Furthermore, we

compared the simple PLS model with the VIPs-PLS model with

5 input variables selected from the highest VIP score (Table S5).

The simple PLS model with 5 input variables showed lower

LOOCV MSE and higher correlation than the VIPs-PLS models

with 5 input variables. indicating that the prediction ability of the

simple model is higher than the VIPs-PLS model. These results

support the importance of these 5 variables in the simple PLS

model.

The simple PLS model with 5 variables demonstrated a

comparable predictive ability to that of the full PLS model. The

simple PLS model with 5 input variables and 9 output variables

(Fig. 7A) facilitates an intuitive understanding of the MIMO

system and growth factor specific input-output relationships of cell-

fate decision in PC12 cells (Fig. 7B). The simple model showed the

similar predictive ability to the full model against the inhibitor

Figure 4. Validation of the PLS model using inhibitor
experiments. Correlation plots between the measured outputs and
predicted outputs with NGF (A), PACAP (B) and anisomycin (C). The
correlation coefficient, r, is indicated in each plot. Each dot represents a
single time point. The data sets with PD0325901 (MEK inhibitor), H89
(PKA inhibitor), LY294002 (PI3K inhibitor), SB203580 (p38 inhibitor),
SP600125 (JNK inhibitor) (Table S2) are indicated by the various colors.
doi:10.1371/journal.pone.0072780.g004
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experiment (Fig. 6 and Fig. S1), indicating the simple model

essentially captures the input-output relationship of the MIMO

system. The selected input variables in the simple PLS model were

pERK10, pCREB5, pCREB60, pAKT5 and pJNK30. Among the

selected inputs, pERK10, pAKT5 and pJNK30 correspond to

their peak activities and are considered to encode the maximum

information of the signaling molecules (Fig. 1). It has been

reported that sustained ERK activity is required for cell

differentiation in PC12 cells [9,34,35]; however, late pERK was

not selected in the simple PLS model, although the model can

capture the characteristics of the neurite length. This omission

may occur because late pERK information is encoded by

pCREB60 levels, a downstream molecule of ERK, in the simple

PLS model. Two different time points of pCREB, pCREB5 and

pCREB60, were selected, suggesting that pCREB5 and pCREB60

encode different information. The phosphorylation of CREB has

been reported to be regulated by ERK and PKA [36]. NGF and

EGF have been reported to induce the phosphorylation of CREB

via ERK, and PACAP has been reported to induce the

phosphorylation of PKA [10,36,37]. Therefore, pCREB5 and

pCREB60 likely encode different information for stimuli and

upstream molecules.

We found that the simple model shows the similar predictive

ability for the inhibitor experiments to the full and best models,

meaning that the selected 5 input variables in the simple model

have high explanatory abilities to the outputs. We further

examined the contribution of the 5 input variables in the simple

model to the specific outputs. We made the best models for each

output and compared to the selected input variables to those in the

simple models (Table S7). The selected input variables in the best

models for each output included different sets of the input

variables in the simple model, suggesting that the different sets of

the input variables in the simple model specifically contributed to

each output. For example, the cell cycle and cell death shared the

same set of the input variables such as pERK10, pJNK30 and

pAKT5, suggesting that these output may share the same

upstream dependency. Each IEG had the different sets of the

selected input variables except c-FOS and FOSB, suggesting that

the regulation of c-FOS and FOSB were similar, and the

regulation of other IEGs were different. Moreover, pERK10,

which was selected in the simple and best models, was also selected

in the best models for each output except neurite length and c-

JUN, suggesting that pERK10 is involved in multiple outputs.

pERK30 to pERK180, which was selected in the best model, were

also selected in the best models for the neurite length, cell cycle, c-

FOS, c-JUN and EGR1. This result is consistent with the previous

observations that sustained ERK activation regulates the cellular

phenotypes [38] and protein expression of c-FOS, c-JUN and

EGR1 [39]. These input variables were not selected in the simple

model, possibly because pCREB60 reflect the sustained ERK

activation in the simple model. pCREB5, which was selected in the

simple and best models, was also selected in the best models for

neurite length, cell death and JUNB, suggesting that pERK10 is

involved in these outputs. pCREB60, which was selected in the

simple and best models, was also selected in the best models for

neurite length and cell cycle. pCREB60 in the simple model may

reflect sustained ERK activation. pJNK30, which was selected in

the simple and best models, was also selected in the best models for

cell cycle, cell death, EGR1 and FOSB. The involvement of JNK

in the regulation of cell cycle [40] and cell death [24] has been

reported. The involvement of JNK in the regulation of EGR1 and

FOSB are novel, and should be tested by experiment. pAKT5,

which was selected in the simple and best models, was also selected

in the best models for neurite length, cell cycle, cell death, c-FOS

and FOSB. The negative relationship of pAKT5 to c-FOS and

neurite length is novel and should be tested by experiment

(Figure 7). We further performed the clustering analysis of the data

in Table S7. The hierarchy levels of c-JUN, c-FOS and EGR1 are

higher than those of cellular phenotype and JUNB and FOSB.

Moreover, as the hierarchy level descends, the input variables of

the lower hierarchy levels seem subsets of those of the higher

hierarchy level. This result suggests that c-JUN, c-FOS and EGR1

are upstream regulators of cellular phenotypes and JUNB and

FOSB, which is consistent of previous observations [41,42]. Given

that c-JUN, c-FOS and EGR1 are at the higher hierarchy levels

and share the common input variables with cellular phenotype

and JUNB and FOSB of the lower hierarchy level, the whole

system is likely to be a MIMO system.

PLS regression reduces dimensionality of the inputs and outputs

into respective latent variables. In this study, we further reduced

the full PLS model by eliminating inputs variables from the

original PLS model using the backward elimination method, and

found that accuracy of the eliminated PLS model (best PLS model)

was improved. These results demonstrate that the backward

Figure 5. Reduction of the PLS model by backward elimination PLS regression. (A) MSE of LOOCV as a function of number of the
eliminated variables via the backward elimination PLS regression. Coefficient matrix of the full PLS model with 60 input variables (B), the best PLS
model with 22 input variables (C) and the simple PLS model with 5 input variables (D). The red and blue colors indicate positive and negative values,
respectively. As the number of the variables reduced, the contribution of remained variables relatively increased, and as a result, magnitude of the
regression coefficient increased. The scatter plots of the input loadings (E), input scores (F), output loadings (G) and output scores (H) of the first and
second principal components of the simple PLS model. The colors correspond to the latent variables (E, G) and stimuli (F, H).
doi:10.1371/journal.pone.0072780.g005

Table 2. The 22 input variables in the best model and five input variables in the simple model.

2 5 10 15 30 60 90 120 180 270 360 (min)

pERK B, S B B B B B

pCREB B B, S B,S B

pJNK B B B B,S B B

pAKT B, S B B

pp38 B B B B

(B; variables in the Best PLS model; S; variables in the Simple PLS model).
doi:10.1371/journal.pone.0072780.t002
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elimination PLS regression has two-fold advantage compared to

the conventional PLS regression; reduction of input variables and

improvement of accuracy of prediction. We eliminated the input

variables and obtained the best model with input of 22 input

variables, which shows the best accuracy of prediction. We further

eliminated input variables and obtained the simple model with 5

input variables, which shows comparative predictive ability to the

full model and facilitate interpretation identified 5 inputs as the

minimum set of the inputs that characterized the MIMO system in

PC12 cells. Thus, our data-driven statistical modeling method is

widely useful to effectively extract simple relationships of the

cellular MIMO system from large-scale data sets.

Materials and Methods

Antibodies
Mouse anti-phospho-ERK1/2 (Thr 202/Tyr 204) monoclonal

antibody (mAb) (#9106), rabbit anti-phospho-CREB (Thr 133)

mAb (#9198), rabbit anti-phospho-JNK (Thr183/Tyr185) mAb

(#4668), rabbit anti-EGR1 mAb (#4154), rabbit anti-c-JUN mAb

(#9165), rabbit anti-c-FOS mAb (#2250), rabbit anti-JUNB mAb

(#3753), rabbit anti-FOSB mAb (#2251), and rabbit anti-cleaved

Caspase 3 mAb (#9664) were purchased from Cell Signaling

Technology (Beverly, MA). Rabbit anti-phospho p38 mAb

(#v1211) was purchased from Promega (Madison, WI).

Cell Culture and Treatments
PC12 cellswere cultured at 37uC under 5% CO2 in Dulbecco’s

modified Eagle’s medium (DMEM) supplemented with 10% fetal

bovine serum and 5% horse serum (Invitrogen, Carlsbad, CA)

[43]. Cells were stimulated using recombinant mouse b-NGF

(R&D Systems, Minneapolis, MN), EGF (Roche, Mannheim,

Germany), PACAP (Sigma, Zwijndrecht, The Netherlands), or

anisomycin (EMD Biosciences, Inc., San Diego, CA) as previously

described [43]. We used a low dose of anisomycin (50 nM) to

activate p38 and JNK without inhibiting translation. For the QIC

assays, cells were seeded at a density of 104 cells per well in 96-well

poly-L-lysine–coated glass-bottomed plates (Thermo Fisher Scien-

tific, Pittsburgh, PA) and then starved in DMEM containing

25 mM HEPES and 0.1% bovine serum albumin for approxi-

mately 18 h before stimulation. Cells seeded in 96-well microplates

were stimulated by replacing the starvation medium with the

medium containing the stimulant using a liquid handling system

(BiomekH NX Span-8, Beckman Coulter, Fullerton, CA) with an

integrated heater-shaker (VariomagH, Daytona Beach, FL) and

robotic incubator (STX-40, Liconic, Mauren, Liechtenstein). All

of the cells within a plate were fixed simultaneously to prevent

their exposure to formaldehyde vapor during the treatment.

QIC (Quantitative Image Cytometry)
QIC was performed as previously described [44]. Briefly, after

growth factor stimulation, the cells were fixed, washed with

phosphate-buffered saline (PBS), and permeabilized with blocking

buffer (0.1% Triton X-100, 10% fetal bovine serum in PBS). The

cells were then washed and incubated for 2 h with primary

antibodies diluted in Can Get Signal immunostain Solution A

(Toyobo, Osaka, Japan). The cells were washed three times and

then incubated for 1 h with secondary antibodies. After immuno-

staining, the cells were treated for nucleus and cytoplasm staining

Figure 6. Validation of the simple PLS model using inhibitor
experiments. Correlation plots between the measured outputs and
predicted outputs using same experiment as Figure 4 with NGF (A),
PACAP (B) and anisomycin (C).
doi:10.1371/journal.pone.0072780.g006
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by incubating with Hoechst 33342 (Invitrogen, Carlsbad, CA) and

CellMask Deep Red stain (Invitrogen Carlsbad, CA), respectively.

The images of the stained cells were acquired using a CellWoRx

(Thermo Fisher Scientific, Pittsburgh, PA) automated microscope

with a610 objective. For QIC analyses, we acquired two different

fields for each well and obtained 12386356 (mean 6 SD) cells for

each well. All liquid handling for the 96-well microplates was

performed using a BiomekH NX Span-8 liquid handling system

(Beckman Coulter, Fullerton, CA).

Quantitative Analysis of the Neurite Length
PC12 cells (0.56104 cells/well) were fixed using a 10% formalin

solution (Wako, Osaka, Japan) for 10 minutes. Cells were washed

with phosphate-buffered saline (PBS), incubated with 1 mg/ml

Hoechst 33342 solution (Life Technologies, Carlsbad, CA) and

1 mg/ml CellMask (Life Technologies) in PBS for 1 hour at room

temperature and then washed with PBS. Images were captured

using a CellWoRx microscope (Thermo Fisher Scientific, Rock-

ford, IL). Using the CellMask signal as the neuronal cell image and

the Hoechst signal as the nuclear image, the lengths of the neurites

were measured with the NeuroTracer NIH ImageJ plug-in [45].

Figure 7. The simple relationships in the MIMO system in cell fate decision in PC12 cells. (A) The simple PLS model with 5 input and 9
output variables. (B) Loadings (squares) and scores (circles) of the first and second principal components in the simple PLS model with 5 input and 9
output variables were bi-plotted in input and output layers. Lines across the layers are coefficients of the matrix of the simple PLS model whose
values are indicated by the color bar. The colors of circles indicate the stimuli.
doi:10.1371/journal.pone.0072780.g007
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The length of the neurites of cells under each stimulation condition

was represented as the averaged neurite lengths of cells.

Cell Viability Assay (Mitochondrial Respiratory Chain
Activity)

Cell viability was determined by measuring mitochondrial

reduction of the MTS dye [3-(4,5-dimethythiazol-2-yl)-5-(3-

carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium] re-

agent into a soluble formazan product (Promega, Madison, WI)

for the quantification of the respiratory chain activity of the

mitochondria. PC12 cells were plated on Poly-L-lysine (PLL)-

coated 96-well plates. After incubation, cells were treated with

MTS solution (1 mg/ml), and the intracellular soluble formazan

produced by the cellular reduction of the MTS was determined by

recording the absorbance of each 96-well plate using a Mithras

LB940 microplate reader (Berthold Japan, Tokyo, Japan) at a

wavelength of 490 nm.

Cell Death Assay (Activity of Caspase 3)
Cell death was determined by measuring of activation of

Caspase 3 as cleaved Caspase 3 using western blot assays. Cell

lysates were subjected to standard sodium dodecyl sulfate

polyacrylamide gel electrophoresis (SDS-PAGE). After fraction-

ation by SDS-PAGE and transfer to nitrocellulose membranes, the

blots were incubated with antibodies directed at Cleaved Caspase

3 (1:1000 dilution; Cell Signaling Technology, Danvers, MA,

#9664 ) or pan ERK1/2 (1:2000 dilution; Cell Signaling

Technology, #9102) followed by incubation with horseradish

peroxidase-conjugated rabbit IgG (GE Healthcare, Buckingham-

shire, England). Chemiluminescence was detected using Immobi-

lon Western (Millipore, Billerica, MA). The resulting image was

captured with a luminescent image analyzer LAS-4000 (Fujifilm,

Tokyo, Japan). The signal intensity was quantified using Phoretix

1D software (TotalLab Ltd, Newcastle upon Tyne, UK).

Cell Cycle Assay (Cell Cycle S-phase Fraction)
Cell cycle S-phase fraction was determined by the incorporation

of 5-ethynyl-29-deoxyuridine (EdU) using the Click-iT EdU Cell

Proliferation AssayKit (Invitrogen). The PC12 cells were incubat-

ed with 10 mM EdU for 1 hour before fixation, permeabilization,

and EdU staining, which were performed according to the kit

manufacturer’s protocol. The proportion of nucleated cells

incorporating EdU was determined by fluorescence microscopy

using a CellWoRx microscope (Thermo Fisher Scientific), and the

fraction of cells in the S-phase was measured using MATLAB

software (MathWorks).

Partial Least Squares Regression Method
The partial least squares regression method used in this study

was described in a previous publication [1,46]. Partial least squares

regression is a predictive two-block regression method based on

estimated latent variables and is applied for the simultaneous

analysis of two data sets. The purpose of PLS regression is to build

a linear model that enables the prediction of outputs from inputs.

In this study, PLS regression analysis was performed using the

MATLAB (Mathworks) software suite. Data were normalized by

mean centering and variance scaling the different measurements.

Let X be the (20660) inputs matrix for PLS modeling. The i-th
(1ƒiƒ20) row vector of X is the input vector xt

i where :t denotes

the transpose of a vector or matrix :. The input vector xi consists

of 60 metric variables which are time course points of MAPKs and

CREB. We used 20 doses of stimuli to obtain 20 samples as input

vectors, hence, i corresponds to the attribute of stimulation. Let Y

be the (20|95) outputs matrix. The j-th (1ƒjƒ95) column vector

yj of Y is the output vector of which each variable correspond to

the attribute of stimulation, and j corresponds to the attribute of

time course point of the IEGs or phenotype.

The PLS model can be understood as two steps regression

model developed simultaneously. The first step can be considered

as consisting of the development of outer relations (X and Y metric

individually). These data matrix were decomposed in latent

variables plus a residue matrix. The sub-matrices can be

represented as the product of the scores and the loadings which

can be re-grouped in independent matrices for the X and Y matrix

as follows:

X~TPtzE

Y~UQtzF

where T and U are the scores, and P and Q are the loadings, for

the X and Y matrix, respectively. The matrices E and F
correspond to the residues associated with the PLS modeling.

The second step is a linear inner relation linking between T and U,

U~TDzH

where D is the diagonal matrix and H denotes the residual matrix.

Eventually, PLS regression is yielded by.

Y~XBze

where B is the matrix of regression coefficients

B~XtU TtXXtUð Þ{1
TtY

and e is the residual matrix.

The optimum number of components were determined by

minimizing MSE of Leave-one-out cross-validation as LOOCV

MSE [30],

LOOCV MSE =
1

NM

XN

i~1

XM
j~1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŷy
\i
ij{yij

� �2
r

where yij is the (i,j) variables of the (N|M ) matrix Y and ŷy
\i
ij is

the prediction for yij by PLS model which was trained by the data

set removed i-th sample.

Backward Elimination PLS Regression
We applied a backward elimination variable selection method

[32] for PLS because backward elimination can improve the

accuracy of a PLS model. The backward elimination PLS

regression began with the full PLS model with the input vector

of M variables. We define the LOOCV MSE removing k-th

variable from input vector as

LOOCV MSE\k~
1

NM

XN

i~1

XM
j~1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŷy
\ik
ij {yij

� �2
r

where yij is the (i,j) element of the (N|M) matrix Y and ŷy
\i
ij is the

prediction for yij by PLS model which was trained by the data set

removed i-th sample. In the n-th step of procedure, the elimination
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k�-th variable of input vector was determined by minimizing

LOOCV MSE \k for 1ƒkƒM{n{1

k�~ arg min
k

LOOCV MSE\k

then, k�-th variable was eliminated from the input vector, and

redefined the new input vector of which k�-th variable was

eliminated for (nz1)-th step. We iterated this procedure until the

4 variables remained, which is the same number as the principal

components.

Variable Importance in Projection (VIP)
We calculated the Variable Importance in Projection (VIP) of [47] to

summarize each variable contribution to the model. VIP describes

which X variables characterize the X block well and which

variables correlate with Y. VIP values summarize the overall

contribution of each input variable to the PLS model, summed

over all components and weight according to the Y variation

accounted for by each component. VIP is calculated as follows:

VIPk~
Xm

h~1

XM
j~1

R2(yj ,th)w2
hk=
Xm

h~1

XM
j~1

R2(yj ,th)

( )1=2

for each k-th input variable k = 1,…, p, where R2(a,b) stands for

the squared correlation between items in vector a and b, th is the

h-th column vector of the score matrix T, m is the number of

principle components, and whk is the (h,k) element of the weight

matrix W.
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