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Abstract

Background: Viruses are obligate parasites that depend on the cellular machinery of the host to regenerate and

manufacture their proteins. Most antiviral drugs on the market today target viral proteins. However, the more recent

strategies involve targeting the host cell proteins or pathways that mediate viral replication. This new approach would be

effective for most viruses while minimizing drug resistance and toxicity.

Methods: Cytomegalovirus replication, latency, and immune response are mediated by the intermediate early protein 2,

the main protein that determines the effectiveness of drugs in cytomegalovirus inhibition. This review explains how

intermediate early protein 2 can modify the action of cyclosporin A, an immunosuppressive, and antiviral drug. It also

links all the pathways mediated by cyclosporin A, cytomegalovirus replication, and its encoded proteins.

Results: Intermediate early protein 2 can influence the cellular cyclophilin A pathway, affecting cyclosporin A as a

mediator of viral replication or anti-cytomegalovirus drug.

Conclusion: Cyclosporin A has a dual function in cytomegalovirus pathogenesis. It has the immunosuppressive effect

that establishes virus replication through the inhibition of T-cell function. It also has an anti-cytomegalovirus effect

mediated by intermediate early protein 2. Both of these functions involve cyclophilin A pathway.
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Introduction

Viruses, without their own replication machinery,

depend on the host cell to proliferate. The viruses inter-

act with host cells, activates enzymes and co-factors

required for their replication. The response of the

host cell thus reflects the pathogenic properties of

the virus.1,2

In the treatment of viral diseases, the drugs primarily

target special viral proteins. Current antiviral drugs

include nucleotide analogs,3–7 neuraminidase enzyme

and M2 channel,8,9 reverse transcriptase and protease

inhibitors,10,11 and chemokine receptor 5 (CCR5) antag-

onist.12 Many drugs targeting viral proteins are fraught

with cytotoxicity and tend to cause drug resistance.13

Although drugs that target cellular factors or pathways

have the advantage of overcoming cellular barriers,
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their toxicities compromise their usefulness.14–17 For this
reason, there is a need to discover alternative antiviral
compounds with minimal side effects.18

Immunosuppressed patients undergoing organ
transplantation are susceptible to cytomegalovirus
(CMV) infections that could cause rejections.19–21

Interestingly, two immunosuppressive drugs, mycophe-
nolic acid and mizoribine,22 have better anti-CMV
activities than ganciclovir23–27 and allow for good
graft survival.28–30 Some immunosuppressive drugs
were developed to target specific protein kinases essen-
tial for virus replication. Among these are artesunate, a
drug that inhibits cellular kinase signalling, NF-jB,
and Sp1 proteins,31,32 and sirolimus and everolimus,
rapamycin inhibitors targeting cellular signals.33–37

These drugs were shown to be active against ganciclo-
vir- and foscarnet-resistant CMV strains.38,39

This review discusses the association between cellu-
lar pathways mediated by CMV and cyclosporin A
(CsA) and demonstrates that CsA can be used both
as an immunosuppressive drug in organ transplanta-
tion and as an anti-CMV agent.

Cytomegalovirus

CMV is a DNA virus of the herpesviridae family.40

The highly species-specific human cytomegalovirus
(HCMV) cannot be studied in animals. This results
in the development of many animal models for the
virus.41–46 Seroprevalence studies have shown that
30–97% of the population is seropositive for
CMV.47–49 The immune system can easily control the
virus from causing active infection and facilitating life-
long latency.50,51

Immunosuppressed transplant recipients, HIV
patients, and the foetus are at risk of acquiring CMV
infections.52–58 The high risk of infection in solid organ
transplantation (SOT) recipients is associated with
serostatus of the donor and recipient, type of trans-
planted organ, host immune status, and viral factors.
In organ and tissue transplantation, CMV infections
were mostly reported in the seropositive (Dþ)/
CMV-seronegative (R–) recipients rather than in
D–/R–recipients.57,59,60 It was also shown in hemato-
poietic cell transplant, the greatest risk of infection is
when the donor is CMV seronegative (D–) and the
recipient seropositive (Rþ).61 In pregnant women,
among factors that increase the risk of CMV infections
are socioeconomic status, parasitic infections, CMV
viral load and serostatus, age, non-Caucasian, educa-
tion level, and close contact with young children, the
prevalence of CMV infection is between 50 and
97%.62–66 Between 5 and 10% of babies born of moth-
ers with primary CMV infection show neurological dis-
eases at birth, making the prevalence of CMV-related

disabilities higher than other childhood diseases.57,67–69

The risk of vertical transmission of CMV is higher in
primary (33%) than that in non-primary CMV infec-
tion (1%),70 but in both infections, symptomatic con-
genital CMV infections may also develop.71–75 Primary
infection occurs in most seropositive women and in 1 to
4% of seronegative women. In the USA, 77% of con-
genital infections are acquired from non-primary CMV
infection and only 22% from primary infections.76–78

Thus, 77% of congenital infection is acquired from
non-primary CMV infection compared to 22% of pri-
mary infection in USA.78 Regarding CMV disease out-
comes, there is no evidence that the symptomatic
outcomes in both primary and non-primary CMV
infections are different.71,73,79 The greatest risk of
CMV infection is during the period of fetal organogen-
esis, that is in the first and early second trimesters.
Vertical transmissions mostly occur in the third trimes-
ter, and fetuses are mostly born healthy. There seems to
be no difference in symptoms among babies born of
pregnancies affected with primary and non-primary
CMV infections.80 Mortality is between 20 and 30% in
symptomatic congenitally infected children,81,82 result-
ing from liver dysfunction, coagulation disorders, and
secondary bacterial infections.82 Complications of
CMV congenital infections include central nerve
system (CNS) diseases, such as meningoencephalitis,
calcification, microcephaly, disruption of neuronal
migration, germinal matrix cysts, ventriculomegaly, cel-
lular hyperplasia, lethargy, hypotonia, seizure, and cho-
rioretinitis.83,84 Complications are more severe if CMV
infections occur at the early stage of pregnancy.85

In some newborns, post-natal CMV infections cause
hepatitis, neutropenia, thrombocytopenia, and prema-
ture and low birth weight.86 Sensorineural hearing loss
(SNHL) due to virus replication in the inner ear was
reported in 15 to 25% of young kids.87–89 This disorder
can develop early at birth (in 5.2% of symptomatic or
asymptomatic neonates) or later in childhood (in 15.4%
of children).52,87,88,90 In approximately 50% of infants,
the congenital infection may manifest as the more severe
and symptomatic cytomegalic inclusion disease (CID) or
cytomegalic inclusion body disease (CIBD).67,68,91,92

Infants with CID can develop other CMV neurological
diseases.84,93–97

CMV can reach the brain of foetuses. Brain CMV
infections are associated with viral replication in the
endothelial cells of the blood–brain barrier (BBB),98 a
process that facilitates virus-crossing of the brain
parenchyma and access to astrocytes.99–102 Another
way the virus enters the brain is by infecting the epen-
dymal cells of choroids plexus, leading to dissemination
of virus in the cerebrospinal fluid and subsequently
infecting the brain parenchyma.103 The virus can estab-
lish latent infections in myeloid cells that eventually
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infiltrate the brain and develop into microglia cells.103

Destruction or injury to BBB endothelial cells can
result in extravasation of monocytes and facilitate
brain infection.104

In the nervous tissues, CMV induces injuries by inter-
fering with cell differentiation, morphogenesis and sur-
vival, controlling apoptosis mechanism, infecting neural
stem cell and interfering with brain developmental pro-
cess, and impacting the CMV replication on the endo-
vascular system.89 Viral replication interferes with brain
development during migration of neocortical neurons to
the cortical plate, causing disabilities.105–108

Cyclophilin A

Cyclophilins (CyPs) are a group of highly conserved
cellular proteins,109–112 found ubiquitously in animal
and plant tissues. These proteins have unique chemical
structures consisting of 109 amino acids with. These
amino acids contain variations in the interaction
domain among proteins from various locations and
of different functions.113 At least 16 CyPs have been
identified.114 Although they differ in distribution in
tissue and organ localization, their structures are sim-
ilar to the same peptidyl-prolyl isomerase (PPIase)
activities.115 In humans, seven CyPs (40 kDa) have
been identified, which are hCyPA, hCyPB, hCyPC,
hCyPD, hCyPE, hCyP40, and hCyPNK.110,116 The cel-
lular functions of CyPs have been observed in protein
folding and trafficking.117,118

Cyclophilin A (CyPA), which can bind cyclosporin
A (CsA), was first isolated from bovine thymo-
cytes.115,119 CyPA resembles the high abundance
CyPs in eukaryotic cells119 with concentration ranging
from 0.1 to 0.6% of total cellular proteins.111 CyPA is
encoded by Cyp18 gene in chromosome 7p11.2-p13
and consists of 165 amino acid with a molecular
weight of 18� 103 Daltons.120 In humans, CyPA is
composed of eight antiparallel b-barrel structure
enclosed by two a-helices at each location. The hydro-
phobic core of CyPA contains one hydrophobic and
seven aromatic residues within the drum of the mole-
cule or the CsA-binding area. The CsA-binding site is
composed of a loop region at Lys118 to His126 and
four b-strands at B3 to B6 position.111,120

CyPA plays an important role in various cellular
functions, including inflammation and apoptosis.121–129

This protein can stimulate the immune response and is
produced by inflammatory cells such as endothelial cells,
monocytes, vascular smooth muscle cells, and plate-
lets.130–132 Extracellular CyPA, through interaction
with cell membrane heparin receptor and CD147, also
functions as a chemoattractant for monocytes, neutro-
phils, eosinophils, and T lymphocytes.133 Like other
CyPs, CyPA acts as a chaperone in the regulation of

cellular protein111,120,125 and receptor expression and

activities.134–136 This protein is also involved in several

signalling pathways, such as the signal transduction

pathway unique to T lymphocytes and the T cell-

specific interleukin-2 tyrosine kinase (Itk).137–139

In the brain, CyPA is mostly localized in the

neurons,140,141 where it plays a role in neuronal differ-

entiation, embryo growth, and adult cortical

plasticity.142,143 CyPA maintains the integrity and func-

tion of BBB and protects neurons during traumatic

brain injury by blocking BBB permeability and the

effects of ischemia and oxidative stress.144–146 In

brain injuries, CyPA induces endothelial cell prolifera-

tion and migration as well as recruiting monocytes for

the repair of brain blood vessels.135 Moreover, CyPA

induces extracellular signal-regulated kinases (ERK)

and protein kinase B (PKB) or Akt signalling by bind-

ing to the cell surface receptor, CD147. This binding

stimulates the expression of the anti-apoptotic protein

Bcl-2147,148 and mediates neurogenesis in brain protec-

tion and repair.133,144

Cyclosporin A

Cyclosporin A (CsA), an 11-amino acid cyclic

peptide (Figure 1), can be extracted from the fungus,

Tolypocladium inflatum Gams.149 It is an immunosup-

pressive drug primarily used for organ transplanta-

tion.150–152 This drug is also used for the treatment

of renal, neurodegenerative, and autoimmune dis-

eases153,154 and has been recommended for the treat-

ment of rheumatoid arthritis, psoriasis, atopic

dermatitis, and endogenous uveitis.155–158

The immunosuppressive activity of CsA is the result

of the formation of CsA-CyPA complex that has a

high affinity for calcineurin, a cellular phosphatase

mediating T-cell activation.120,159–161 The CsA–CyPA

Figure 1. The chemical structure of cyclosporin A.
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complex is located at the interface of calcineurin,

between the catalytic and regulatory subunits, and

controls phosphatase activity and biological func-

tions.159,162,163 CsA also affects the expression of

AP-1 and NF-jB,164–166 modulates the antigen-

specific immune and Ca2þ-independent responses,167

and blocks the JNK and p38 MAPK signalling path-

ways.161,168–170 However, the use of CsA in the treat-

ment of diseases has adverse effects. It causes abnormal

glomerular filtration, nephrotoxicity, neurotoxicity,

hepatoxicity, and cardiovascular disorders171,172

through calcineurin and other factors including endo-

thelin and TGF-b1.173 CsA, through T cells, can induce

inflammation and apoptosis. This is mediated by JNK

and p38 MAPK, the activators of T cell receptors,161

ERK, and the transcription factor AP-1.174 AP-1 con-

trols cellular processes including differentiation, prolif-

eration, and apoptosis. The activation of JNK and p38

MAPK also requires the involvement of the CsA-

sensitive protein kinases, MKK6 and MKK7.161

The majority of mitogen-activated protein kinases

(MAPK), MAPK kinase (MAPKK), and MAPKK

kinase (MAPKK-K)175–180 require MEKK1 to activate

MKK7. MEKK1 mediates JNK pathway that modu-

lates NF-jB activity,181 JNK pathway signals, and

NF-jB activity under CsA control.182–184 CsA medi-

ates JNK signalling pathway through Rac1, a

member of the Rho subfamily of small G-proteins,

especially through its guanine nucleotide exchange

factor (Vav1). Vav1 controls IL-2 expression.185–187

Other immunosuppressive agents such as FK506 and

tacrolimus (calcineurin NFAT pathway inhibitor), use

the same mechanism to block JNK and p38 pathways,

and subsequently T-cell activation. Similarly, the

immunosuppressive activity of CsA mediated by

calcineurin blocks JNK and p38 activation.188–190

Unlike these immunosuppressive agents, calcineurin
controls JNK while in complex with PKC-u.191–193

CsA derivatives

There are several CsA derivatives (Figure 2) that interact
well with viruses and do not cause serious side
effects.194–196 Among these derivatives, alisporivir
(Debio-025) (Figure 2(a)), a non-immunosuppressive

analog of CsA, was synthesized to contain sarcosine
instead of d-methylalanine at position 3 of the PPIase
domain and methyl-leucine instead of ethylvaline at
position 4 of the calcineurin domain. These modifica-
tions have altered the PPIase activity and calcineurin-
binding ability of the derivatives.197 However, alisporivir
still results in side effects including reversible hyperbilir-
ubinemia and pancreatitis when used in combination

with PEG-IFNa2a and ribavirin to treat hepatitis C
virus (HCV) infection.198

NIM811 (Figure 2(b)), another non-
immunosuppressive analog of CsA, is similar in struc-

ture to the parent molecule with one modification:
methyl-leucine at position 4 being replaced by
methyl-isoleucine. This derivative has antiviral
effects195 while exhibiting the same pharmacokinetic
profile as CsA without nephrotoxicity.196,199

In 2010, SCY-635 (Figure 2(c)) was synthesized.200

This CsA derivative inhibits HCV infection201 without
detectable inhibition of calcineurin phosphatase.
Treatment with this drug is associated with transient
increases in interferon a, k1, and k3, the cytokines
responsible for the clearance of the viruses.202

Another derivation of CsA, EDP-546, is metaboli-
cally stable with favorable pharmacokinetics that
allows for less frequent and low therapeutic dosing of

Figure 2. The chemical structure of cyclosporin A (CsA) derivatives. (a) Alisporivir (Debio-025), (b) NIM811 and (c) SCY-635.
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the drug. It is also an effective bilirubin transporter
without affecting CYP450, a major protein in drug
metabolism.203,204

Sanglifehrin A (SFA) (Figure 3) is a new immuno-
suppressive agent205 isolated from the Streptomyces
strain A92-308110. This protein interacts strongly
with CyPA206–208 but not with calcineurin phospha-

tase.209 It is also a potent inhibitor of mitochondrial
permeability transition and heart reperfusion injury.210.

CyPA and viral diseases

CyPA is an essential protein for the HCV and hepatitis
B virus (HBV) replications. In HCV, CyPA interacts
with several viral proteins including serine protease,
NS3, viral RNA-dependent RNA polymerases, NS5A
and NS5B, and cysteine protease, NS2.211–215 The
interactions between CyPA with NS5A and NS5B

stimulate viral genome replication,213,215–221 virion
morphogenesis,222–224 and viral particles assembly
through the NS5A-D3 domain.213,222,224,225 The repli-
cation of viruses is also mediated by other proteins
including eEF1A and T-cell intracellular antigen 1
(TIA-1).226,227 eEF1A binds to the 30-terminal stem-
loop of flavivirus genomes and facilitates the synthesis
of minus-strand RNA.226 CsA can block CyPA-NS5

interaction213,228 and indirectly inhibit the genomic
RNA amplification.220,225,229

The inhibitory effect of CsA and its derivative on

HBV is associated with the distribution of mitochon-
drial transition pore and calcium signalling.230 CyPA
that can form a complex with CsA is important for
virus entry by triggering the expression of HBV surface
antigen (HBsAg) and mediating virus DNA replication
and envelope protein secretion.231–237 The formation of
the CsA–CyPA complex inhibits HCV and HBV

through sodium taurocholate co-transporting polypep-
tide receptor.230,238

CyPA also mediates influenza virus replication
through its association with the virus core.239 In influ-

enza viruses, CyPA interacts with M1 protein, resulting
in the interference of virus nuclear translocation and

preventing post-transcription of the viral genome.240

Inhibition of influenza virus replication by CsA and
its non-immunosuppressive derivatives involves both
the CyPA-dependent and independent pathways.241,242

The CyPA-independent inhibition occurs through
the RNA polymerase II.243 The inhibition of virus
replication can also be achieved with the non-
immunosuppressive analogs of CsA such as
SCY-635.125,241

Human immunodeficiency virus (HIV) is an RNA
virus that causes acquired immunodeficiency syndrome
(AIDS). The viral capsid undergoes morphological
changes in the target cell cytosol.244 This is mediated
by cell factors,245,246 such as TRIM5247 which forms
the TRIM5-CyPA fusion complex, and TRIMCyp
that blocks virus replication at the post-entry step.248

TRIMCyp interacts with the retrovirus capsids, caus-
ing capsid disassembly and inhibits virus infec-
tion.247,249–251 The HIV-1 CA protein on the capsid
surface facilitates interaction with cellular CyPA
during infection and controls virus replication. CyPA
also interacts with HIV-1 Gag polyprotein that medi-
ates virus fusion, entry, uncoating,252–258 viral genome
integration into host DNA,259–261 and modulates the
immune response.262 CsA and its analogs, Debio-025
and NIM811, interact with CyPA. This disrupts
CyPA-binding loop located at the N-terminal of
HIV-1 CA protein254–256,263,264 and inhibits HIV-1
infection in certain cell types.253,265,266

In severe acute respiratory syndrome (SARS)
virus, CyPA binds to the SARS-CoV N protein267

and mediates viral RNA synthesis.268–270 In most coro-
naviruses, CyPA also interacts with the non-structural
viral protein 1 (Nsp1).

CyPA and CMV replication

Cell signals and CMV. CMV cellular entry and
replication involve several factors including epidermal
growth factor receptor (EGFR), integrin b1 and b2,
and platelet-derived growth factor receptor-a
(PDGFRa).271–273 Binding to these receptors initiates
Caþ2 homeostasis, activation of phospholipase C and
A2, the release of arachidonic acid and its metabolites,
diacylglycerol that activates protein kinase C, and ino-
sitol triphosphate inducing calcium influx.274–280 The
virus also binds to avb3 integrin, another receptor
that mediates actin depolymerization, facilitating
virus translocation to the nucleus,281 and activating
the Src pathway. The alteration in cytoskeleton
arrangement is also associated with the activation of
avb3 integrin and EGFR receptors that reduce the
activity of RhoA GTPase.281,282 The virus activates
the extracellular signal-regulated kinase (ERK) 1/2,
also known as MAPK, through the ERK/MEK1/2

Figure 3. The chemical structure of sanglifehrin A (SFA).
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pathway. These interactions that occur through
MKK3, MKK6, and MKK4 kinases are important
for viral replication.283–285

HCMV replication requires the NF-jB to activate
the major immediate early promoter (MIEP),286–288

which is responsible for the transcription of more
than 150 genes in cells. The NF-jB specific promoter
1 protein (Sp1) can be activated by HCMV IE1-72 and
IE2-86 either independently or synergistically.289–291

MIEP has a special site for the cell transcription
factor that either stimulates or represses transcription
of NF-jB, CREB/ATF, AP1,292 Ying Yang1 (YY1),
and Ets-2 repressor factors (ERF).293–298 The repres-
sion of transcription occurs through factors including
those involved in the post-translational modification of
histones299,300 and TNF.301,302 In HCMV-permissive
cells, MIEP associates with acetylated histone H4. In
peripheral blood monocytes, MIEP associates with het-
erochromatin protein 1 (HP1), a chromosomal protein
implicated in gene silencing.303–306 The HCMV remains
latent in monocytes that serve as carriers for the virus.
Although the mechanism of reactivation of HCMV is
still not known, it has been suggested that the host
complex facilitates chromatin transcription (FACT)
binds to MIEP. The inhibition of this complex inhibits
virus activation.307

HCMV alters the expression of cell cycle regulatory
proteins, the cyclin-dependent kinases.308,309 The
infected cells are arrested at the G1 phase310,311 of the
cell cycle, during which macromolecules needed for cell
growth and virus replication are synthesized. Both
HCMV IE1-72 and IE2-86 can transactivate p53 pro-
moter and induce p53 accumulation. However, HCMV
IE1-72 represses p53 transactivation activity.312 The
outcomes of these interactions include stimulation of
DNA synthesis, cell cycle arrest, and inhibition of apo-
ptosis.312 The virus also responds to alterations in cell
growth and activation of host genes by interacting with
histone deacetylases (HDACs) and retinoblastoma
(Rb) tumor suppressor proteins via the LxCxE-
dependent pathway.313–315 The binding of Rb protein
to the E2F transcription factor partially controls cell
growth in the HCMV-infected cells and other pocket
proteins, such as p107. Cell growth arrest occurs when
Rb protein represses the transcriptional activity of E2F
transcription factors.316,317 The binding of E2F tran-
scription factor to p107 causes the release and activa-
tion of E/CDK 2 kinases,318,319 allowing for the cell
cycle progression from G1 to S phase.

HCMV increases the expression of tumor suppres-
sor factor p53 in infected cell.312,320,321 Both HCMV
IE1-72 and IE2-86 bind to p53, although only
HCMV IE2-86 can block its function.312,322,323

HCMV can inhibit the apoptosis pathways through
several strategies. Both HCMV IE1-72 and IE2-86

stimulate the anti-apoptotic PI3-K/Akt signalling path-
way and delay the onset of p53 activity.324,325 Also, the
CMV genes, UL36, a viral inhibitor of caspase-8-
induced apoptosis (vICA) and the UL37 gene encoding
viral mitochondria-localized inhibitors of apoptosis
(vMIA) affect permeabilization of the mitochondrial
outer membrane, preventing the release of cytochrome
c necessary for the activation of the pro-apoptotic cas-
pase-3 pathway.326 The adaptation and survival of the
virus in host cells are further enhanced by its major
tegument protein, pp150 protein. This protein binds
to cyclin A2, causing cyclin A2-dependent phosphory-
lation and avoids the CDK-mediated inhibition of viral
replication.311,327–329

CMV contains the UL146 and UL147 genes encod-
ing for the CXC chemokines, vCXCL1 and vCXCL2.
The virus uses these cytokines to activate CXCR1 and
CXCR2, and preferentially attract neutrophils that can
serve as virus carriers.330,331 The virus also possesses
the UL 76 gene, which is an inducer of IL8 expres-
sion.332 HCMV genome contains the G-protein-
coupled receptors (GPCRs), UL33, UL78, US27, and
US28.333–336 The GPCRs prevents leukocytes from rec-
ognizing HCMV-infected cells and blocks the effect of
leukocytes on neighbouring cells.335,337–340 US28, the
best characterized among the GPCRs, stimulates
migration of HCMV-infected cell to vascular injury
sites leading to atherosclerosis and restenosis.336,341

Host cells infected with HCMV express type 1 inter-
ferons (IFNs), IFN-stimulated genes, and proinflam-
matory cytokines,342 which are components of the
innate cellular response that require the transcriptional
activity of interferon regulatory factor 3 (IRF-3).343 As
a defence mechanism, the HCMV inhibits production
of IFN by blocking the IFNa-stimulated responses and
disrupting the IFNa signal transduction pathway,
decreasing the expression of JAK1 and p48344–346 or
the multiple IFN-responsive genes.347–349 HCMV, par-
ticularly at late infection stage, also inhibits NF-jB
signaling responsible for the production of pro-
inflammatory cytokines, IL-6, CCL5, and TNFa.350,351

Cyclosporin A, CyPA, and CMV. CsA is an immunosuppres-
sive agent22,352 that can potentiate CMV infec-
tion.103,353–355 The immunosuppressive activity of
CsA is via CsA–CyPA interaction with calci-
neurin.159,160 Most of the cellular pathways mediated
by CyPA are sensitive to CsA.356–358 These cellular
pathways are fully controlled by CMV during viral
infection and replication.287,288,291,292,359 Additionally,
they share signals such as NF-jB, MAPK such as
MKK7 and MKK6, ERK1/2, P53, and JNK. The
involvement of CyPA in the activation and replication
of CMV360 was demonstrated in the mouse model
through the silencing of the CyPA mRNA. In fact,
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CyPA is required for HCMV lytic infection, latency
establishment, and reactivation.361 It also regulates IE
protein and lytic genes expressions in HCMV replica-
tion cycle. The utilization of CyPA by CMV342 may
deplete its concentration in organs and compromise
cellular protein folding, differentiation, and func-
tions.361 If the nervous tissues are affected, the infec-
tion may cause CNS-associated abnormalities. These
phenomena suggest that CyPA could be a potential
therapeutic target in the treatment of HCMV infection.
Although CsA is a common immunosuppressive drug
used during organ transplantations and mediates
HCMV reactivation in vivo (CsA–CyPA complex),
this response may result from overall immunosuppres-
sion.353 When CMV enters the cell, it stimulates the
secretion of type I IFN as well as proinflammatory
cytokines such as CyPA362–364 through both NFjB
and IRF3 transcriptions.365 This is critical in CMV
treatment.366,367 Both responses are controlled by
CMV IE86 protein.368 The other immune response to
CMV is carried out by Toll-like receptor-2 (TLR2)
stimulated by glycoproteins364 and CD147.369

Evidence from previous studies suggests133,370 that
CD147 operates as a legend for CyPA.362 CD147 upre-
gulates through CMV infection and is involved in
inflammation similar to CMV.371,372 The interaction
was established between CMV and ectodomain of
CD147.373 When CMV enters the cell, it stimulates
CyPA production that interacts with CD147 to mediate
virus replication and early immune response such as
ISG15 gene, IFNB1 signalling to block CMV reinfec-
tion.374 Additionally, the CD147–CyPA activates
NFjB through ERK1/2 pathway which is important
for both monocytes and macrophages. Modulation of
the cellular microenvironment is necessary and was
approved for CMV IL-10 previously.375 CMV success-
fully downregulates CD147 by encoding MiR-U25-1-
5p encoded by US 24-US26.374 This microRNA is
necessary for cellular modulation. It downregulates
the CD147 through special coding area in its UTR
sequence. This leads to reduced activation of both
IFNB1 and IFN-related gene ISG15, NFjB, IL-6,
and TNF-a induced above. This inhibits immune
response mediated by CD147.374 This inhibition is
also mediated by CsA as it blocks CyPA function
and subsequently its interaction with CD147.374

Many viruses successfully replicate by inducing oxi-
dative stress,376–378 while CypA is important to mediate
their replication.220,229,379 Xiao et al.’s study372 demon-
strated that CMV infection induces a substantial level
of oxidative stress.380 This oxidative stress stimulates
CyPA production. CyPA plays a role in activating
the p38/MAPK pathway. The P38/MAPK pathway is
necessary to activate the NFjB transcription factor
Elk-1, Sap-1, ATF-2, CREB, CHOP, and Max,381–386

mediating viral and cellular gene expression to enhance
the virus replication.387–390 Silencing of CyPA inhibits
virus gene expression.372 CsA can affect IE1 expression
and CyPA activity but not CyPA expression.372 CsA as
CyPA target drug inhibited the CyPA-mediated P38/
MAPK pathway. Additionally, the antioxidant com-
pound can also control and limit virus replication.372

The ability of CyPA to mediate inflammatory response
was reported by van de Berg et al.380 CMV can also
mediate the inflammatory response through CyPA.372

CMV stimulates CyPA that mediates the activation
of both the p38/MAPK and ER1/2 pathways. This
mediates the viral replication372,374 through the expres-
sion of IE1 and IE2.391 HCMV, through its UL4 pro-
moter, activates both p38/MAPK and MAPK/ERK
pathways.392 In addition, both IE1 and IE2 proteins
of CMV mediate the viral gene expression387,393–395 as
well as the stimulation of cellular expression factors
such as Tef-1, Sp1, c-Jun, JunB, ATF-2, CREB, his-
tone acetyltransferase CREB-binding protein (CBP)-
associated factor (P/CAF), and p53.322,396–399 Both
IE1 and IE2 also play a role in controlling gene acti-
vation factor to mediate viral replication and its
response to CsA as an antiviral drug.

Cyclosporin A as an immunosuppressive
and anti-CMV drug

IE2 resembles the most abundant IE proteins that
mediate virus gene expression and reproduction. The
ability of IE2 to overcome CsA inhibition by CyPA can
stimulate viral gene expressions. In addition, both
chemokine-like receptor proteins, US3 and US6, inter-
act with HL-AC and HL-AG and affect the expression
of MHC class 1 antigen (Figure 4),400,401 enabling
viruses to evade the immune response.402 CMV gene
expressions occur in sequence, with the expression of
early (E) genes occurring first, followed by IE genes.
The IE2 expression will eventually decline, allowing for
the inhibition of CyPA by CsA through the formation
of the CsA–CyPA complex. This complex inhibits NF-
jB, and thus virus transcription.403,404 Since the early
(E) gene expression will also cascade, no late (L) gene
encoding structural protein will be expressed. This
leads to the blockage of virus replication and produc-
tion of virus progeny. Therefore, CsA may be activated
by CMV replication405 while functioning as an antiviral
drug by inhibiting virus replication.

Conclusion

CyPA is vital for HCMV lytic infection, latency estab-
lishment, and reactivation. This protein can serve as a
target in the treatment of HCMV infection. The cur-
rent review describes the anti-CMV activity of CsA, an
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immunosuppressive drug commonly used in organ

transplantations. However, this drug is associated

with HCMV reactivation and toxicities. The immuno-

suppressive activity of the drug is achieved through the

formation of the CsA–CyPA complex that suppresses

organ rejection by inhibiting the calcium/calmodulin-

dependent and calcinerin.353 The IE2 protein is the

major IE protein, encoded by the CMV IE gene

UL122, which mediates the CMV lytic cycle.394 IE2

expression depends on which proteins or cellular sig-

nals it interacts with during the cascade of events, is

core to the determination of whether CsA activates or

suppresses virus proliferation. Since viral infections

induce expression of inflammatory cytokines380,406,407

and thrive under immunosuppression, the inhibitory

effect of CsA is most effective in early stages of the

viral replication cycle, when the immune and inflam-

matory responses are still limited. This review with pre-

viously published data shows that CsA has anti-CMV

activity.360,361 The use of CsA in combination with

other drugs approved for the treatment of CMV infec-

tions may also prevent the development of unwanted

toxicities and drug resistance.
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