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Abstract: Polyetheretherketone (PEEK) titanium composite (PTC) is a novel interbody fusion device
that combines a PEEK core with titanium alloy (Ti6Al4V) endplates. The present study aimed to
investigate the in vitro biological reactivity of human bone-marrow-derived mesenchymal stem cells
(hBM-MSCs) to micro- and nanotopographies produced by an acid-etching process on the surface
of 3D-printed PTC endplates. Optical profilometer and scanning electron microscopy were used to
assess the surface roughness and identify the nano-features of etched or unetched PTC endplates,
respectively. The viability, morphology and the expression of specific osteogenic markers were
examined after 7 days of culture in the seeded cells. Haralick texture analysis was carried out on
the unseeded endplates to correlate surface texture features to the biological data. The acid-etching
process modified the surface roughness of the 3D-printed PTC endplates, creating micro- and nano-
scale structures that significantly contributed to sustaining the viability of hBM-MSCs and triggering
the expression of early osteogenic markers, such as alkaline phosphatase activity and bone-ECM
protein production. Finally, the topography of 3D-printed PTC endplates influenced Haralick’s
features, which in turn correlated with the expression of two osteogenic markers, osteopontin and
osteocalcin. Overall, these data demonstrate that the acid-etching process of PTC endplates created
a favourable environment for osteogenic differentiation of hBM-MSCs and may potentially have
clinical benefit.

Keywords: 3D-printed porous titanium implants; nanoscale topographies; acid etching processes;
mesenchymal stem cells; osteogenic differentiation; Haralick texture analysis

1. Introduction

Numerous types of bone fractures and diseases such as osteopenia, osteoporosis and
spondylosis affect millions of people worldwide. Some minor bone damage can heal easily
without surgery, thanks to the human body’s ability to self-renew and regenerate to lead the
healing process. However, when surgery becomes mandatory to restore structural function
(as in the case of knee replacement and spinal fusion) removal of damaged tissue and/or
replacement with grafts is the approach usually taken by orthopaedists [1,2]. Autografts
are still the most widely used bone grafts, followed by allografts, as both can guarantee
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osteogenesis, neovascularisation, osteoconductivity and osteoinductivity [3]. Nevertheless,
they can have side effects and complications: donor site morbidity, bone tissue shortage,
longer operative times, and a failure rate of up to 30% have been observed [4]. For these
reasons, researchers are driven to find and design synthetic and more feasible solutions,
such the development of polymeric biomaterials, 3D-bone implants and biodegradable
devices [5–8]. Furthermore, great attention continues to be directed to the development
of new technologies, such as surface modification techniques, to increase the actual clin-
ical performance of implant devices [9,10]. Orthopaedic biomaterials are designed to be
implanted in the human body as components of devices for replacing or repairing various
tissues such as bone, cartilage or ligaments and tendons, and even to direct and guide bone
restoration when necessary. In an interbody spinal fusion, the damaged intervertebral disc
is removed and substituted with a bone graft material. The most widely used materials
used for interbody cages include titanium and polyetheretherketone [11,12]. Titanium
(Ti) and Ti alloys, such as titanium-6aluminium-4vanadium (Ti6Al4V), are largely used
as implant materials as they provide mechanical support and have a decisive influence
on the speed of osseointegration [13,14]. Despite its biocompatibility, the physiochemical
properties of the surface topography of titanium have been considered essential for cell
adhesion, cell proliferation, differentiation and implant osseointegration [15–17]. Previous
studies have explored and demonstrated that micro/nano-structured surfaces on metal
implants could have an enormous impact on the biological processes leading to implant
osseointegration. To improve the interaction between the implant and stem cells, such as
hBM-MSCs, several strategies have been exploited to modify titanium surfaces. Currently,
popular techniques include additive (plasma spray, ion deposition, surface coating) or
subtractive approaches (such as sandblasting and chemical etching) [18,19]. Acid-etching
treatment, in combination with the shot-blasting approach, has been shown to increase
the nanoroughness in the nanometre to submicron range in the titanium implant, thus
improving the biological properties of the titanium implants and further enhancing their
osseointegration [19–21]. Among the materials that have been suggested as an alternative
to titanium, PEEK is a valid substitute for metal implants due to its stability and mechanical
properties, similar to those of native bone tissue [22,23]. Thanks to these characteristics,
PEEK has been widely used in orthopaedic and spinal surgery [24]. The bioinert properties
of this material, however, hinder adhesion between the implant and surrounding tissue,
which has led scientists to employ surface modification strategies such as sandblasting,
plasma spraying, acid etching and micropatterning to modify the surface of PEEK to en-
hance its bioactivity [25]. Polyetheretherketone Titanium Composite is a new material
technology, developed by Orthofix Medical Inc. (Lewisville, TX, USA), which is currently
used in interbody spinal devices (CONSTRUX Mini PTC, Forza PTC and Pillar SA PTC)
to restore the height of the spine and facilitate fusion in spinal fusion surgery [26]. This
composite material combines two porous osteoconductive Ti endplates and a low-modulus
radiolucent PEEK thermoplastic core. Compared to traditional devices made of monolithic
PEEK material, porous osteoconductive Ti endplates that oppose bone may have the poten-
tial to better facilitate fusion by allowing the integration of bone into its three-dimensional
microstructural pores. While the 3D structure of PTC endplates has previously been shown
to enhance bone growth and osteogenic cell behaviour [12], the effect of the designed
surface at the nano-scale has not been not examined. The current study aimed to examine
the effect of the PTC endplate micro- and nanofeatures, produced by a proprietary etching
process on the surface of titanium endplates. The manufacturing process of the porous Ti
plates started with additive manufacturing (3D printing), followed by a series of proprietary
post-printing processes, which included sandblasting, heat treatment and acid-etching.
A preliminary study, limited in sample size and scope, showed that the manufacturing
process of porous Ti plates creates a surface morphology at the micro and nano level that
could be useful to facilitate casting (unpublished). Based on these preliminary data, the
present work was developed. Specifically, the acid-etching process was isolated in the study
group to investigate its effects on implant surface morphology at the micro- and nanoscale
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levels. hBM-MSCs are gaining increasing importance in the field of bone regenerative
medicine due to their fundamental role in the bone healing and regeneration processes
as precursors of osteoblasts [27–29]. To highlight the potential importance of micro- and
nanofeatures in the overall performance of the new PTC device, we also examined the
response of hBM-MSCs to these surfaces in terms of cell viability and expression of early
osteogenic differentiation markers.

2. Results and Discussion
2.1. Surface Characterization
2.1.1. Microscale Surface Morphology Characterization

Photographs of the sample groups are shown in Figure 1A–E. To characterise the
differently modified surfaces, microscale surface morphologies were evaluated by SEM
investigation (Figure 1F–J). SEM analysis revealed that MF (the machined sample) exhib-
ited more flat features when compared to 3D-printed groups (PF and PFA), as expected
(Figure 1F–H). The etched samples showed fewer irregularities and more rounded edges,
which could be the result of acid etching. In addition, irregular texture in the form of
small pits can be seen on the etched samples (Figure 1H), while these types of structure
are less apparent on non-etched samples (Figure 1G). Regarding the 3D-printed porous
samples, under high magnifications, the etched samples have more rounded edges than the
non-etched samples because of the etching process (Figure 1I,J). To investigate the presence
of nano-scale feature on porous samples, the surfaces of the porous non-etched sample and
the porous etched sample were characterised in a Hitachi S-4800 field emission SEM at
magnifications of 250,000× and above using an accelerating voltage of 2 kV and a working
distance of 3.5 to 5.6 mm. The images at a magnification of 80,000× were taken for all
18 samples from P3 and P3A. For each sample, three images were taken at an approximate
location as seen in Figure 1K. Figure 1(I.1–J.3) show all SEM images of samples from the
porous non-etched and etched group at a magnification of 80,000×. The images taken from
porous etched samples show the presence of nano-scale structures with an average size
of ~10 nm on the surface, as indicated in Figure 1(J.1). However, this type of nano-scale
structure is not apparent on porous non-etched samples (Figure 1(I.1–I.3)). Since the only
difference in the process for both samples were the acid etching, it can be concluded that
the acid etching process used for the PTC porous titanium endplate is capable of changing
the material surface morphology and creating nano-scale structures on the surface.
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In panel (K), schematic of image locations (indicated as L1, L2 and L3, respectively) for sample 
group P3 and P3A. Red circles in (J.1) indicate nanostructures with an average size of ~10 nm. An 
accelerating voltage of 2 kV was used. 
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MF, PF and PFA and 500× for P3 and P3A, respectively) (F–J). In the right panel, representative
secondary electron (SE) images were used to characterise the nanostructure of the porous samples,
P3 and P3A. Images at 80 K× magnification were taken from both P3 (I.1, I.2, I.3) and P3A groups.
In panel (K), schematic of image locations (indicated as L1, L2 and L3, respectively) for sample
group P3 and P3A. Red circles in (J.1) indicate nanostructures with an average size of ~10 nm. An
accelerating voltage of 2 kV was used.

2.1.2. Microscale Roughness Measurement

Regarding the roughness measurements obtained by optical profiler, the machined
control (MF) exhibited the lowest root-mean-squared roughness (Rq), roughness average
(Ra), average maximum height (Rz), maximum profile height (Rt), maximum profile
peak height (Rp) and maximum profile valley depth (Rv) when compared with the 3D-
printed non-etched and etched samples (Figure 2A–F). However, the machined control
sample showed Skewness (Rsk) and Kurtosis (Rku) values equal to the 3D-printed samples
(Figure 2G–H). This indicated that the 3D-printed samples (both solid and porous groups)
have a higher roughness (such as Rq, Ra, Rz, Rt, Rp, Rv) than the machined samples,
and these data can fit with commonly accepted optimal parameters (Ra > 10 µm) [13,16].
Among the 3D-printed group, sample P3A presented the lowest Rq, Ra, Rz, Rt, Rp, Rv
and Rsk (Figure 2A–G). The Rq and Ra levels were highest on the surface of the PFA
samples (Figure 2A,B). The Rz, Rt, Rp and Rv were highest on the surface of PF samples
(Figure 2C–F). When comparing etched (PFA and P3A) and non-etched groups (PF and P3),
there was a general trend indicating lower Rq, Ra, Rz, Rt, Rp and Rv values for the etched
groups (Figure 2A–F) compared to those of the non-etched group. This indicates that
the etching process reduced the surface roughness of the samples as the acid etching
process removed the sharp edges of the surface profile leading to a reduction in the surface
roughness of the material at a microscale level.

2.2. hBM-MSCs Response to the Different Surface Morphologies

Enabling osteogenic differentiation by means of non-biochemical cues is a relevant
topic in the field of bone tissue engineering, with important implications in the development
of materials for inductive bone implants [30,31]. Numerous studies have shown that the
topography and geometry of biomaterials could be a critical factor in promoting osteogenic
differentiation of stem cells, such as hBM-MSCs, even without external chemical induction
factors via mechanotransduction process [32,33]. To find out which of the examined surface
structures influenced the behaviour of the cells, the response of hBM-MSCs was studied
in terms of cell number, DNA content, ALP activity, bone-bound protein production and
morphological analysis at day 7 of culture. All experiments were conducted in a culture
medium without osteogenic supplements, such as dexamethasone, b-glycerophosphate
and ascorbic acid, which are commonly added into media to promote osteogenic cell
differentiation [34].

2.2.1. Cell Viability and Morphology

hBM-MSCs viability was firstly analysed using a metabolic viability-based assay and
through quantification of DNA content (Figure 3A,B, respectively). A higher number of
cells was observed in the 3D-printed morphologies compared to the machined control
(MF) (# p < 0.05, Figure 3A). Interestingly, the PFA surface showed a significant increase
in the number of cells compared to the untreated PF (* p < 0.05). Similarly, there was a
significant increase in the number of cells in P3A compared to the P3 surface (§ p < 0.05).
These data were supported by the results of DNA quantification (Figure 3B). The DNA
content on MF was significantly reduced compared to the other surfaces tested (# p < 0.05)
and it was found that both acid-treated surfaces, PFA and P3A, significantly increased
the DNA content of their untreated counterparts, PF and P3, respectively (* p < 0.05 and
§ p < 0.05) (Figure 3B).
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Figure 2. Measurement of roughness parameters on a microscale using an optical profilometer.
Parameters evaluated: (A) mean roughness (Rq), (B) average roughness (Ra), (C) mean maximum
profile height (Rz), (D) maximum profile height (Rt), (E) maximum profile peak height (Rp), (F) maxi-
mum profile valley depth (Rv), (G) Skewness (Rsk) and (H) Kurtosis (Rku). Statistical significance
vs. MF was indicated by # (MF vs. other samples), while the symbol * means significant differences
between PF and PFA (PF vs. PFA) and § between P3 and P3A (P3 vs. P3A).
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Figure 3. Cell number and DNA content. hBM-MSCs were cultured on each scaffold for 7 days
and cell response was assessed by measuring the number of cells by the metabolic assay based on
viability (A) and DNA content (B). Bars represent mean values ± standard deviation (SD). Statistical
significance vs. MF was indicated by # (MF vs. other samples), while the symbol * indicates differences
between PF and PFA (PF vs. PFA), and § between P3 and P3A (P3 vs. P3A).

Qualitative morphological investigation using microscopy is a valuable approach
towards understanding stem cell behaviour, such as changes in the shape and morphology
of cells once in contact with material [35]. Cells may assume different phenotypes according
to surface roughness features [36]. It is broadly accepted that the nanoscale titanium
surface stimulates the differentiation of various osteoblast lineages [37,38]. Furthermore, it
was reported that osteogenic differentiation can be influenced by the initial morphology
and cytoskeleton re-organization of hBM-MSCs at the nanoscale surface topography [39].
More, the acid-etching treatment of the titanium, by changing the micro-roughness of the
material, improves the cell–titanium interaction, supporting better arrangement of the
cytoskeleton and significantly accelerating the differentiation of stem cells towards the
osteogenic lineage [38]. In this study, the morphology of hBM-MSCs was fluorescence
microscopy of the red-labelled actin cytoskeleton and SEM at day 7 of culture. As shown
in Figure 4, a different distribution pattern of actin stress fibres was observed between
the different surfaces tested. Acidic stress fibres were almost absent in the MF surface
(Figure 4A), while cells grown on 3D solid printed surfaces displayed an elongated spindle-
shaped morphology with clearly visible actin stress fibres, mainly aligned parallel to the
longitudinal axis of the cells within the whole cell body (Figure 4B,C). A different scenario
was observed at the same time of culture onto porous samples: cells appeared with spindle-
shaped morphology with abundant and highly organised actin stress fibres (Figure 4C,D).
In addition, SEM investigation corroborated the cell viability and revealed a higher cell
number on both solid (Figure 4G,M) and porous samples (Figure 4I,O) than on the MF
control (Figure 4F,K). As was clearly visible in higher-magnification SEM images, cells were
in the spreading phase in both solid and porous samples, with more cytoplasmic extensions
and filopodial attachments and cellular protrusions (red arrows) extended throughout the
material’s surfaces. By contrast, a round-shaped cell morphology was observed on the MF
control (Figure 4F,K), suggesting a very low degree of adhesion on this surface.
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 Figure 4. Cell morphology and distribution. The morphology of hBM-MSCs was examined by
fluorescence microscopy (A–E) and scanning electron microscopy (SEM) (F–O) after 7 days of culture.
The organisation of the cytoskeleton was observed after F-actin staining (red) and counterstaining of
the nuclei (blue) at 10× magnification (scale bar: 100 µm). Magnified areas of the cells are shown in
the insets (scale bar: 10 µm). Representative SEM images were collected at higher magnifications
(1000× and 5000×). The red arrows show the filopodia-like extensions of the adhered cells on all
tested surfaces.

2.2.2. Osteogenic Markers

Osteogenic differentiation can be studied through the assessment of alkaline phos-
phatase (ALP) activity and specific bone-related proteins. ALP activity is a very early
marker of cellular differentiation of the osteogenic lineage [40]. The results obtained
showed that ALP activity expressed as nmol/minute/cell was higher in cells grown on
acid-treated surfaces than those grown on untreated ones, in both solid and porous groups.
Indeed, a significant difference was obtained between PF and PFA (* p < 0.05) and then by
comparing P3 to P3A (§ p < 0.05, Figure 5). In addition, ALP data were also confirmed when
ALP activity was expressed as µmol/minute/µg of total protein content (Figure S1A) or as
µmol/minute/µg of ALP (Figure S1B). It has previously been reported that ALP expression
can increase with changes in surface microtopography, along with other proteins, such as
bone morphogenetic proteins (BMPs), osteopontin and osteocalcin, which are all involved
in the development of the bone tissue [41].
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To investigate whether different titanium topographies may be associated with a
different ability of hBM-MSCs to release important bone-related bioactive molecules into
the culture media, the secretion of biological components required for osteointegration and
osteogenesis, such as BMP-2 (Bone Morphogenetic Protein-2), BMP-4 (Bone Morphogenetic
Protein-2), VEGF-A (Vascular endothelial growth factor A) and FGF-2 (Fibroblast Growth
Factor-2), was determined over a 7-day period of cell culture (Figure 6). Among the BMPs,
BMP-2 and BMP-4 act as master regulators of MSC differentiation into osteoblast and
chondrocyte phenotypes, leading to bone and cartilage formation [42]. The levels of BMP-2
and BMP-4 were higher in PF, PFA, P3 and P3A than in MF (# p < 0.05). Furthermore,
the release of BMP-2 and BMP-4 was significantly increased by acid treatment: higher
production of both BMPs was measured in PFA compared to PF (* p < 0.05) and in P3A
compared to P3 (§ p < 0.05) (Figure 6A,B). The same trend was observed for VEGF-4, which
is known to be expressed during osteoblastogenesis derived from human mesenchymal
stem cells [43], with a crucial role in angiogenesis during bone formation and healing of
bone fractures [44]. The level of VEGF-A was significantly higher on 3D-machined surfaces
than on MF (# p < 0.05), and on those 3D machined with acid (Figure 6C). Finally, the
quantification of FGF-2, which represents one of the FGFs mainly expressed at the early
stage of osteogenic differentiation [45], revealed that acid surface treatment had an impact
on its production, which was higher on PFA than on PF (* p < 0.05) and on P3A than on P3
(§ p < 0.05, Figure 6D). No changes were observed on 3D-machined surfaces compared
to MF (# p > 0.05, Figure 6D). Taken together, these data suggest that surface topography,
or more precisely the surface achieved by acid treatment, appears to promote osteogenic
activation of hBM-MSCs and in part through the release of molecules that signalling
pathways are closely involved with in the osteogenic differentiation process.

During bone regeneration, bone ECM plays an important role in bone formation
by dynamically interacting with the main cells involved in this process, osteoblasts, and
osteoclasts [46]. Thus, it is a prerequisite for any implant to be able to stimulate bone-ECM
formation to drive cellular behaviour, bone tissue function and cohesive integration with
the surrounding bone tissue. To further examine the osteogenic activation of hBM-MSCs,
an ELISA quantification of bone-ECM proteins was performed (Figure 7). All the proteins
analysed represent important markers of bone development: COL-I (type-I collagen)
is the main constituent of the ECM organic part [47], whereas OPN (osteopontin) is a
glycosylated extracellular phosphoprotein secreted during the early phase of osteogenesis
with an important role in cell adhesion and calcification of mineralised tissue [48]. DCN
(decorin) is a marker of terminal differentiation of osteoblasts [49], and OCN (osteocalcin)
is the most abundant non-collagenous bone matrix protein, often used as a late marker of
bone formation [50]. In addition, this protein is also involved in modulating cell–matrix
interactions by improving the adhesion of osteoblast-like cells to biomaterials [51]. The
results shown in Figure 7 showed a significant increase in all tested ECM proteins in
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the 3D-printed group compared to the MF control (# p < 0.05). However, differences
were observed related to surface modification and material structure (solid or porous). A
statistically significant increase in the activity of FN (fibronectin), OPN, OCN and DCN
can be appreciated for cells cultured on solid 3D-printed samples treated with acid (PFA)
compared to PF (* p < 0.05, Figure 7A,B). By contrast, higher DCN production was observed
in the acid-treated 3D-printed porous sample (P3A) when compared to P3 (§ p < 0.05,
Figure 7B), while the deposition of COL-I, OPN and OCN was lower in P3A (§ p < 0.05,
Figure 7A,B). It is also interesting to note that porous 3D-printed implants (P3 and P3A)
presented a higher level of COL-I, ALP, OPN, OCN and DCN than flat 3D-printed implants
(PF and PFA, p < 0.05). Overall, these data are consistent with findings in the literature,
demonstrating that modified surface roughness, such as that obtained by acid-etching
treatment, can influence the activation of osteoblast differentiation [38,52], providing the
starting point for initiating the osseointegration process.
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2.3. Texture Analysis of SEM Images

New advances in regenerative medicine and tissue engineering have been made
possible by understanding how biomaterial surfaces can control specific cellular behaviours
such as adhesion, growth, differentiation, and migration. Living cells have an intrinsic
ability to perceive, integrate and respond to environmental signals at the micro- and
nanoscale [53,54]. Topographical features such as roughness and nanoscopic surface pores
can impact cellular behaviour [55–57]. The wide range of methods used to investigate
surface characteristics, such atomic force microscopy and scanning electron microscopy,
can provide important information to enhance our understanding of cell behaviour on
biomaterials. In this context, we recently reported that nanotopography-induced changes in
cell phenotype and proliferation can be predicted via a computer vision approach [58], the
so-called analysis of Haralick’s features, where an imaging technique (e.g., SEM) is followed
by a texture analysis of the obtained images [59]. Haralick’s features are derived from the
grey-level co-occurrence matrix (GLCM) and are utilised in many fields such as land-use
and forest-type classification [60], fabric defect recognition [61] and in medicine: e.g., skin
texture [62], MRI images of the liver [63], X-ray mammography [64], breast cancer [65],
brain cancer [66], tumour phenotype [67], and tumour classification [68]. Here, Haralick’s
textural features of unseeded Ti6Al4V surfaces were extracted to correlate the texture
features to the observed biological parameters, in particular the expression of osteopontin
and osteocalcin of hBM-MSCs seeded onto the different Ti6Al4V surfaces tested. As shown
in Figure 8, the MF surface showed, as expected, low contrast and high homogeneity, both
related to low expression of osteopontin and osteocalcin reported in Figure 7. In general, 3D
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printing caused a slight increase in contrast features for the porous group, with statistically
significance differences among control and etched P3A, and larger and significant increases
for non-porous samples (PF, PFA) compared to the MF control (Figure 8A,C). On the other
hand, compared to the MF control, 3D printing did not affect homogeneity in the porous
group (P3 and P3A) but did in the non-porous groups (Figure 8B,D). Interestingly, the
most statistically significant difference, also with Haralick’s parameters, is among the non-
etched 3D-printed materials (P3 and PF). However, this significant distinction is not present
for their etched versions (P3A and PFA), which have intermediate and not significantly
different values (Figure 8A–D). The previous results can be related to the expression of
osteopontin and osteocalcin (Figure 7) where, in 3D-printed biomaterials, a lower value of
contrast (or a higher value of homogeneity) predicts a higher value of protein expression.
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Figure 8. Haralick texture analysis of SEM images. Computation of Haralick’s contrast (A) and ho-
mogeneity (B). The circles represent the means of the contrast or homogeneity, whereas the horizontal
bars are the 95%-confidence intervals for the difference between means (i.e., in the comparison of two
biomaterials, non-overlapping horizontal bars show statistical significance with p < 0.05). Contrast
and homogeneity represented as mean value ± SD ((C,D), respectively).

3. Materials and Methods
3.1. Implant Preparation and Characterization
3.1.1. Implant Manufacturing

3D-printed titanium endplate samples were provided by Orthofix Medical Inc.
(Lewisville, TX, USA) and analysed in the Characterization Center for Materials and Biology
(CCMB) at the University of Texas (Arlington, TX, USA). All samples have same overall
dimensions (12 mm × 3 mm round disk) but each sample group represents a unique
manufacturing process condition. Table 1 lists the sample groups and their processing
conditions. Sample group MF is a machined solid Ti alloy (Ti6Al4V) group, included
as a plain control as a representing surface morphological condition used commonly in
spinal devices. Sample groups PF and PFA are 3D-printed solid flat disks and both groups
underwent the same process except for the acid-etching process: group PFA was acid-
etched while group PF was not. Similar to group PF and PFA, two groups of 3D-printed
porous Ti6Al4V samples, P3 and P3A, with and without etching, were included in the study.
The difference between groups PF and PFA and groups P3 and P3A is that groups P3 and
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P3A are porous disks with a porosity of 50%, which is identical to that of PTC porous
endplates. Except for group MF, which was made at Orthofix’s internal machine shop, all
other samples were manufactured at Surface Dynamics LLC., the production vendor for
PTC product lines, to ensure the processes are consistent with production PTC parts. The
typical pictures of the sample groups are shown in Figure 1A–E.

Table 1. Summary of the sample groups analysed in this work.

Group Material Manufacturing Post-Process Porosity

MF Ti-6Al-4V machined non-etched solid
PF Ti-6Al-4V 3D-printed non-etched solid

PFA Ti-6Al-4V 3D-printed etched solid
P3 Ti-6Al-4V 3D-printed non-etched porous

P3A Ti-6Al-4V 3D-printed etched porous

3.1.2. Investigation of Implant Morphology Surface

The implant surface morphology was examined by scanning electron microscopy
(SEM). The microscale surface morphologies were characterised in a Hitachi S-4800 field-
emission SEM (Tokyo, Japan) using an accelerating voltage of 20 kV and a working distance
of ~5 mm. A magnification of 300× was used for MF, PF and PFA groups and 500× was
used for P3 and P3A groups. To investigate the presence of nanoscale features due to acid-
etching treatment, the surfaces of the porous non-etched sample (P3) and the porous etched
sample (P3A) were characterised in a Hitachi S-4800 field emission SEM at magnifications
of 80,000× using an accelerating voltage of 2 kV and a working distance of 3.5 to 5.6 mm.
The images were taken for all samples from P3 and P3A implants. For each sample, three
representative images were taken at a location approximately as seen in Figure 1K.

3.1.3. Investigation of Implant Roughness Surface

The implant surface roughness was examined by an optical profiler (Veeco NT9100 op-
tical profilometer, Plainview, NY, USA). An area of 1300 µm × 950 µm was used for each
measurement for the groups MF, PF and PFA, while an area of 309 µm × 232 µm was used
for group P3 and P3A. Roughness parameters, i.e., root-mean-squared roughness (Rq),
roughness average (Ra), average maximum profile height (Rz), maximum profile height
(Rt), maximum profile peak height (Rp), maximum profile valley depth (Rv), Skewness
(Rsk) and Kurtosis (Rku), were measured from three different locations for each sample.
A statistical comparison (Students T-Test) was calculated between the MF sample and all
other implants in addition to between the acid-etched and non-etched versions of each
sample (i.e., PF vs. PFA, and P3 vs. P3A). Significance was set at p < 0.05 and indicated
with # (MF vs. other samples), * (PF vs. PFA), and § (P3 vs. P3A).

3.2. Biological Investigation
3.2.1. hBM-MSCs Culture and Seeding

hBM-MSCs were isolated and cultured at the University of Pavia (Pavia, Italy), as
previously described [69]. The study protocols were approved by the Institutional Review
Board of the Fondazione IRCCS Policlinico San Matteo and the University of Pavia (2011).
Written informed consent was obtained from all the participants involved in this study.
The cells used in all experiments were mainly at passage 4–5 and cultured in mesenchymal
stem cell growth media (Lonza, Basel, Switzerland) supplemented with 10% foetal bovine
serum, 50 µg/mL penicillin-streptomycin, 1% L-glutamine, and 0.2% fungizone, and
cells were incubated at 37 ◦C, 5% CO2 and 100% humidity. Cell seeding density was
10 × 104 cells/implant. Before cell seeding, implants were sterilised in an autoclave for
20 min, at 121 ◦C and 1 bar of pressure, and then extensively washed with sterile phosphate-
buffered saline (PBS) solution.
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3.2.2. Cell Viability

As a marker of cell viability, cell mitochondrial activity was evaluated at day 7 of
culture with 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyl tetrazolium bromide assay (MTT;
Sigma-Aldrich, St. Louis, MO, USA) as previously described [69]. Aliquots of 100 µL were
sampled on a 96-well plate and relative light absorbance was measured at 570 nm with a
microplate reader (BioRad Laboratories, Hercules, CA, USA). Titration curve interpolation
was used to express the number of cells for each sample.

3.2.3. DNA Content Quantification

Total DNA content in hBM-MSCs seeded on test samples was determined after 7 days
of culture. After 7 days of culture, hBM-MSCs were lysed by a freeze–thaw method
in sterile deionised distilled water. The released DNA content was evaluated with a
fluorometric DNA quantification kit (PicoGreen; Molecular Probes, Eugene, OR, USA),
following the manufacturer’s instructions. Briefly, samples were diluted 1:100 in 100 µL of
working solution (PicoGreen reagent in Tris-EDTA (TE) buffer, 1:200) for the measurement.
Fluorescence was detected in a dedicated 96-well plate at 520 nm, after excitation at
480 nm, with CLARIOstar ® Plus Multi-mode Microplate Reader (BMG Labtech, Ortenberg,
Germany). Fluorescence results were interpolated with a previously designed titration
curve and expressed as µg of DNA in each condition.

3.2.4. Secreted Protein Quantification

Conditioned media were collected at day 7 and levels of secreted bone morphogenetic
protein-2 (BMP-2; Elabscience, Houston, TX, USA), bone morphogenetic protein-4 (BMP-4;
Elabscience, Houston, TX, USA), vascular endothelial growth factor A (VEGF-A; Elab-
science, Houston, TX, USA), and fibroblast growth factor-2 (FGF-2; Elabscience, Houston,
TX, USA) were measured by immunoassay. For each of these proteins, a titration curve
was designed with provided standards. Equal volumes (100 µL) of the collected culture
media were immobilised on antibody-coated wells and immunoassays of the investigated
proteins were developed according to the manufacturer’s instructions. Absorbance of the
developed reactions was measured by a microplate reader (BioRad Laboratories, Hercules,
CA, USA) at 490 nm.

3.2.5. ECM Proteins Extraction and ELISA Assay

For the evaluation of extracellular matrix proteins, indirect enzyme-linked immunosor-
bent assay (ELISA) was performed on test implants at 7 days of culture as previously
described [70]. In brief, samples were washed extensively with sterile phosphate buffer
and then incubated for 24 h at 37 ◦C with 0.5 mL of sterile sample buffer (20 mM Tris-HCl,
4 M GuHCl, 10 mM EDTA, 0.066% (w/v) sodium dodecyl sulphate (SDS), pH 8.0). At
the end of the incubation time, the total protein concentration in each sample buffer was
determined with a BCA Protein Assay Kit (Pierce Biotechnology, Inc., Rockford, IL, USA)
according to the specifications of the manufacturer. Calibration curves to measure alkaline
phosphatase (ALP), type-I collagen (COL-I), fibronectin (FN), osteocalcin (OCN), osteo-
pontin (OPN), and DCN (decorin) were prepared in microtiter wells O/N at 4 ◦C with
increasing concentrations of each purified protein (from 10 ng to 2 µg) in coating buffer
(50 mM Na2CO3, pH 9.5). A negative control was prepared with well bottom Bovine
serum albumin (BSA) coating. To measure the ECM amount of each protein by ELISA, mi-
crotiter wells were coated, overnight at 4 ◦C, with 100 µL of the previously extracted ECM
(1 µg/mL in coating buffer). After three washes with PBS containing 0.1% (v/v) Tween 20,
the wells were blocked by incubating with 200 µL of PBS containing 2% (w/v) BSA for 2 h at
22 ◦C. The wells were subsequently incubated for 1.5 h at 22 ◦C with 100 µL with anti-ALP,
anti-COL-I, anti-DCN, anti-OPN, anti-OCN polyclonal antisera (1:1000 dilution in 1% BSA,
kindly provided by Dr. Larry W. Fisher [71]) and anti- human FN rabbit polyclonal IgG
(1:1000 in 1% BSA). After washing, incubation with 100 µL/well of horseradish peroxidase
(HRP)-conjugated goat anti-rabbit IgG (1:1000 dilution in 1% BSA) at 22 ◦C for 1 h was
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performed. Reaction development with 100 µL/well HRP chromogenic substrate (TMB;
Sigma-Aldrich, St. Louis, MO, USA) was carried out and reactions were stopped by adding
100 µL/well of 0.5 M sulfuric acid (H2SO4). Absorbances at 450 nm were measured with
CLARIOstar ® Plus Multi-mode Microplate Reader (BMG Labtech, Ortenberg, Germany).
The optical densities from each sample were plotted against a calibration curve containing
known amounts of each protein. An underestimation of the absolute protein deposition is
possible because the sample buffer, used for matrix extraction, contained sodium dodecyl
sulphate, which may interfere with the protein adsorption during ELISA. The amount of
extracellular matrix constituents in the different samples was expressed as µg or ng/surface.

3.2.6. ALP Activity

ALP activity was determined using a colorimetric endpoint assay at day 7 as previ-
ously reported [70]. The method measures the conversion of the colourless substrate s
(pNPP) by the enzyme ALP into the yellow product p-nitrophenol (pNP). The rate of colour
change corresponds to the amount of enzyme present in the solution. Briefly, an aliquot
(0.5 mL) of 0.3 M pNPP (dissolved in glycine buffer, pH 10.5) was added to each scaffold at
37 ◦C. After incubation, the reaction was stopped by the addition of 50 µL 5 M NaOH. The
optical density (OD) reading was performed at 415 nm with a microplate reader (BioRad
Laboratories, Hercules, CA, USA) using 100 µL of standard or samples and placed into
individual wells on a 96-well plate. Samples were analysed in triplicate and compared
with the calibration curve of pNP standards. ALP activity was expressed as nmol of pNP
produced per min per cell (Figure 5) or µmol of pNP produced per min per µg of total
protein or ALP protein (Figure S1A,B, respectively). ALP protein content was determined
by ELISA as described in Section 3.2.5.

3.2.7. Scanning Electron Microscopy of Cell-Cultured Implants

hBM-MSCs morphological observations were performed at culture day 7. Cells grown
on test samples were fixed with a 2.5% (v/v) glutaraldehyde solution (Sigma Aldrich,
St. Louis, MO, USA) in 0.1 M sodium cacodylate buffer (pH 7.2) for 1 h at 4 ◦C and
washed with sodium cacodylate buffer. Afterwards, samples were dehydrated at room
temperature in an ethanol gradient (25-, 50-, 75- and 96%) and lyophilised for 3 h to obtain
complete dehydration. The samples were gold sputter coated under nitrogen to make
them electrically conductive prior to microscopy at accelerating voltage of 20 kV. A Zeiss
EVO MA10 (Carl Zeiss, Oberkochen, Germany) was used to collect pictures at 1000× and
5000× magnification.

3.2.8. Immunofluorescence

To visualise cell morphology and F-actin fibre distribution, hBM-MSCs were fixed with
paraformaldehyde at room temperature on culture day 7 and permeabilised using 0.1%
Triton X-100 for 5 min. Cells were then incubated with phalloidin (Alexa-Fluor-568 phal-
loidin, Invitrogen, Waltham, MA, USA) for 20 min and nuclei were counterstained with
Hoechst 33342 (2 µg/mL, Sigma Aldrich, St. Louis, MO, USA). An Olympus BX51 micro-
scope equipped with a 100 W mercury lamp was used to pick images under the following
conditions: excitation/emission ~346/460 for Hoechst 33342 and excitation/emission
~578/600 nm for the fluorescence of Alexa-Fluor-568. Images were recorded with an
Olympus MagniFire camera system at 10× and 40× magnification and processed with the
Olympus Cell F software.

3.3. Texture Analysis of SEM Images

For each SEM image (500× magnification) of the materials without cells, at least three
regions of interest (ROIs) were randomly selected to measure the grey-level co-occurrence
matrix (GLCM). After this step, for each GLCM, two Haralick’s features were calculated: the
“contrast” and the “homogeneity” [72]. The contrast computes the amount of dissimilarity
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inside GLCM, and it is a measure of the local variation in pixel values, whereas the other
feature is a measure of the local pixel homogeneity.

3.4. Statistical Analysis

All statistical calculations were carried out using GraphPad Prism 6.0 (GraphPad Inc.,
San Diego, CA, USA). Statistical analysis was performed using Student’s unpaired t-test
and through one-way analysis of variance (ANOVA), followed by Tukey post hoc, for
multiple comparisons (significance level of p ≤ 0.05).

4. Conclusions

In this study, the acid-etching process used in both the solid and porous titanium
plates was able to change the surface morphology of the material by creating macroscopic
3D pores with a microscopic rough surface and producing nanoscale surface features on
the porous PTC implant endplates. The results clearly demonstrate the importance of the
micro- and nanosurface morphology of the Ti6Al4V in determining the fate of the stem
cells. Comparison of acid-treated surfaces with untreated surfaces demonstrated that acid
treatment influences the response of hBM-MSCs, and that micro and nanoscale features
play a critical role in this process. Acid-treated PTC implant endplates proved to be the
best choice in terms of human stem cell proliferation and expression of early osteogenic
markers. However, further analysis, both in vitro and in vivo will be required to confirm
the ability of this treatment to enhance PTC implant osseointegration beyond the already
enhanced cellular osteogenic effects provided by the three-dimensional nature of the PTC
implant endplate.
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