
Citation: Peinado-Serrano, J.;

Carnero, A. Molecular Radiobiology

in Non-Small Cell Lung Cancer:

Prognostic and Predictive Response

Factors. Cancers 2022, 14, 2202.

https://doi.org/10.3390/

cancers14092202

Academic Editors: Dirk Vordermark

and María Isabel Núñez

Received: 29 March 2022

Accepted: 27 April 2022

Published: 28 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

cancers

Review

Molecular Radiobiology in Non-Small Cell Lung Cancer:
Prognostic and Predictive Response Factors
Javier Peinado-Serrano 1,2,3 and Amancio Carnero 1,2,*

1 Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocio, Consejo Superior de
Investigaciones Científicas, Universidad de Sevilla, Avda. Manuel Siurot s/n, 41013 Seville, Spain;
jvrr18@gmail.com

2 CIBERONC, Instituto de Salud Carlos III, 28029 Madrid, Spain
3 Department of Radiation Oncology, Hospital Universitario Virgen del Rocio, Avda. Manuel Siurot s/n,

41013 Seville, Spain
* Correspondence: acarnero-ibis@us.es

Simple Summary: The identification of prognostic and predictive gene signatures of response to
cancer treatment (radiotherapy) could help in making therapeutic decisions in patients affected by
NSCLC. There are multiple proposals for gene signatures that attempt to predict survival or predict
response to treatment (not radiotherapy), but they mainly focus on early stages or metastasis at
diagnosis. In contrast, there have been few studies that raise these predictive and/or prognostic
elements in nonmetastatic locally advanced stages, where treatment with ionizing radiation plays
an important role. In this work, we review in depth previous works discovering the prognostic and
predictive response factors in non-small cell lung cancer, specially focused on non-deeply studied
radiation-based therapy.

Abstract: Non-small-cell lung cancer (NSCLC) is the leading cause of cancer-related death worldwide,
generating huge economic and social impacts that have not slowed in recent years. Oncological
treatment for this neoplasm usually includes surgery, chemotherapy, treatments on molecular targets
and ionizing radiation. The prognosis in terms of overall survival (OS) and the different therapeutic
responses between patients can be explained, to a large extent, by the existence of widely heteroge-
neous molecular profiles. The identification of prognostic and predictive gene signatures of response
to cancer treatment, could help in making therapeutic decisions in patients affected by NSCLC. Given
the published scientific evidence, we believe that the search for prognostic and/or predictive gene sig-
natures of response to radiotherapy treatment can significantly help clinical decision-making. These
signatures may condition the fractions, the total dose to be administered and/or the combination
of systemic treatments in conjunction with radiation. The ultimate goal is to achieve better clinical
results, minimizing the adverse effects associated with current cancer therapies.

Keywords: NSCLC; radiotherapy; biomarkers; prognostic and predictive signature

1. Introduction
1.1. Ionizing Radiation as an Oncological Treatment

The clinical benefit of ionizing radiation has its sole counterpart in surgical treat-
ment, and these two therapeutic weapons are responsible for the possible cures in cancer.
Radiotherapy is administered in at least 60% of patients affected by a neoplasm, with
constantly improving tolerance and safety profiles and excellent clinical results in the
radical, complementary, or palliative clinical scenario. Currently, antineoplastic treatment
is being considered as personalized medicine. Personalization aims to offer the patient
individualized treatment adapted to their physical characteristics and the characteristics of
their particular neoplasm. However, the oncological treatments used, both in localized and
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metastatic stages, are far from optimal in terms of individualization. Although there are sev-
eral neoplasms for which we can offer more precise therapeutic alternatives, we continue
to use general treatments, such as surgery, ionizing radiation, and chemotherapy, as stan-
dards. Individualized treatment for systemic therapies will require focusing the therapeutic
approach on specific molecular targets. However, customization of radiotherapy treatment
focuses mainly on the application of immobilization elements adapted to the anatomy
of each patient. This can enable a gain in precision, as well as technological advances in
diagnostic imaging, including computed tomography (CT) for treatment planning and its
fusion with positron emission tomography (PET) and magnetic resonance imaging (MRI).
Radiotherapy treatment in its different modalities was known to be effective long before the
molecular basis for its effectiveness was discovered. This molecular effect, focused directly
and/or indirectly on the damage to nuclear and/or mitochondrial DNA, is only the tip
of the iceberg of the biological effect of this powerful therapeutic weapon. Radiotherapy
treatment has successfully withstood the appearance of numerous waves of therapeutic
alternatives that threaten to replace it as the second most important therapy after surgery.
Instead, it has managed to evolve toward therapeutic personalization, now offering great
precision and an unprecedented tolerance profile. Radiotherapy offers some patients the
possibility of long-term cure with an excellent toxicity profile. Despite this, we still need a
deeper understanding of the molecular bases that govern the different therapeutic effects
after ionizing radiation.

1.2. Classical Radiobiology: The 5 “Rs” That Explain the Response to Ionizing Radiation

Several phenomena have been described that condition the disparate responses to
ionizing radiation. This has laid the groundwork for the use of different treatment schemes
depending on the histological subtype and stage of the disease. These factors, commonly
known as the 5 “Rs” of radiobiology, are applicable to both healthy and tumor tissues:

Intrinsic radiosensitivity: Two tumors of different histological lineages show a very
different therapeutic response. A good example of this is the case of melanoma, considered
radioresistant to standard fractionations, and low-grade follicular lymphoma, whose cura-
tive treatment requires very low doses of radiation. Likewise, two tumors considered to be
of the same histological lineage also sometimes show very different therapeutic responses.
Deepening the study of this variable opens the field of molecular alterations typical of each
tumor cell. Alterations in the signaling pathways that mediate proliferation, damage repair
or programmed cell death, among others, determine the wide range of responses observed
in the clinic. The study of in vitro intrinsic radiosensitivity is carried out by means of the
clonogenicity assay, obtaining the parameter surviving fraction at 2 Gy (SF2) that allows the
comparison of results of different histological subtypes and the prediction of the potential
clinical response of the said tumor. The study of the molecular factors involved in this
response is one of the pillars of modern molecular radiobiology.

Reoxygenation: The first studies suggesting an important role of tissue oxygenation in
the response to radiotherapy treatment date back to 1909, when Schwarz [1] showed that
ionizing radiation had a dampened effect on the skin if it was compressed externally, thus
reducing the flow of blood in the irradiated area. In 1910, Müller showed greater responses
to treatment upon increasing blood flow with diathermy [2]. In 1953, Gray et al. [3], as
pioneers in radiobiology, published their studies on the effect of hypoxia on the response to
ionizing radiation using an in vitro fibroblast model and an in vivo mouse model. They
postulated that the oxygen concentration conditions the chemical response induced in the
cells after radiation. In that same year, the double helix structure of DNA was described by
Watson and Crick [4]. Based on this, direct and indirect damage (by oxygen-nitrogen free
radicals) to DNA was postulated to be one of the main mechanisms of the action of ionizing
radiation. This damage is influenced by hypoxia-reoxygenation, which is the cornerstone
of physical and molecular radiobiology. In 1955, the presence of hypoxic areas in some
squamous cell carcinomas of the lung and their potential relationship with the response
to radiation were described [5]. Since then, many neoplastic histological subtypes have
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been studied, with hypoxia being an independent prognostic factor in cervical cancer [6,7],
head and neck carcinomas [8] and soft tissue sarcomas [9] among others. In the last 20
years, knowledge of the molecular mechanisms that mediate the response to oxygen levels
and their role in the phenomena of initiation, maintenance, proliferation, metastasis, and
response to oncological treatments has increased significantly [10].

Redistribution: The response to ionizing radiation differs depending on the phase of
the cell cycle. Pioneering studies at the end of the 1960s placed the late phase of cell cycle
synthesis (S phase) as the phase with the least sensitivity to radiation [11]. In contrast, the
late phase of G2 and mitosis are the most sensitive to it. Likewise, through the fractionation
of the dose, a redistribution toward more sensitive phases of the cell cycle can be achieved.
This could explain the greater benefit of such fractional schemes. The factors responsible
for cell cycle-dependent response variations are multiple and not yet fully determined,
suggesting that the ability to repair damage by homologous recombination (HR), is one of
the main reasons behind these differences.

Repair: Since direct and/or indirect damage to DNA is ultimately responsible for the
effects of ionizing radiation, repairing this damage is key to understanding the therapeutic
response. After exposure to a treatment fraction, there are three subtypes of potentially
inducible damage: (1) lethal damage, which is not repairable and generally involves
cell death (of both tumor and normal cells); (2) sublethal damage, which involves the
generation of molecular alterations that are properly recognized by damage sensors and
can be repaired; and (3) potentially lethal damage, which, if not properly repaired, can lead
to a lethal event. Neoplastic cells sometimes have mutations, such as the inhibition of TP53
or other sensors, such as ATM and BRCA, which lead to the abnormal or failed recognition
of induced DNA damage. This, added to an imperfect repair machinery, ultimately leads
to the appearance of successive clones with little or no response to treatment.

Repopulation: When fractionated radiotherapy treatment is advanced on a given
tumor, a cellular subpopulation with pluripotential properties can regenerate the damaged
tumor itself [12]. These cellular phenomena are described in the majority of tumors and
partially justify the early local relapses observed in the clinic. This is a consequence of a
greater resistance to treatment of these pluripotent clones (cancer stem cells (CSCs)). It is
usually overcome by reaching a sufficient total absorbed radiation dose and not stopping
the fractionated treatment before its theoretical completion. Radiation is highly effective in
neoplasms of the head and neck area or anus, among others [13,14]. In contrast, despite
reaching high doses of radiation, poor clinical results are obtained for high-grade gliomas
and the majority of locally advanced NSCLC. This poor therapeutic response is in part
due to the extremely radio-resistant profile of these CSCs, and this explanation may be
combined with the fact that larger lesions have higher failure rates, as in the case of lung
cancer [15–20]. It has been suggested that larger tumors have more CSCs, allowing the
appearance of a greater number of resistant clones and therefore a greater possibility of
therapeutic failure [21,22].

In an attempt to show that higher total dose is associated with better disease control,
the phase III clinical trial RTOG 0617 proposed two treatment arms for patients affected by
locally advanced NSCLC, in which the 74 Gy arm (versus 60 Gy) obtained worse clinical
results. This surprised the oncology community and was the result of a detrimental effect
on the surrounding healthy tissues, which meant a deleterious effect on survival in patients
treated with higher doses [23]. These factors that can determine different responses to
radiation are general phenomena that have long been considered predictive of treatment
response. Today, they are still far from being customizable elements and differ substantially
between different histological subtypes, anatomical locations, and even between two
tumors with similar characteristics. Although these factors are taken into account when
considering the therapeutic approach with ionizing radiation, they are not sufficient, either
individually or jointly, to predict therapeutic responses, nor do they fully explain the lack
of efficacy of treatment in some patients.
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1.3. Epidemiology and Classification of Lung Cancer

Lung cancer, due to its frequency and its impact on the lives of patients and on health
systems, is one of the most important health problems in our society. It is the leading
cause of cancer mortality worldwide. The incidence in the European Union is 288,100 new
cases per year, with a mortality of 252,500 (181,900 men and 70,600 women) [24]. The main
risk factor for its development is tobacco consumption [25–28]. Based on its histological
characteristics, it is divided into two large groups: small cell lung cancer (small cell) and
non-small-cell lung cancer (NSCLC). The latter accounts for approximately 85–90% of
the total cases. In turn, this group is subdivided based on histological and molecular
characteristics into adenocarcinomas (the majority), squamous, large cell, neuroendocrine,
and NOS (Figure 1).
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1.4. Therapeutic Approach to NSCLC

Currently, three clinical scenarios are considered for cancer treatment in newly diag-
nosed patients: resectable, locally advanced (unresectable) or metastatic. As shown in the
main international therapeutic guidelines [29], radiotherapy treatment plays an important
role in all scenarios. It is an alternative to surgical treatment in early stages (Stage I and II
without nodal load) by stereotactic body radiotherapy (SBRT) and complementary after
surgical resections with affected edges and/or positive nodal load (N2). In locally advanced
stages (Stage III), where an initial surgical resection is not possible, normofractionated
radiotherapy treatment together with chemotherapy treatment (concomitant or sequential)
is the therapeutic standard. In patients with 1 to 5 thoracic and/or extrathoracic lesions
(oligometastatic disease), the option of local treatment with radical intention is considered
an effective alternative. Patients with a significant burden of systemic disease benefit
from palliative radiotherapy treatment with analgesic, hemostatic or decompressive intent.
Finally, the majority of patients with metastatic spread at the level of the central nervous
system receive radiotherapy treatment in a protocolized manner, if their health status al-
lows it. Focusing on the locally advanced unresectable scenario (Stages IIIA, IIIB and IIIC),
there is currently no standard radiochemotherapy regimen, although the combination of a
platinum-based scheme and thoracic radiotherapy has significantly improved the survival
of these patients. These patients are treated with standard radiation doses of 60–66 Gy
concurrently, or sequentially, with combined chemotherapy [30–32]. Fractionations may
vary, but generally 1.8 to 2 Gy/fraction/day (normofractionated) is used. Despite the
application of a combined cytotoxic treatment, we continue to observe local relapse rates
of 30–50% in this group of patients [33,34]. This fact alone justifies the need to continue
delving into the biological keys that govern the poor clinical results obtained to date.
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1.5. Molecular Characterization of NSCLC and Its Impact on the Therapeutic Approach

Research focused on improving antineoplastic therapies in lung cancer has been based
on the genomic and proteomic study of tumors with a known specific genetic basis, such
as EGFR and KRAS mutations. This molecular classification has influenced the response
to biological therapies based on monoclonal antibodies and tyrosine kinase inhibitors in
patients with lung cancer [35–37]. On the other hand, a nonuniform response of patients to
these therapies has been observed, proposing a resistance model that could be mediated by
other mutations in some relevant genes (insertions in EGFR [38], KRAS [39], amplification
of MET [40–42] or mutations in the kinase domain of HER-242). We also know that
the tumor genetic profile has a relevant impact on the response to chemotherapy [43]
and radiotherapy [44,45]. Multiple studies have related some of these mutations with
mechanisms of radioresistance or radiosensitivity in NSCLC [45,46]. However, little is
known about the role of these different radiotherapy fractionation schemes and their
combination with other systemic or local treatments in the tumor response depending on
the molecular profiles described [47,48].

2. Radiobiological Biomarkers

Several genes have been proposed as radiobiological markers. These include genes
related to intrinsic radiosensitivity, such as EGFR, HER2, ALK; DNA repair such as ATM,
XRCC1, RAD21, RAD50, and BRCA; genes related to repopulation and cell cycle redis-
tribution, such as CD44, Ki67, and CDKN1A; and genes related to reoxygenation, such
as HIF1α, HIF2α, VEGF [49–52]. However, no biomarkers are currently considered as
conditioning factors for radiotherapy treatment, despite expanding knowledge that some
mutations can affect the response to ionizing radiation. Thus, the classification of NSCLC
based exclusively on clinicopathological characteristics has been the only determinant of
the therapy administered.

In recent years, there has been a radical change in the way these tumors are classi-
fied [53,54]. The availability of biological material and advances in transcriptomic analysis
techniques have made it possible to improve the subclassification of neoplasms encom-
passed within NSCLC. Likewise, advances in molecular biology and genetics have shown
that some specific molecules contribute to the sporadic appearance of lung cancer and are
useful as therapeutic targets and/or as predictive biomarkers of response [55]. In 2011,
the results of the mutational study of genes responsible for lung cancer (EGFR, KRAS,
BRAF, HER2, AKT1, PIK3CA, MEK1, EML4-ALK, MET) were published, identifying the
existence of at least one mutation in the above genes in more than 60% of the samples
studied (Figure 2). In more than 90% of cases, these mutations were considered to be
exclusive, understanding this as the existence of a single mutation in a tumor sample [56].
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The identification of these mutations led to the creation of molecular therapies aimed
at improving survival in subgroups of patients with metastatic disease. Likewise, the role
of these mutations in the response to ionizing radiation has been studied in depth, with the
goal of offering combined treatments that can potentially improve the therapeutic results
in NSCLC patients in early and locally advanced stages. This manuscript does not aim to
delve further into the molecular alterations addressed by immunotherapy, or the potential
synergies derived from its combination with radiotherapy treatment.

2.1. Role of the Epidermal Growth Factor Receptor (EGFR)

EGFR is an important regulator of the tumorigenic process, mediating the processes
of proliferation, apoptosis, angiogenesis, and tumor invasion. It is amplified and/or
overexpressed in up to 6% and mutated in 10–15% of NSCLC. Likewise, together with its
ligands, it is constitutively activated during the initiation and progression of neoplasia.
NSCLC cell lines harboring mutations in the EGFR tyrosine kinase domain show increased
radiosensitivity compared to native EGFR cell lines. The radiosensitivity of both NSCLC
cell lines with mutant EGFR and human bronchial epithelial cells that stably express mutant
forms of EGFR has been attributed to various aspects: (1) delayed DNA repair kinetics,
(2) defects in the STOPs induced by radiation during DNA synthesis or in mitosis and
(3) an increase in both the apoptotic phenomenon and the appearance of micronuclei.
Apparently, mutated EGFR is incapable of translocating to the nucleus, which makes it
difficult for it to interact with DNA-dependent protein kinase (DNA-PK), a fundamental
enzyme in the radiation-induced double-strand break repair process. Inhibition of EGFR by
tyrosine kinase inhibitors (TKIs) or by monoclonal antibodies (mAbs) has shown limitations
regarding radiosensitizing NSCLC cell lines in vitro and in vivo [57–69]

2.2. Ras Family of Oncogenes: Role of KRAS in NSCLC and Their Response to Ionizing Radiation

The RAS family of oncogenes (HRAS, KRAS and NRAS) encodes signal transduction
proteins that are related to the transmission of signals from extracellular growth receptors,
such as EGFR. They are small GTP-binding proteins located on the inner face of the plasma
membrane that have GTPase activity. After activation of RAS through the exchange of
GDP for GTP, multiple downstream signaling effectors are activated, such as MAPK,
STAT and PI3K, which ultimately regulate the phenomena of proliferation, motility, and
apoptosis [70–72]. RAS activating mutations prevent the hydrolysis of GTP to GDP, leading
to constitutive activation of the aforementioned signaling cascades. Approximately 30% of
adenocarcinomas and 5% of squamous cell carcinomas have KRAS mutations. Although
it is still controversial at present, the activation of KRAS mutations is a marker of poor
prognosis in NSCLC. In 2011, Sun et al. published a study in which they evaluated the role
of these mutations in tumor radioresistance [73]. The results showed that the lung cancer
cell line HCC2429, in which KRAS mutated at position 12V had been transfected, showing
a decrease in the apoptotic response after radiation. The same team also showed that the
specific inhibition of JAK2 by the TG101209 molecule induces a radiosensitizing effect by
inhibiting STAT3 phosphorylation and the consequent reduction in survivin expression
in the HCC2429 and H460 cell lines [73]. Furthermore, in vivo experiments showed that
survivin inhibition was associated with an increase in apoptosis, a reduction in tumor
proliferation and associated vascular density. Once the protective effect of survivin is
overcome, the differences observed in apoptosis between the two cell lines used in this
study (H460 and HCC2429) seem to be explained by the mutational status of KRAS. Wang
et al. proposed osteopontin (SPP1) and its relationship with EGFR-dependent mitotic-type
chromatin condensation (MLCC), with a higher radioresistance profile in some NSCLC
cell subpopulations with mutated KRAS [74]. Chromatin condensation has been related
to increased protection against DNA double helix breaks and potentially with negative
regulation of inhibitors of stem-like properties, such as invasion and metastasis [74]. In this
way, a model is proposed in which the stem phenotype is connected to the EGFR and SPP1
pathways, cooperating to modulate chromatin condensation and the induction of double
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helix breaks. Mutated KRAS NSCLC cells with activation of the MLCC pathway and low
levels of BIM are more prone to genomic alterations in the tumor suppressors TP53 and
CDKN2A. Likewise, there seems to be a positive relationship between SPP1 levels and TP53
mutations. The identification of comutations in KRAS and TP53 has been related to higher
levels of radioresistance in in vitro and in vivo models based on cell lines and xenografts
of NSCLC, proposing the escalation of radiotherapeutic dose and/or radiosensitization by
tyrosine kinase inhibitors as routes to overcome this resistance [75]

2.3. EML4-ALK

Fusion of the echinoderm microtubule-associated protein 4 (EML4) gene with the
anaplastic lymphoma kinase (ALK) gene was first identified in neoplastic non-small-cell
lung cancer cells [76]. The fusion is associated with the generation of a transcript translated
into a protein (EML4-ALK) with a tyrosine-kinase domain, which promotes and maintains
the malignant characteristics of the neoplastic cell. This fusion, the result of an inversion in
the short arm of chromosome 2, occurs in approximately 5% of NSCLC, generally young
patients, nonsmokers, and adenocarcinoma subtypes. Its existence is mutually exclusive
with mutations in RAS and EGFR. Its function as an oncogene is dependent on its tyrosine
kinase activity, which has made it possible to use treatments directed against this target (for
example, crizotinib and ceritinib, among others). The clinical results derived from phase III
trials have shown the superiority of crizotinib compared with chemotherapy in metastatic
patients with ALK rearrangement, both in first-line and second-line therapy [77,78]. The
majority of patients treated with crizotinib acquire resistance to the drug within the first
12 months of treatment [79]. In this sense, ceritinib, a second-generation ALK tyrosine
kinase inhibitor, has shown an activity up to 20 times greater than crizotinib, demonstrating
clinical responses in patients previously treated with crizotinib [80], as well as better
results than standard chemotherapy in first- and second-line treatment [81,82]. On the
other hand, these targeted treatments have shown activity against the tyrosine kinase
function of MET and ROS1, whose amplification and rearrangement fusion, respectively,
have been described in NSCLC. MET and ROS1 have been described as responsible for
resistance in tumors with EGFR mutations that have acquired resistance to tyrosine kinase
inhibitors (erlotinib, gefitinib) [83]. In 2013, Sun et al. demonstrated the radiosensitizing
properties of crizotinib in an in vivo and in vitro model in ALK+ lines [84]. Analyzing
the downstream ALK signaling pathway, they demonstrated activation of AKT, ERK,
and STAT3 after irradiation and how combining crizotinib and radiotherapy completely
inhibited ALK and decreased effector activation. Similar results have subsequently been
obtained both with the combination of crizotinib and with the second-generation molecules
of the same family, confirming its radiosensitizing effect to both photons and carbon ions.
To date, some working groups have published their experience in patients treated with
crizotinib and ablative radiotherapy techniques in patients with oligometastatic disease
who progressed to targeted treatment. These studies proposed irradiation as a weapon
to overcome resistance phenomena that appear, suggesting a benefit in terms of survival
for patients who continued with targeted treatment [85,86]. Despite the accumulated
scientific evidence on the impact of relevant mutations in NSCLC, none of them conditions
radiotherapy treatment, obtaining clinical responses in tumors where systemic therapy has
not been effective. This confirms the multitarget effect of radiation and its condition as a
fundamental therapeutic weapon in all stages of the disease.

3. Gene Signatures with Prognostic and Predictive Response Value in NSCLC

Given the published scientific evidence, we believe that the search for prognostic
and/or predictive gene signatures of response to radiotherapy treatment can significantly
help clinical decision-making. These signatures may condition the fractions, the total dose
to be administered and/or the combination of systemic treatments in conjunction with
radiation. The ultimate goal is to achieve better clinical results, minimizing the adverse
effects associated with current cancer therapies.
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A gene expression signature can be defined as the specific pattern of expression of one
or several genes with validated specificity in terms of diagnosis, prognosis, or prediction of
response to some treatment. For more than 20 years, with the development and improve-
ment of microarray technology, numerous studies have been generated, based mainly on
transcriptomic analysis, proposing different gene signatures as prognostic biomarkers in
adenocarcinoma [87–95], squamous cell carcinoma [96–98] and NSCLC in general [99–110].
Some of these studies have tried to identify prognostic and predictive biomarkers of re-
sponse to systemic treatments. Most of them focused on the identification of markers
that could help in clinical decision-making about the suitability of administering adjuvant
systemic treatment in early stages of NSCLC after surgery [111,112]. This is based on the
management of patients affected by breast cancer, in which there are already several gene
platforms that help predict survival and the potential benefit of administering adjuvant
chemotherapy [113]. In contrast, very few published studies have suggested predictive
signatures of response to ionizing radiation in NSCLC.

3.1. NSCLC Gene Signatures

In 2002, Beer and collaborators [87] published one of the pioneering articles on the
generation of gene signatures with prognostic capacity. They proposed a gene profile of
50 genes, which allowed the identification of a subgroup of patients within stage I whose
behavior and survival are similar to those included as stage III. They proposed that modifi-
cation of the therapeutic approach in these patients could lead to an improvement in their
prognosis. They exclusively took samples of adenocarcinomas, mainly in early stages. Most
of the patients did not receive adjuvant treatment. In 2004, Tomida et al. [114] proposed
a prognostic signature of 25 genes resulting from the analysis of a total of 8644 genes in
tumor samples from 50 patients who underwent surgery for NSCLC: 30, 16, and 4 samples
corresponded to the adenocarcinoma, squamous cell carcinoma and large cell carcinoma
subtypes, respectively. Regarding staging, 23, 11, and 16 patients were classified as stage
I, stage II, and stage III, respectively. They carried out several subanalyses by histology,
proposing a 16-gene signature for a better prognostic classification in the squamous subtype
and another 12-gene signature for the adenocarcinoma subtype. These genes came from the
proposed common signature of 25, without distinction between histological subtypes. They
concluded that their study was partially robust (mainly limited by a small sample size) and
that these signatures were independent of the tumor, nodes and metastasis staging system
(TNM) at diagnosis. In 2006, Raponi et al. published a study focused on the identification
of prognostic subgroups in the squamous subtype of NSCLC [96]. They used 129 samples
of squamous cell carcinoma (the majority from patients with stage I disease) and carried
out a microarray analysis with validation by RT–PCR and immunohistochemistry. They
obtained a group of 50 genes with the capacity to separate the 129 samples of squamous
cell carcinoma by prognostic subgroups (prognostic classifier). Subsequently, validation
was carried out in another independent cohort with 36 samples (mostly from patients in
stage I). Likewise, jointly using this set of genes, those obtained in a study focused on the
adenocarcinoma subtype and published by the same authors tested the set of 100 genes
in a cohort with 52 samples (50% squamous and 50% adenocarcinoma), with the aim of
establishing a valid prognostic signature for the two main histological subtypes in NSCLC.
They concluded that the classifier gene set maintained its ability to separate prognostic
subgroups in the adenocarcinoma sample but not in the squamous subtype. Thus, new
validations are necessary in larger and more homogeneous cohorts.

In 2007, Lau et al. [115] published a prognostic signature of three genes focused on
NSCLC in early stages. The objective of this study was to validate a signature with the
capacity to identify, within the initial stages of the disease, those patients with differen-
tial prognostic profiles. The genes proposed in the signature were STX1A, CCR7 and
HIF1A. In 2007, Chen et al. [116] published a prognostic signature composed of five genes
(DUSP6, MMD, STAT1, ERBB3 and LCK), which were the result of a combined analysis
of microarrays and RT–PCR in tumor samples from 101 surgically treated patients (mixed



Cancers 2022, 14, 2202 9 of 20

adenocarcinoma subtype, squamous and others). Subsequently, these results were vali-
dated in an independent cohort of 60 patients and in a microarray set of 86 patients. In the
multivariate analysis considering other clinical variables, such as age or stage, the proposed
signature maintained its statistical significance. On the other hand, this gene signature
predicted RFS in a statistically significant way in the initial cohort of the study, a result that
was not shown in the validation cohorts [116]. More recently, Zuo et al. [117] proposed a
signature of six genes with the capacity to predict disease-free survival and overall sur-
vival in NSCLC, without discriminating by histological subtypes. They were based on
the combination of genetic information from three public databases that encompass all
histological subtypes (mainly adenocarcinomas). After obtaining the candidate genes with
prognostic capacity, validation was carried out with the TCGA lung cancer cohort. The
proposed signature was comprised of the PLEKHH2, ISCU, CLUL1, CHRDL1, PAIP2B,
and CDCP1 genes. In the same year, the same team published another article in which they
proposed an 8-gene prognostic signature for patients with early-stage NSCLC [118]. The
proposed genes (CDCP1, HMMR, TPX2, CIRBP, HLF, KBTBD7, SEC24B-AS1, and SH2B1)
do not coincide with those proposed in other studies. This may also be due to multiple
causes: (1) the signature was based on the identification of genes with prognostic value
(HR< o >1 and p < 0.05) common in four different public databases, and (2) they exclusively
selected he samples that corresponded to the early stage of disease.

3.2. Ionizing Radiation-Based Gene Signatures

Unlike the works presented above, articles published on the identification of predictive
or prognostic gene markers which focused on cohorts whose main treatment was ionizing
radiation in the case of NSCLC are scarce. Based on research carried out by the American
National Cancer Institute (NCI) on in vitro analysis of the biological effects of different
antineoplastic drugs on cell lines [119], Torres-Roca et al. published in 2005 [120] the
identification of genes correlated with the response to ionizing radiation in 35 cell lines of the
NCI-60 panel, representative of nine types of cancer. They evaluated genetic contributions
to radiosensitivity by quantifying the surviving fraction after exposing cell lines to a
standard radiation dose of 2 Gy (the clonogenicity assay). They concluded that their
response predictor model based on gene expression could be very useful to improve
the therapeutic approach of patients, assuming that the model would require in vivo
validation [120]. Subsequently, Eschrich et al. extended the model to 48 cell lines from the
NCI panel and included other biological variables, such as the mutational status of KRAS
and TP53, as well as the tissue of origin [121,122]. Combining these data, they created a
linear rank-based algorithm to calculate a radiosensitivity index (RSI). The RSI has since
been validated in multiple cohorts of patients with different neoplastic entities (pancreas,
glioblastoma, liver, brain and lung metastases, breast cancer) [123–128]. The RSI forms
a predictive signature of response to radiotherapy treatment composed of the genes AR,
cJUN, STAT1, PKC, RELA, ABCc, SUMO1, CDK1, HDAC1 and IRF1.

Almost simultaneously with these works, in 2008, Amundson et al. [129] published an
article in which they analyzed the genetic response to stress produced by ionizing radiation
in a panel of 60 NCI cell lines and in three of their own cell lines. This work, contrary to
those carried out previously, analyzed the changes in gene expression induced by radiation,
not as a function of the basal gene profile. Unlike what was found when analyzing the basal
expression levels, no significant differences were observed in the levels of gene expression
depending on the tissue of origin (ovary, lung, breast), except in the case of the cell lines
derived from lymphoid/myeloid tissue. This could support the hypothesis of the existence
of molecular determinants of sensitivity/resistance to radiation that would be common
to all tumor subtypes (not including hematological neoplasms). They concluded that,
although there are changes in gene expression induced by radiation, especially in the p53
pathway, basal gene expression levels may be better predictors of response.

One of the most important studies in the field of radio-oncology and physical and
molecular radiobiology was published in 2017 by Scott et al. [130]. This article proposed a
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model to adapt the radiotherapy prescription to the individual sensitivity of each patient’s
tumor. The model, called GARD (genome-based model for adjusting radiotherapy dose, of
its acronym in English), combines the information derived from the radiosensitivity index
(RSI) and the linear quadratic model (LQ model), which proposes the existence of two
parameters that impact the cytotoxic capacity of radiation, one of them being proportional to
the dose of radiation administered (factor α) and the other being proportional to the square
of the dose (β-factor). This mathematical model has been used for decades to calculate the
equivalent biological dose of different radiotherapy treatment schemes, considering the α/β
ratio of each tumor, which has been used to propose altered radiotherapy fractionations.
This has made it possible to achieve biologically equal or superior results to treatments
based on daily normal fractionation (1.8/2 Gy/fraction) [131]. This extensive work uses
multiple cohorts of different neoplastic histologies (breast cancer, esophagus, head and neck,
stomach, cervix, gliomas, pancreas, lung, nonmelanoma skin cancer and melanoma) and
establishes a numerical value for GARD (normally in the range of 1 to 200), relating a higher
level of GARD with a greater therapeutic effect of radiotherapy treatment. More recently,
the same group has proposed GARD as a pan-cancer predictor of radiation benefit (with
impact in OS and RFS), based on a cohort-based pooled analysis of more than 1500 patient
representatives of several cancer subtypes, including NSCLC [132]. As an example of
the current interest in this field, Ma and collaborators [133], using LASSO Cox regression
analysis in the TCGA NSCLC database, demonstrated that eight genes (BLACAT1, ALPP,
SLC6A11, IGFN1, HIST1H2BH, KCNJ12, FOLR3, and RPS4XP22) based on risk score
could predict the prognosis of NSCLC patients with or without radiotherapy treatment.
However, in this work, 365 genes potentially correlated with the radiotherapy response
were also described, and the original dataset encompassed almost 1000 patients where only
127 received radiotherapy. Focused on the TCGA lung cancer database, our group have
recently published a prognostic of a predictive radiation-based 6-gene signature derived
from the differentially expressed genes according to the radiophenotype of NSCLC cell
lines and applied to a 107-patient cohort of stage I-III NSCLC, treated with radiation and
other therapies [134]. A summary of the gene signatures analyzed in this review is shown
in Table 1.

Besides gene expression signatures, it is important to comment on other studies that
consider several factors which have classically been used to predict response to treatment
and vital prognosis, both in lung cancer and in other solid and hematological neoplasms.
Some of these factors are the general condition of the patient, tumor size, nodal load, age,
the existence of comorbidities, previous treatments administered and TNM classification,
along with other elements identified in blood samples (inflammatory markers, such as
interleukins and C-reactive protein; indirect markers of hypoxia, such as osteopontin,
carbonic anhydrase IX and lactate dehydrogenase; or indirect markers of tumor burden,
such as carcinoembryonic antigen or cytokeratin 21-1 fragments) [135–144]. In this way,
Dehing-Oberije et al. published the results of their study, in which they developed and
validated a prognostic signature in patients with NSCLC treated with radiotherapy +/−
chemotherapy. It combined the determination of biomarkers in peripheral blood such as
carcinoembryonic antigen (CEA) and interleukin 6 (IL-6)) with other clinical factors, such as
sex, general condition of the patient, forced expiratory volume (FEV1), number of affected
lymph nodes and primary tumor volume (GTV) [145].



Cancers 2022, 14, 2202 11 of 20

Table 1. A summary of the gene signatures analyzed in this review.

Author/Year Gen Expresion Signature Cancer Type Histologies Number of Patients
/TNM Stage

Prognostic
Value?

Predictive of
Response Value?

Used in
the Clinic?

FoYes, It Is a
NOcused on

Radiotherapy
Reference

Beer et al./2002 50 genes NSCLC ADC 67/I; 19/III Yes No No No [87]

Tomida et al./2004 25 genes (all subtypes)/12 genes (SCC) NSCLC ADC/SCC/LCC 50/I yes No No No [114]

Lau et al./2007 STX1A, HIF1A, CCR7 NSCLC ADC/SCC 92/I; 36/II; 17/III yes no No No [115]

Chen et al./2007 DUSP6, MMD, STAT1, ERBB3, LCK NSCLC ADC/SCC/other 59/I-II; 42/III yes yes No No [116]

Zuo et al./2019 PLEKHH2, ISCU, CLUL1, CHRDL1,
PAIP2B, CDCP1 NSCLC ADC/SCC 410/I; 220/II;

109/III; 22/IV yes yes No No [117]

He et al./2019 CDCP1, HMMR, TPX2, CIRBP, HLF,
KBTBD7, SEC24B-AS1, SH2B1 NSCLC ADC/SCC/LCC/other 923/I; 417/II yes no No No [118]

Scott et al./2017–2021
AR, cJUN, STAT1, PKC, RELA, ABCc,
SUMO1, CDK1, HDAC1, IRF1 (GARD

and RSI)
NSCLC and others NR 60/III yes yes No Yes [130,132]

Ma et al./2019
BLACAT1, ALPP, SLC6A11, IGFN1,

HIST1H2BH, KCNJ12, FOLR3,
RPS4XP22

NSCLC ADC/SCC
509/I; 277/II;

163/III; 32/IV;
12/NR

yes yes No Yes [133]

Peinado-Serrano et al./2022 APOBEC3B, GOLM1, FAM117A,
KCNQ1OT1, PCDHB2, USP43 NSCLC ADC/SCC 57/I-II; 50/III yes yes No Yes [134]

TNM: tumor, nodes, metastasis; NSCLC: non-small cell lung cancer; ADC: adenocarcinoma; SCC: squamous cell carcinoma; LCC: large cell carcinoma; GARD: genome-adjusted radiation
dose; RSI: radiation sensitivity index.
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3.3. microRNAs

There are high potential predictive and prognostic roles of certain microRNAs (tumor
and circulating). There is a wide field of research focused on the function of this noncoding
RNA that potentially regulates gene expression. Some of the more than 2000 miRNAs iden-
tified to date can be considered diagnostic and prognostic biomarkers in many neoplastic
entities, including NSCLC [146–149]. In 2010, Hu et al. [147] identified a prognostic signa-
ture in NSCLC composed of four miRNAs. They included study samples from patients
in early and locally advanced stages (stage I to III) who had been treated with surgery
and chemotherapy. Apparently, no patient received radiotherapy treatment. One of the
most interesting studies is that published by Sun et al. in 2018, in which they proposed the
role of certain circulating miRNAs (c-miRNAs) in association with other clinical factors as
determinants of response to radical doses of ionizing radiation in NSCLC. To do this, they
proposed the generation of a scale or a score based on the radiation dose and the objective
response, which they called “DRS” (Dose Response Score, of its acronym in English). The
cohort included patients in several clinical trials in which radiation dose escalation was
considered in stages II and III (more than 90% were stage III). They proposed a total of 11 c-
miRNAs, which, together with variables such as stage, age, radiation dose administered,
systemic treatment and the Karnofsky general status scale, were used to determine the DRS
of each patient. The results showed that those patients who had a low DRS benefited from
high doses of radiation, with an impact on survival, represented by Kaplan–Meier curves.
In contrast, patients with a high DRS did not show differences in survival depending on the
dose administered. Likewise, they demonstrated that a low DRS value in patients treated
with high doses made it possible to predict a lower risk of metastasis. In contrast, they
could not demonstrate a statistically significant predictive capacity for local control of the
disease [150].

4. Limitations

As reflected in most of the works published to date focused on biomarkers, taken
individually or in the form of gene signatures with potential prognostic and/or predictive
capacity, the main problem is the difficulty in extrapolating in vitro data to the clinic. The
heterogeneity of samples, the different extraction techniques of genetic material and the
constant development in the biostatistical and bioinformatic approaches make it very
difficult to compare pioneering with more recent studies. These works with potential
translational capacity generally showed several limitations: 1—The sample size of the
discovery set limited the statistical power of the bioinformatic analysis. 2—The evaluation
of the response to ionizing radiation as the standard for the determination of response.
As reflected in the literature [121,151–153], there are many differences in the published
values of dose, treatment types and efficacy, which implies potential bias when establishing
classifications in radiosensitive and radioresistant, and this can condition the supervised
bioinformatic analysis. 3—In the case of locally advanced NSCLC, on many occasions there
is not enough biopsy material to expand the battery of mutational determinations or to
perform tissue microarrays or immunohistochemical validation techniques. 4—Most of
the public databases with bioinformatic information on NSCLC feed on patient samples
mainly in localized and/or metastatic stages, which generally have not received or do
not reflect information on radiotherapy treatment; this has greatly limited the sample size
used in the studies, as well as the ability to obtain additional cohorts for further validation.
5—The generation of prognostic and/or predictive gene signatures of response to some
treatments do not usually assess other biological factors not directly related to the biology
of the tumor itself. These factors, whose genetic and epigenetic bases can condition the
response to certain oncological treatments and even significantly condition the overall
survival of patients, are undoubtedly the greatest biases when giving translational value to
these signatures.

The generation of new gene signatures with prognostic and/or predictive capacity in
pathologies such as NSCLC can greatly benefit patients. Knowledge about the patient’s
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responder profile or vital prognosis prior to starting treatment can help us optimize the
therapeutic approach and avoid dreaded and frequent iatrogenesis. However, most of
the studies may need additional validation steps before entering the clinic, measuring the
relative contribution of each of the proposed genes to the predictive value and organizing a
prioritization algorithm for the genes of any given signature.

5. Conclusions

NSCLC is the leading cause of cancer-related death in men and the second in women
worldwide [24]. A high percentage of patients are diagnosed in locally advanced and
unresectable stages, and the majority (including those diagnosed in early operable stages)
succumb to metastatic dissemination. In such a situation, the 5-year prognosis remains
bleak. Currently, the standard treatment in the initial stages is surgery with or without sys-
temic treatment and/or radiotherapy. In more advanced, nonresectable but nonmetastatic
stages, the standard treatment continues to be combined radiochemotherapy regimens
(platinum-based). In metastatic stages at diagnosis, treatment consists of chemotherapy
or treatments directed at specific molecular targets, with or without the addition of radio-
therapy treatment in some cases, all for palliative purposes. Currently, the tumor staging
system by TNM classification continues to be the most powerful instrument for predicting
patient survival and is the axis on which the oncology community proposes to focus the
therapeutic approach for NSCLC and most neoplasms [29,154,155]. Despite efforts to obtain
clinical, pathological and/or molecular information that could be used to predict response
to treatment and improve prognostic capacity, there are currently no validated biomarkers
in NSCLC that enhance decision-making regarding individualized treatment selection in
the nonmetastatic setting. There are multiple proposals for gene signatures that attempt
to predict survival or predict response to treatment (not radiotherapy), but they mainly
focus on early stages or metastasis at diagnosis. In contrast, there have been few studies
that raise these predictive and/or prognostic elements in nonmetastatic locally advanced
stages, where treatment with ionizing radiation plays an important role. The radiation
oncologist, in particular, lacks molecular markers that serve to condition the radiotherapy
treatment beyond the general recommendations, for example, from the pathology report,
considering the situation of surgical margins, or the positive nodal load [29,154]. One of the
difficulties faced in the identification of predictive and prognostic signatures in NSCLC is
the inability to identify whether the clinical, therapeutic, histological, or molecular variables
have the same weight when conditioning the sustained therapeutic response and overall
survival. This is reflected by Subramanian and Simon, in the 2010 publication, where biases
presented by the different gene signatures proposed led to the conclusion that these biases
and the poor design of prognostic and predictive studies limit the inclusion of the results
into daily clinical practice [156].
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