MITOGENOME ANNOUNCEMENT

Taylor & Francis Taylor & Francis Group

Mitochondrial genome from the lichenized fungus *Peltigera rufescens* (Weiss) Humb, 1793 (Ascomycota: Peltigeraceae)

Lidan Wang and Reyim Mamut

College of Life Science and Technology, Xinjiang University, Urumchi, China

ABSTRACT

Known colloquially as 'dog-lichens' or 'pelt-lichens', most species of *Peltigera* grow on soil and mosses. Some species contribute a significant amount of nitrogen to the environment and have been used as traditional medicines. We analyzed the complete mitochondrial genome of *P. rufescens*, which is a circular genome 65,199 bp in size and its CG content is 26.7%. It contains 15 protein-coding genes (PCGs), 27 transport RNAs (tRNAs), and 3 ribosomal RNAs (rRNAs). Also, the *atp*9 gene is present in the genome. We used the complete mitochondrial genome to construct a phylogenetic tree by the Bayesian method, which was consistent with the phylogenetic relationship published for *P. membranacea* which is closely related to *P. rufescens*.

ARTICLE HISTORY Received 16 March 2021

Accepted 12 June 2021

KEYWORDS *Peltigera rufescens;* mitochondrial genome; phylogenetic analysis

Peltigera rufescens is a species of lichen-forming fungi, belonging to the family Peltigeraceae (Ascomycota), which is a widely distributed species around the world (Eriksson and Winka 1998). The thallus of P. rufescens is gray to brown, usually with a heavy tomentum on the upper surface (hence the name dog-lichens). The lower surface has distinctly raised veins, the apothecia is commonly dark red-brown, saddleshaped, and on upright lobes (Miadlikowska and Francois 2000). In recent years, several studies have suggested that lichenized fungus can be used as a possible food supplement and as an easily available natural source of medicines. Studies have shown that P. rufescens extracts have antioxidant, anti-inflammatory, and antigenotoxic effects. It has an important application for the protection of human lymphocytes from the genotoxic damages induced by agricultural chemicals hazardous to people (Tanas et al. 2010; Aydin and Tuerkez 2011; Türkez et al. 2012). Therefore, P. rufescens has an important practical research significance.

The sample of *P. rufescens* was collected from Haxionggou, in Xinjiang Province (87°59.846' N, 43°48.783' E). This voucher specimen was deposited in the Herbarium of College of Life Science and Technology at Xinjiang University in Urumchi, China (https://mail.163.com/, for more information about this voucher please contact Reyim MAMUT, email: arman99@163.com) under the voucher number 201899269A. DNA was extracted using the NEBNext®UltraTM DNA Library Prep Kit for Illumina (NEB, USA) Kit. The sequence was performed in Novaseg PE150. The whole library was prepared by terminal repair, adding A tail, adding sequencing connector, purification, PCR amplification, and other steps. After the library construction was completed, the library was initially

quantified using Qubit 2.0 and diluted to 2 ng/µL. Using readfq to capture all data for QC (Quality control). Sequence splicing used SPAdes (http://bioinf.spbau. ru/SPAdes/), then used Gapcloser and Gapfiller for scaffold gap, and finally used PrInSeS-G for sequences correction. The mitochondrial genome was annotated by GeSeq and Geneious (Kearse et al. 2012; Tillich et al. 2017), and the whole genome sequence data was deposited in GenBank under the accession number MW711788.

The total length of the mitochondrial genome of *P. rufescens* is 65,199 bp and CG content is 26.7%. The complete mitochondrial genome of *P. rufescens* contains 15 PCGs, 27 tRNAs, and 3 rRNAs. The genome presented here contained a conserved set of 15 PCGs (*cox1*, *cox2*, *cox3*, *nad1*, *nad2*, *nad3*, *nad4*, *nad4L*, *nad5*, *nad6*, *atp6*, *atp8*, *atp9*, *cytb*, and *rps3*), which are arranged in the same order as in *P. membranacea*. In some lichen lineages, the *atp9* gene is lost (Pogoda et al. 2018), such as *Usnea* (Lan and Huang 2020). However, the *atp9* gene is present in *P. rufescens*, and introns invade five different genes: four PCGs (*cox1*, *cytb*, *nad4L*, and *nad5*), one site in rRNA (rnl), we predicted a total of 11 introns I, including intron IA (6), intron IB (1), intron IC (2), and intron ID (1).

We used 11 complete mitochondrial genomes to conduct a phylogenetic analysis of *Peltigera rufescens*, using MrBayes v3.2 (Huelsenbeck and Ronquist 2001). The phylogenetic tree is divided into two clades, *Cladonia* clade and Peltigerales clade, *Opegrapha vulgata* is set as an outgroup. The phylogenetic tree indicated that *P. rufescens* is closely related to *P. membranacea* (Figure 1).

CONTACT Reyimu Mamuti 🛛 arman99@163.com 🗈 College of Life Science and Technology, Xinjiang University, No.666 Shengli Road, Urumchi, Xinjiang, 830046, China

© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Figure 1. Phylogenetic analysis of *Peltigera rufescens*. A phylogenetic tree was constructed from the total length of the mitochondrial genomes of 11 species by using the Bayesian method, five species of *Cladonia* and five species of the order Peltigerales, *Opegrapha vulgata* is set as an outgroup, BI-PP = 100%.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was jointly funded by Natural Science Foundation of Xinjiang Province (2017D01C059), National Natural Science Foundation of China [31760052], Natural Science Foundation of China [31550007].

Data availability statement

The genome sequence data that support the findings of this study are openly available in GenBank of NCBI at https://www.ncbi.nlm.nih.gov under the accession no. MW711788. The associated BioProject, SRA, and BioSample numbers are PRJNA656065, SRR14561385, and SAMN19223377 respectively.

References

- Aydin E, Tuerkez H. 2011. Effects of lichenic extracts (*Bryoria capillaris*, *Peltigera rufescens* and *Xanthoria elegans*) on human blood cells: a cytogenetic and biochemical study. Fresenius Environmental Bulletin. 20(11A):2085–2091.
- Eriksson OE, Winka K. 1988. Families and higher taxa of Ascomycota. Myconet. 1:17–24.

Huelsenbeck JP, Ronquist FR. 2001. MRBAYES: Bayesian inference of phylogeny. Biometrics. 8(17):1–7.

- Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28(12): 1647–1649.
- Lan Y, Huang F. 2020. The complete mitochondrial genome of the lichenized fungi Usnea jiangxiensis (Ascomycota: Parmeliaceae). Mitochondrial DNA Part B. 5(2):1477–2329.
- Miadlikowska J, Francois L. 2000. Phylogenetic revision of the genus *Peltigera* (lichen-forming Ascomycota) based on morphological, chemical, and large subunit nuclear ribosomal DNA data. Int J Plant Sci. 161(6):925–958.
- Pogoda CS, Keepers KG, Lendemer JC, Kane NC, Tripp EA. 2018. Reductions in complexity of mitochondrial genomes in lichen-forming fungi shed light on genome architecture of obligate symbioses. Mol Ecol. 27(5):1155–1169.
- Tanas S, Odabasoglu F, Halici Z, Cakir A, Aygun H, Aslan A, Suleyman H. 2010. Evaluation of anti-inflammatory and antioxidant activities of *Peltigera rufescens* lichen species in acute and chronic inflammation models. J Nat Med. 64(1):42–49.
- Tillich M, Lehwark P, Pellizzer T, Ulbricht-Jones ES, Fischer A, Bock R, Greiner S. 2017. GeSeq versatile and accurate annotation of organelle genomes. Nucleic Acids Res. 45(W1):W6–W11.
- Türkez H, Aydin E, Sişman T, Aslan A. 2012. Role of *Peltigera rufescens* (Weis) Humb. (A lichen) on imazalil-induced genotoxicity: analysis of micronucleus and chromosome aberrations in vitro. Toxicol Ind Health. 28(6):492–498.