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Shiga toxin (Stx) causes fatal systemic complications. Stx induces apoptosis, but the mechanism of
which is unclear. We report that Stx induced rapid reduction of short-lived anti-apoptotic proteins
followed by activation of caspase 9 and the progression of apoptosis. Proteasome inhibitors
prevented the reduction of anti-apoptotic proteins, and inhibited caspase activation and apoptosis,
suggesting that the reduction of anti-apoptotic proteins is a prerequisite for Stx-induced apoptosis.
A clinically approved proteasome inhibitor, bortezomib, prolonged the survival of mice challenged
by Stx. These results imply that proteasome inhibition may be a novel approach to prevent the fatal
effects of Stx.
� 2015 The Authors. Published by Elsevier B.V. on behalf of the Federation of European Biochemical Societies. This

is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction of Stx to the cell surface receptors, globotriaosylceramide (Gal
Stx-producing Escherichia coli (STEC), including O157, O104 and
O111, causes diarrhea and hemorrhagic colitis in the gut. When Stx
traverses the epithelium and passes into the circulation system, it
occasionally causes systemic complications such as encephalopa-
thy and hemolytic-uremic syndrome sometimes resulting in the
death of the infected patients [1–4]. Therefore, the development
of an antidote to prevent the lethal effects of Stx is urgently
required.

Stx can be classified into two groups, Stx type 1 (Stx1) and type
2 (Stx2) [5,6], with Stx2 linked to severer diseases epidemiologi-
cally. The Stx holotoxin is composed of one molecule of the
A-subunit that has RNA N-glycosidase activity and five molecules
of the B-subunit. The pentameric B-subunit facilitates the binding
a(1-4)-Galb(1-4)-Glcb-ceramide (Gb3)/CD77) [6,7]. After internal-
ization, Stx is transported from the early endosomes to the ER
via the Golgi apparatus. Stx then catalyzes the removal of adenine
at position 4324 of 28S rRNA, thereby inhibiting protein biosynthe-
sis [8,9].

Several studies indicated that Stx induces apoptosis in some
cells, implying that induction of apoptosis is, at least in part, crucial
for vascular lesions and tissue damage after translocation of Stx
into the circulation system [10]. These studies include Stx inducing
rapid apoptotic cell death in several CD77-positive cell lines such
as myelogenous leukemia cell line THP1, epithelial cell lines and
Burkitt’s lymphoma cell lines [11–14] in a mitochondrial
pathway-dependent manner. In other studies, however, it was
reported that Stx induces apoptosis through ER stress responses,
including the activation of IRE1, PERK and ATF6, and an increase
in the expression level of CHOP in THP1 cells [15,16]. In these
reports, Stx treatment increased the expression of a death ligand,
TRAIL and its cell surface receptor, DR5 which mediates activation
of caspase 8. Garibal et al. reported that caspase 8-mediated
cleavage of Bid is required for Stx1-induced apoptosis in Burkitt’s
lymphoma cells [17]. Induction of apoptosis by Stx through the
activation of caspase 8, 6 and 3, but not the caspase 9-dependent
mitochondrial pathway was also reported in HeLa cells [18].
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Thus, the cell death mechanism induced by Stx is complicated, and
it is unclear whether the inhibition of apoptosis could be beneficial
for preventing the fatal effects of Stx.

In this study, we investigated the cell death mechanism in THP1
cells and CD77 synthase transfected U937 cells. We found that the
Stx induced apoptosis in CD77-expressing cells in a
caspase-dependent manner with caspase 9 as the primary initiator
caspase. Upon Stx treatment, apoptosis inhibitory proteins were
rapidly downregulated, and proteasome inhibitors prevented the
reduction of them and the progression of apoptosis. We also
demonstrate that clinically approved proteasome inhibitor, borte-
zomib [19] suppressed Stx-induced apoptosis and prolonged the
survival of mice challenged by a lethal dose of Stx.

2. Materials and methods

2.1. Reagents

RPMI1640, tunicamycin, PI, anti-a-tubulin antibody (B-5-1-2),
anti-b-actin antibody (AC-74) and anti-FLAG antibody (M2) were
purchased from Sigma. Z-VAD-fmk and MG132 were from the
Peptide Institute. Etoposide was obtained from Bristol-Myers
Squibb. Bortezomib was from LC Laboratories. The anti-Hsp90 anti-
body (68), anti-Mcl-1 antibody (22), anti-Bcl-x antibody and
anti-Bcl-2 antibody (7) were from BD Biosciences. The anti-PARP
antibody (46D11) and anti-b-catenin antibody were from Cell
Signaling Technology. The anti-caspase 3 antibody (H-277),
anti-CHOP antibody (R-20), anti-GAPDH antibody (FL-335) and
anti-caspase 9 antibody (H-17) were from Santa Cruz. The
anti-XIAP antibody, anti-caspase 8 antibody (5F7), anti-caspase 9
antibody (5B4) and anti-caspase 10 antibody (4C1) were from
Medical & Biological Laboratories. The anti-c-IAP1 antibody was
from R&D Systems. The anti-FLIP antibody and anti-Apaf1 antibody
were from Enzo. The anti-Apollon antibody [20], recombinant Stx1
and Stx2 [21] and Stx1 A-subunit mutant (E167Q/R170L) [22] were
prepared as described previously.

2.2. Cell culture

THP1 cells and U937 cells were purchased from the American
Type Culture Collection and cultured in RPMI1640 containing
10% fetal bovine serum and antibiotics. Cells were grown in 5%
CO2 at 37 �C in a humidified atmosphere.

2.3. Measurement of the incorporation of PI

Cells were resuspended in staining buffer (SB, 3% calf serum in
PBS (�)) containing 2 lg/ml PI. Fluorescence and phase contrast
images were obtained by BIOREVO (Keyence). PI-positive cells
were counted with FACSCalibur (BD Biosciences).

2.4. Mammalian expression vector for CD77 synthase and isolation of
transformants

Human CD77 synthase cDNA [23,24] was amplified by poly-
merase chain reaction and inserted into the p3 � FLAG-CMV10
vector (Sigma). U937 cells were pulsed with a Gene Pulser II
Electroporation System (BIO-RAD) at 250 V and 950 lF in the pres-
ence of 50 lg of the expression vector. After recovery for 48 h, the
cells were selected with 1 mg/ml G418.

2.5. Measurement of cell surface CD77

CD77 synthase-transfected U937 cell clones were resuspended
in SB containing fluorescein isothiocyanate (FITC)-conjugated
anti-CD77 antibody (5B5, BD Biosciences) and incubated on ice
for 20 min. The cells were then washed with SB twice and the
expression of CD77 was measured with FACSCalibur.

2.6. Pull-down of initially activated caspases with biotinylated
Z-VAD-fmk

Initially activated caspase was detected according to the previ-
ous report [25]. Briefly, 107 cells in 1 ml of culture media were
pre-incubated with 50 lM biotinyl-VAD-fmk (MP Biomedicals)
for 1 h, and then treated with the indicated apoptosis inducers.
Following stimulation, cells were harvested and lysed in KCl lysis
buffer (50 mM HEPES (pH 7.4), 142.5 mM KCl, 5 mM MgCl2,
1 mM EGTA, 1% NP-40 and protease inhibitors). After centrifuga-
tion at >15,000g at 4 �C for 15 min, streptavidin-agarose was added
to the supernatants and incubated at 4 �C overnight. Then, the
agarose was washed four times with the KCl lysis buffer.
Precipitated caspases were analyzed by Western blotting.

2.7. Immunoprecipitation (IP) and immunoblotting

After treatment, cell lysates were prepared with IP buffer
(50 mM Tris-HCl (pH 7.5), 150 mM NaCl and 0.5% Triton-X 100)
supplemented with protease inhibitors and analyzed by immuno-
precipitation and immunoblotting as described previously [26].

2.8. Animal experiments

All animal experiments were approved by the animal ethics
committee of Doshisha University according to the guidelines for
animal experimentation of the Ministry of Education, Culture,
Sports, Science and Technology, Japan. Pathogen-free female ICR
mice were purchased from Japan SLC. Mice were housed under a
12 h light-dark cycle and fed a standard diet. Mice were injected
intravenously with 0.1 ml of sterile saline solution supplemented
with mannitol alone or with various doses of bortezomib prior to
administration of a lethal dose of Stx2 (0.15 ng/g of body weight)
as described in the legend to Fig. 6, and monitored at the indicated
times.

2.9. Statistical analysis

For analysis of cell viability, PI positive cells were analyzed by
unpaired two tailed Student’s t-test.

3. Results

3.1. Stx induces apoptosis in a caspase-dependent manner

To gain insights into the mechanism of Stx-induced apoptosis,
we first searched for cell lines that undergo rapid apoptosis upon
Stx treatment. Among the 25 cell lines tested, THP1 showed the
highest sensitivity to Stx-induced apoptosis (Table 1). Fig. 1A
shows that Stx induced apoptosis-like morphological changes in
THP1 cells as reported previously [27]. Cell death was confirmed
by PI-staining and approximately 80% of the treated cells were
PI-positive after 24 h. Both Stx1 and Stx2 induced caspase 3 activa-
tion and Poly(ADP-ribose) polymerase (PARP) cleavage 4 h after
treatment (Fig. 1B). In our experiments, Stx did not induce the
expression of CHOP, a marker of ER stress response [28] within
8 h following Stx treatment, whereas the glycosylation inhibitor
tunicamycin induced CHOP expression 6 h after treatment, indicat-
ing that the ER stress response is not involved in the Stx-induced
apoptosis under this condition. Stx1 (Fig. 1C) and Stx2 (Fig. 1D)
induced caspase activation in a dose-dependent manner. The



Table 1
Induction of apoptosis by Stx in the 25 cell lines we testeda.

Cell line Induction of
apoptosis by
Stx

Tissue Morphology Organism

THP1 +++ Peripheral blood Monocyte H. sapiens
U937 � Pleural effusion, lymphocyte, myeloid Monocyte H. sapiens
Raji + Lymphoblast Lymphoblast H. sapiens
K562 � Bone marrow Lymphoblast H. sapiens
HL60 � Peripheral blood Myeloblastic H. sapiens
KYO-1 � Peripheral blood Myeloblastic H. sapiens
CCRF-CEM � Peripheral blood Lymphoblast H. sapiens
Jurkat � Peripheral blood Lymphoblast H. sapiens
HEL � Bone marrow Lymphoblast H. sapiens
MOLT4 � T lymphoblast Lymphoblast H. sapiens
A549 � Lung Epithelial H. sapiens
HeLa � Cervix Epithelial H. sapiens
HEK-293 � Embryonic kidney Epithelial H. sapiens
Caco-2 � Colon Epithelial-like H. sapiens
U-2 OS � Bone Epithelial H. sapiens
HT1080 � Connective tissue Epithelial H. sapiens
MBEC2, 4, 6, 7 � Brain Endothelial M. musculus
M1 � Bone marrow Myeloblast M. musculus
SP2/0 � Spleen Lymphoblast-like M. musculus
P388 � Monocyte, macrophage Lymphoblast M. musculus
Vero + Kidney Epithelial C. aethiops
COS-1 � Kidney Fibroblast C. aethiops

a Cells were treated with either 400 ng/ml Stx1 or Stx2 for up to 48 h, and apoptotic morphological changes were
monitored.
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threshold values of caspase activation were 1 pg/ml for Stx1 and
0.01 pg/ml for Stx2, which is consistent with the observation that
Stx2 is more toxic than Stx1 both in vitro and in vivo [29]. To exam-
ine the role of caspase in Stx-induced apoptosis, we treated the
THP1 cells with the pan-caspase inhibitor Z-VAD-fmk prior to the
Stx treatment. Stx-induced apoptosis was markedly suppressed
by Z-VAD-fmk (Fig. 1A). These observations indicate that Stx
induces apoptosis in a caspase-dependent manner.

During the onset of apoptosis, an executioner caspase (caspase
3) is activated by an initiator caspase, such as caspases 8, 9 and 10.
Caspase 8/10 is normally activated by death receptor ligation,
whereas caspase 9 is activated via a mitochondrial pathway.
Therefore, we next tried to identify the initiator caspase activated
by Stx treatment by in situ trapping of the activated caspases [25].
THP1 cells were pre-incubated with biotinyl-VAD-fmk and then
treated with Stx1 or a DNA-damaging agent etoposide to initiate
caspase activation so that the activated caspases are covalently
labeled with biotinyl-VAD-fmk. After cell lysis, the biotinylated
proteins were precipitated with streptavidin agarose and the pre-
cipitates were analyzed by Western blotting. As shown in Fig. 2A,
when cells were treated with Stx1, an active caspase 9 fragment
was biotinylated; however, caspases 8 and 10 were not biotiny-
lated. The caspase 9 fragment was also labeled with
biotinyl-VAD-fmk in etoposide-treated cells, whereas none of the
caspases were biotinylated in the control cells.

Since THP1 cells did not undergo apoptosis by death receptor
ligation [13], we performed a similar experiment with human
monocytic leukemia U937 cells that were made susceptible to
Stx by transducing the CD77 synthase gene (further described
later). Biotinyl-VAD-fmk bound to caspase 9 in Stx-treated cells,
whereas this compound bound to caspases 8 and 10 in the
TNFa-treated U937 cells (Fig. 2B). These data indicate that caspase
9 was initially activated in Stx-treated cells, which contrasted with
caspase 8/10 activation by death receptor ligation.

To further confirm the caspase 9 as the initiator caspase in
Stx-treated cells, we examined the formation of the apoptosome.
In the mitochondrial pathway of apoptosis, cytochrome c released
from mitochondria recruits Apaf1 and caspase 9 to form a huge
complex called the apoptosome, which in turn cleaves and acti-
vates downstream effector caspases [30]. Four hours after Stx
treatment when caspase 9 is not fully activated, a significant
amount of Apaf1 was co-precipitated with caspase 9 (Fig. 2C).
Similarly, Apaf1 was co-precipitated with caspase 9 in
etoposide-treated THP1 cells. These results suggest that caspase
9 is the primary upstream caspase that initiates apoptosis in
Stx-treated cells.

3.2. CD77 is required for induction of apoptosis by Stx

Stx binds to the cell surface CD77 to show its cytotoxic effects
[10]. Since Stx did not induce apoptosis in most human cell lines
including U937 cells (Table 1, Fig. 3A), we reasoned these cell lines
do not undergo apoptosis because they lack CD77. To examine
whether Stx-induced apoptosis is mediated through CD77, we
transduced the CD77 synthase gene [23,24] into U937 cells and
established several clones constitutively expressing CD77 synthase
(Fig. 3B). Fig. 3C shows that all the clones expressing CD77 syn-
thase exposed CD77 on the cell surface. We next examined the
induction of apoptosis by Stx in the CD77 synthase transfectants.
Stx treatment effectively induced apoptosis in all the clones
(Fig. 3D), while it did not induce apoptosis in the parental U937
cells. In line with this, Stx-treatment induced the activation of cas-
pases in the transfectants (Fig. 3E) and z-VAD-fmk inhibited activa-
tion of the caspase (Fig. 3F), as observed in THP1 cells (Fig. 5B).
Ectopically expression of CD77 synthase does not seem to affect
other signaling pathways of U937 cells, because CD77 synthase
transfectants activate caspase cascade in response to death ligand
ligation (Fig. 2B, TNF) and etoposide (data not shown) and prolifer-
ate as well as parent U937 cells. These results indicate that CD77 is
required for Stx-induced caspase activation and apoptosis.

3.3. A-subunit of Stx plays an important role in the induction of
apoptosis

To understand the role of the A-subunit in Stx-induced apopto-
sis, we treated THP1 cells with an A-subunit mutant
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Fig. 1. Stx induces apoptosis. (A) THP1 cells were treated with or without 50 lM Z-VAD-fmk. After 30 min, the cells were treated with 100 pg/ml Stx1 for 24 h then the cells
were stained with PI. PI-positive cells were observed under the fluorescent microscope and counted with a flow cytometer. The percentage of PI-positive cells is indicated at
the bottom. Bar: 25 lm. (B) THP1 cells were treated with 1 ng/ml Stx1, Stx2 or 2 lg/ml tunicamycin (TM) for the indicated periods. Whole cell lysates were analyzed by
Western blotting with the indicated antibodies. The arrows show cleaved caspase 3 and PARP. (C and D) THP1 cells were treated with the indicated doses of Stx1 (C) or Stx2
(D) for 6 h. Whole cell lysates were analyzed by Western blotting with the indicated antibodies. The arrows show cleaved caspase 3 and PARP.
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(E167Q/R170L) of Stx1 that possesses impaired activity to dead-
enylate 28S rRNA and inhibit protein synthesis [22]. As shown in
Fig. 4, the Stx1A mutant had much lower activity than wild-type
Stx1 to induce apoptosis. Even a 5000-fold excess amount of the
Stx1A mutant induced minimal apoptosis (Fig. 4A) with negligible
caspase activation (Fig. 4B). These data indicate that the functional
A-subunit is required for the induction of caspase activation and
apoptosis.

3.4. Proteasome activity is required for induction of apoptosis

To further explore the mechanism underlying Stx-induced
apoptosis, we next analyzed apoptosis inhibitory proteins in
response to Stx treatment. When THP1 cells were treated with
Stx1, the expression of apoptosis inhibitory proteins Apollon,
XIAP, c-IAP1, FLIP and Mcl-1 decreased prior to or along with cas-
pase 3 activation. In contrast, the expression of Bcl-2 and Bcl-x
were unchanged (Fig. 5A). Co-treatment with zVAD-fmk sup-
pressed the Stx-induced reduction of Apollon and XIAP, but not
c-IAP1, FLIP and Mcl-1, indicating that the reduction of c-IAP1,
FLIP and Mcl-1 precedes caspase activation while Apollon and
XIAP were cleaved by caspases as a result of apoptosis progression
(Fig. 5B). Interestingly, the reduction of the apoptosis inhibitory
proteins and caspase activation (Fig. 5B), and the extent of apopto-
sis (Fig. 5C) were all suppressed by a proteasome inhibitor MG132.
We also observed that MG132 inhibited activation of caspases in
CD77 synthase transfectant U937 cell clones (Fig. 3F). Similar
results were obtained with a clinically approved proteasome inhi-
bitor bortezomib (Fig. 5D). These results suggest that, upon Stx
treatment, the levels of particular apoptosis inhibitory proteins
decreased owing to proteasomal degradation followed by caspase
activation and apoptosis progression.

3.5. Bortezomib extends the survival of mice challenged by Stx

Since bortezomib suppresses Stx-induced apoptosis in vitro, we
then examined whether it can suppress the toxicity of Stx in vivo
(Fig. 6A). We have established previously the model of Stx2 intox-
ication by intravenous injection [31]. In this model, administration
of Stx2 resulted in the death of >90% of the mice within 3 days
(Fig. 6B, red). The survival time was slightly extended by a single
dose of 2 mg/kg of bortezomib 6 h prior to the Stx2 challenge
(green). The extension of the survival was more markedly observed
when mice were administered 1 mg/kg bortezomib twice (blue).
The median of survival time, when half of the mice in each group
died, was shifted from 68 h in the control group (red) to 76.5 h in
the BRZ2 + Stx2 group (green) and 86 h in the BRZ1 � 2 + Stx2
group (blue). These results imply that inhibition of the proteasome
may be beneficial to treat patients affected by Stx intoxication.

4. Discussion

In this study, the mechanism of how Stx induces apoptosis in
THP1 cells and CD77 synthase-transduced U937 cells was investi-
gated. The results demonstrated that CD77 and the N-glycosidase
activity of the A-subunit are required for the Stx-induced apoptosis
(Figs. 3 and 4). These observations are consistent with the mecha-
nism by which Stx inhibits protein synthesis. Therefore, inhibition
of protein synthesis is likely to play an essential role in Stx-induced
apoptosis. As a result of protein synthesis inhibition, the levels of
short-lived apoptosis inhibitory proteins rapidly decrease via pro-
teasomal degradation (Fig. 5), which is followed by activation of an
initiator caspase, caspase 9 (Fig. 2), and an executioner caspase,
caspase 3, to execute apoptosis (Fig. 1).

The reduction of apoptosis inhibitory proteins by Stx is crucial
but likely insufficient to induce apoptosis, since cycloheximide,
an inhibitor of protein synthesis, also reduces the apoptosis inhibi-
tory proteins but cannot induce apoptosis in THP1 cells (Hattori
and Naito, unpublished data). In many cells, cycloheximide sensi-
tizes cells to apoptosis induced by death receptor ligation, which
is explained by the reduction of short-lived apoptosis inhibitory
proteins [32–35]. In these cells, caspase activation is remarkably
enhanced by various apoptosis stimuli. Therefore, we postulate
that the ability of Stx to inhibit protein synthesis sensitizes the
cells to apoptosis by reducing apoptosis inhibitory proteins, and
Stx simultaneously triggers caspase activation by an additional
mechanism to induce apoptosis. Currently, the triggering mecha-
nism of caspase activation by Stx is not understood, but the
N-glycosidase activity of the A-subunit is also required for trigger-
ing. Possibly, the deadenylated 28S ribosome is recognized by a
cellular damage sensor, which mediates apoptosis signaling to
mitochondria.

We identified caspase 9 as a primary upstream caspase that ini-
tiates apoptosis in Stx-treated cells. However, there are some
reports that suggest a role of caspase 8 as an initiator caspase in
Stx-treated cells [15–18]. In some of these studies, they observed
ER stress responses including CHOP expression, which induces
the expression of TRAIL and DR5 resulting in activation of caspase
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8 [15,16]. In our experimental conditions, however, CHOP was not
induced and caspase 8 was not activated in the cells destined to
undergo apoptosis (Figs. 1B, 2A and B). Inhibition of protein syn-
thesis by cycloheximide did not affect Stx-induced apoptosis
(Hattori and Naito, unpublished data), which further supports that
CHOP synthesis is not involved in the Stx-induced apoptosis in our
system. It is unclear why different responses are observed in the
same cell line, but the doses of Stx are much higher in previous
reports than our experiments, which may explain the differences
in the cellular responses.

The short-lived apoptosis inhibitory proteins are degraded by
the proteasome [32–36] and the inhibition of protein synthesis
by Stx results in the reduction of those proteins (Fig. 5A). When
cells were co-treated with proteasome inhibitors and Stx, the
levels of apoptosis inhibitory proteins were maintained and the
progression of apoptosis was suppressed (Fig. 5B–D). Our results
are consistent with previous study which demonstrated that Stx
reduced an apoptosis inhibitory protein Mcl-1 but not Bcl-2 and
Bcl-x in a proteasome activity dependent manner and that inhibi-
tion of proteasome activity protected against caspase activation by
Stx in endothelial cells [37]. Intriguingly, bortezomib [19] sup-
pressed Stx-induced apoptosis in vitro (Fig. 5D) and extended the
survival of mice challenged by Stx (Fig. 6). To our regret, the effec-
tive doses of bortezomib were quite high, which killed a consider-
able number of mice even when bortezomib was administrated
alone, and most of the Stx-administered mice eventually died.
However, our results suggest that suppression of apoptosis could
be beneficial for patients affected by Stx intoxication and the inhi-
bition of the proteasome could be a novel strategy to treat patients
infected with STEC.
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