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A B S T R A C T   

The current outbreak of coronavirus disease (COVID-19) has been affecting millions of people and has caused 
devastating mortality worldwide. Moreover, it is to be noted that cytokine storm has become an important cause 
for the rising mortality. However, the efforts for the development of drugs, vaccines and treatment has also been 
intervened due to poor understanding of host’s defense mechanism and also due to the development of cytokine 
storm against this viral infection. Thus, a deeper understanding of the mechanism behind the immune dysre-
gulation and cytokine storm development might give us clues for the clinical management of the severe cases. 
Hence, we have implemented differential gene expression analysis together with protein-protein interaction and 
Gene Ontology (GO) studies with the help of Severe Acute respiratory syndrome coronavirus (SARS-CoV) data 
sets such as GSE1739 and GSE33267 to give us more knowledge on the host immune response for the pathogenic 
coronavirus which in turn reduces the mortality. A total of 79 differentially-expressed genes (DEGs) were 
identified in our data set using the filters such as P-value and log2 fold change values of less than 0.05 and 1.5 
respectively. Further, network analysis and GO studies showed that differential expression of two hub genes 
namely ELANE and LTF which could induce higher levels of pro-inflammatory cytokines in the lungs. We are 
certain that differential expression of ELANE and LTF results in an excessive inflammatory reaction known as the 
cytokine storm and ultimately leading to death. Therefore, targeting these key drivers of cytokine storm genes 
appears to be the potential therapeutic targets for combating the Severe Acute respiratory syndrome coronavirus 
- 2 (SARS-CoV-2) infection ultimately resulting in reduced mortality. Indeed, this predictive view may open new 
insights for designing an immune intervention for COVID-19 in the near future resulting in the mitigation of 
mortality rate.   

1. Introduction 

SARS-CoV-2 emerged from Wuhan, China is the leading cause of 
COVID-19 primarily affecting the respiratory system of humans. Ac-
cording to the World Health Organisation (WHO) estimates, a total of 
9.2 million confirmed cases and 479 thousand deaths were reported 
worldwide as of June 2020. Moreover, recent literature evidences has 
been reported that cytokine storm is the main cause of mortality in 
COVID-19 patients (Ruan et al., 2020). Unfortunately, no vaccine and 
effective drugs are available for COVID-19 treatment (Huang et al., 
2020). Hence, the need for the identification of novel targets and 
effective therapeutics is of immense importance to overcome this 
pandemic situation and to reduce the rising mortality rate. Thus, the 
current investigation focuses on identification of key genes which plays 
a vital role in cytokine generation using differential gene expression 

analysis of microarray data. 
SARS-CoV-2 belonging to β-coronavirus group expressing the 

symptoms in patients after 5.2 days onset of infection (Mehta et al., 
2020). Patients are experiencing both respiratory and non-respiratory 
symptoms including kidney failure, acute heart, pneumonia, RNAe-
mia, lung, liver injury (Kakhki et al., 2020; Chen et al., 2020) and thus 
regarded as an important pathogen causing respiratory diseases 
including acute respiratory distress syndrome (ARDS) in humans. 
Angiotensin receptor 2 (ACE2) was identified as the common receptor 
for both SARS-CoV-2 and SARS-CoV. The interaction between the host 
receptor ACE2 and the viral S-protein complex results in activation of 
immune responses as well as virus replication among patients (Junejo 
et al., 2020). Hence, the drastic release of proinflammatory cytokines 
was observed in severe COVID-19 patients which in turn hampers the 
antiviral response developed by the human body (Wu and Yang, 2020). 
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Subsequently, the rapid release of cytokines attracts the inflammatory 
cells to the site of infection resulting in enhanced infiltration of in-
flammatory compounds such as monocytes and neutrophils. This infil-
tration causes inflammation, tissue damages, and lung organ failure 
(Channappanavar et al., 2019). Besides, it also resulted in severe path-
ological changes including alveolar damage, persistent organ dysfunc-
tion, and immunopathologic injuries (Ye et al., 2020). Moreover, the 
proinflammatory cytokines released into the circulatory system caused 
systematic cytokine storm resulting in multi-organ dysfunction (Wu and 
Yang, 2020; Ren et al., 2020). All these are evident that respiratory 
failure due to increased cytokine production is the major cause of death 
in COVID-19 cases (Mehta et al., 2020). To prevent deterioration of the 
patient’s health with COVID-19, suppressing cytokine storm has become 
essential. Thus, targeting the genes involved in cytokine storm devel-
opment mitigates the number of deaths in COVID-19. 

Although considerable effort has been directed toward the devel-
opment of novel therapeutics, major gap in our knowledge is the un-
derstanding of the molecular events that precipitate a cytokine storm 
(Lai et al., 2020) Thus, a key challenge toward assessing and, perhaps, 
improving the clinical outcome of the treatment of coronavirus patients 
is to better understand the molecular basis of the disease and its 
development, i.e., the key changes of gene expression patterns in coro-
navirus patients (Zhang et al., 2020). Numerous studies using micro-
array data initiated in recent years to identify hub genes that may assist 
in the discovery of novel therapeutics for infected patients. For instance, 
a study by Brahma et al. in 2018 identified hub genes that may assist in 
the discovery of therapeutics for patients infected with zika virus 
(Brahma et al., 2018). Further, hub gene identification using differential 
gene expression analysis of microarray data was also successful to un-
derstand the metastasis mechanism of gastric cancer and lung cancer 
(Yan et al., 2018; El-aarag et al., 2017). In addition, microarray data 
provides a platform to compare gene expression level of thousand genes 
simultaneously (Dwivedi, 2018). Moreover, it plays a vital role in dis-
ease diagnosis and treatment by predicting the patient’s prognosis (Li 
et al., 2017). By focusing on these advanced strategies, the present study 
was designed to explore the hub genes between normal and severe 
COVID-19 patients using a microarray dataset retrieved from the Gene 
Expression Omnibus (GEO) database. However, in our study, this would 
not be possible because of the unavailability of microarray data set 
corresponds to SARS-CoV-2. 

Note that genomic analysis indicates that SARS-CoV-2 is in the same 
beta-CoV clade as SARS-CoV. Of note, SARS-CoV-2 has been observed to 
share almost 80% of the genome with SARS-CoV (Lu et al., 2020). 
Therefore, we have characterized the gene expression profiles of SARS- 
CoV data and identified differentially expressed genes between normal 
and infected patients using the Bayesian approach in our analysis. These 
expression patterns were further examined by identifying molecular 
pathways associated with cytokine development to figure out the novel 
target in the treatment of coronavirus patients. Ultimately, this inves-
tigation provides significant hub genes to be targeted for the clinical 
management of the severe COVID-19 cases which in turn reduces the 
mortality rate by mitigating the cytokine storm. 

2. Materials and methods 

2.1. Collection of microarray data 

Gene Expression Omnibus (GEO, http://www.ncbi.nlm.nih. 
gov/geo/) of National Centre for Biotechnology Information (NCBI; 
https://www.ncbi.nlm.nih.gov/) was used for extracting the raw gene 
expression profiling datasets of Severe Acute respiratory syndrome 
coronavirus (SARS-CoV). Keywords including “datasets or series”, 
“SARS – CoV”, “expression profiling by array” and “homo – sapiens” 
were used to search for publicly available datasets. Both cell line study 
and patients samples were considered for our analysis. Additionally, the 
following filters were implemented to retrieve the SARS - CoV datasets: 

1) Study carried out using microarray human genome array platform, 2) 
Study should both contain control and SARS – CoV infected samples, 3) 
Each control and infected study have at least three samples, 4) Datasets 
can have replicates 5) Datasets published in journals. Implementation of 
these filters resulted in two datasets with GEO accession id: GSE1739 
and GSE33267 containing a total of 80 samples consisting of 37 control 
samples and 43 SARS – CoV infected. Of note, the dataset extracted from 
accession id GSE1739 contained 4 control samples and 10 SARS – CoV 
infected samples. Literature evidence highlights that these samples were 
isolated from peripheral blood mononuclear cells (PBMC) of the patients 
and the healthy donors using Affymetrix Human HD – Focus Target 
array strategy. On the other hand, GSE33267 microarray data were 
retrieved by means of Calu – 3 cell lines using the Whole Genome 
microarray approach. This dataset consists of 99 samples from 3 
different categories like i) control, ii) SARS – CoV infected, iii) SARS – 
delta ORF6 mutant infected respectively. In the present investigation, 
the control and SARS – CoV infected samples were considered for gene 
expression analysis. The platform files correspond to both studies were 
also obtained from the GEO database to map the gene symbol with a 
reference ID. 

2.2. Data preprocessing and annotation 

R studio is an open-source platform for R programming. Hence, it 
was implemented for performing differential gene expression analysis of 
SARS – CoV samples. The retrieved datasets were pre-processed and 
normalized using “affy” package of R programming (Gautier et al., 
2004). This process involves background correction using Robust Mul-
tichip Average (RMA) approach, quantile normalization, and summa-
rization of data. Subsequently, the gene expression matrix was obtained 
by mapping the reference ID against the official gene symbol using 
“annotate” package (Gentleman, 2020). 

2.3. Identification of differentially expressed genes 

Differentially expressed genes (DEGs) between control and infected 
samples were identified with the help of Student’s t-test using limma 
package of R programming (Ritchie et al., 2015). In this study, multiple 
adjustment test was used to calculate adjusted P-value (adj. P.Value). 
Note that adj. P.Value less than 0.05 and log2 fold change (log2 FC) 
greater than 1.5 were fixed as thresholds for identifying DEGs. Based on 
the log2 FC value, the genes were classified into up-regulated and down- 
regulated genes. For instance, the positive value of log2 FC was regarded 
as up-regulated genes and negative values were regarded as down- 
regulated genes. 

2.4. Protein-protein network construction 

STRING v11 was used to develop protein-protein interaction among 
the differentially expressed genes (Szklarczyk et al., 2019). The com-
bined confidence score greater than 0.9 was considered as the threshold 
for network construction. The network was further filtered by removing 
the genes with zero interactions. The generated network was imported 
into cytoscape v3.7.2 to identify important nodes by performing a 
network-based analysis of connectivity (Lopes et al., 2010). Further, the 
network was analyzed based on the topological parameters generated 
using network analyzer v4.4.6 plugin of cytoscape v3.7.2. The param-
eters such as betweenness centrality, closeness centrality, average 
shortest path length, neighborhood connectivity, stress centrality dis-
tribution, and average clustering co-efficient were analyzed. It is evident 
from the literature that topological parameters such as degree, 
betweenness centrality, closeness centrality, and average shortest path 
length characterizes the pattern of genes in a network system. Thus, 
these parameters were considered for DEG analysis as it implies bio-
logical essentiality in networks (Zhao and Liu, 2019). 
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2.5. Functional enrichment analysis 

Enrichment analysis of the genes was performed twice during the 
study. Initially, ShinyGO v0.6 was implemented not only to screen the 
genes based on the combined confidence score and topology parameters 
but also to understand the biological process of the differentially 
expressed genes (Ge et al., 2020). Subsequently, the GOSemSim package 
of R was implemented to perform Gene Ontology analysis using Wang’s 
strategy for the most significant gene cluster in our sample (Yu et al., 
2010). This analysis is of immense importance to understand the hub 
gene association in the development of immune response against the 
infection. The graphs and networks were constructed using igraph 
package of R and cytoscape v3.7.2 respectively (Csardi and Nepusz, 
2006; Lopes et al., 2010). 

3. Results and discussion 

3.1. Identification of differentially expressed genes 

The two different microarray datasets GSE1739 and GSE33267 were 
retrieved from GEO database. Totally 37 control samples and 43 SARS – 
CoV infected samples were considered for analysis. The preprocessing, 
quality check and differential gene expression analysis of the microarray 
dataset was performed using statistical software named R programming. 
On performing the quality check analysis of the raw data by mapping 
with the corresponding platform files, 4546 gene expression data were 
removed from the 27,380 genes. Further, adj. P-value and log2 fold 
change was employed to enhance the power of analyzing the gene 
expression data. Adj. P-value generated using student’s t-test assisted in 
computing the statistical significance of gene in different samples. 
Moreover log2 fold change was implemented to illustrate the variation 

Fig. 1. Volcano plot of differentially expressed genes on analyzing (a) GSE1739 and (b) GSE33267 datasets. Red and blue circles represent up-regulated and down- 
regulated genes respectively. Black circles represent the genes which are not significantly expressed. 
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in expression level of genes (Zhao et al., 2018; Dalman et al., 2012). 
Hence, setting up of adj. P-value cutoff of less than 0.05 resulted in 1350 
significant genes from our sample. Further data reduction accomplished 
with the aid of log2 fold change (log2 FC = 1.5) resulted in 180 genes 
that are differentially expressed between normal and infected patients. 
Among 180 genes, 79 DEGs (42 up-regulated and 37 down-regulated 
genes) were obtained from GSE1739 dataset and 101 DEGs (84 up- 
regulated genes and 17 down-regulated genes) were obtained from 
GSE33267 dataset respectively. The result of DEGs from each of our 
samples are illustrated using volcano plot (Fig. 1). The red, blue and 
black circles in Fig. 1 denotes up-regulated, down-regulated and non- 
significant genes identified during the analysis. The description of the 
DEGs is also depicted in Table 1. 

3.2. Protein-protein network construction among the DEGs 

The protein-protein network of DEGs was constructed using cyto-
scape v3.7.2 based on the STRING v11 database. The network consisted 
of 48 nodes and 187 edges. Fig. 2 demonstrates the constructed protein- 
protein interaction network with pink and yellow colored nodes repre-
senting up-regulated and down-regulated genes respectively. The edges 
in the graph denotes the strength of interaction between the two genes. 
These genes were functionally analyzed using ShinyGO v0.6 to under-
stand its association with the biological processes. Fig. 3 consolidates the 
functions of all the selected genes. For instance, orange, green and blue 
color of the bar denotes the genes involvement in biological process, 
cellualar components and molecular functions respectively. The details 
of the genes and its associated function were depicted in Table 2. The 
resultant network was examined based on the biologically significant 
topological parameters reported earlier. This analysis resulted in ten 
genes such as neutrophil elastase (ELANE), myeloperoxidase (MPO), 
arginase – 1 (ARG1), defensin alpha – 4 (DEFA4), cathelicidin antimi-
crobial peptide (CAMP), matrix metallopeptidase – 9 (MMP9), lacto-
transfferin (LTF), neutrophil gelatinase-associated lipocalin – 2 (LCN2), 
peptidoglycan recognition protein – 1 (PGLYRP1) and haptoglobin (HP) 
which were regarded as highly connected nodes (Fig. 4). It is obvious to 
note that the screened top genes were up-regulated in their expression. 
In addition, protein with high degree in a biological network provides its 
significant association with other essential proteins. Literature evidence 
also support that these genes have direct correlation with the disease 
prognosis (Ashtiani et al., 2018). Hence, these highly connected genes 
are considered as hub genes in our analysis. Indeed, these hub genes 
were more likely to be essential to gain insight into the COVID-19 dis-
ease progression. The scores of other topological parameters including 
betweenness centrality, closeness acentrality and shortest average path 
length associated with the hub genes are shown in Table 3. 

3.3. GO enrichment analysis of hub genes 

GO enrichment analysis showed that the resultant hub genes were 
involved in different functions such as neutrophil mediated immune 
response, neutrophil degranulation, leukocyte degranulation, neutro-
phil activation, granulocytes activation, and specific granule lumen. 
More specifically, in biological processes, these genes are involved in 
neutrophil-mediated immunity, neutrophil, and granulocyte activation, 
neutrophil degranulation, myeloid cell activation involved in immune 
response and myeloid leukocyte mediated immunity. For cellular com-
ponents, hub genes were enriched in secretory granule, secretory 

vesicle, cytoplasmic vesicle part, intracellular and extracellular vesicles. 
Moreover, about molecular function, the hub genes were involved in 
hydrolase activity, metal ion binding, and cation binding respectively. 
These enrichment terms provide insights into the understanding of sig-
nificant roles played by hub genes in COVID-19 disease progression. 

Based on the enrichment terms, DEGs were classified into three 
categories i) Genes involved in both cytokine production and neutrophil 
activation, ii) Genes involved in cytokine production alone iii) Genes 
involved in other immune responses. The categories i, ii, and iii con-
tained 4, 3, and 3 genes respectively. In Fig. 5, the red colored bar 
represent the genes involvement in cytokine production while deep gold 
colored bar denotes the genes association in other molecular functions. 
In general, MPO and ELANE were found to be the primary granules of 
neutrophils whereas LTF and MMP9 were found to be the secondary and 
tertiary granules of neutrophils respectively. These granular compo-
nents combine together to form neutrophil extracellular traps (NET) 
which in turn is released during immune response with customized 
production of cytokines (Tetro, 2020). In essence, LTF and ELANE genes 
are found to be more significant with the higher gene expression level of 
about 7 and 5 folds against SARS infection (Fig. 5). In specific, recent 
literature evidences have also highlighted the significance of ELANE 
gene for causing epithelial cell injuries by enhanced proinflammatory 
cytokines in cystic fibrosis patients. This review also provided a strong 
evidence that inhibition of ELANE gene can reduce the proinflammatory 
cytokines production resulting in an improvement in pulmonary func-
tion (Kelly et al., 2008). Moreover, a review by Kruzel provides an 
evident that neutrophil mediated LTF production results in development 
of inflammation (Kruzel et al., 2017). In addition, LTF also plays an 
indirect role in sensing receptors for triggering the production of cyto-
kines and chemokines such as IL-1, IL-6, IL-12, IL-15, TNF-α, INF-α, and 
β (Wu and Yang, 2020). 

On the other hand, MPO and MMP9 (4 folds) were neglected from the 
studies because of its lower gene expression levels (Fig. 5). Moreover, in 
category ii and iii, only CAMP and LCN2 gene showed an increased level 
of gene expression. However, CAMP and LCN2 have a significant role in 
other biological processes and immune response functions in our system. 
The other genes DEFA4, HP, ARG1, and PGLYRP1 were found to be 
regulated by the cytokines during immune response against the virus 
(Vandenbroucke et al., 2014; Takahashi et al., 2018; Wang et al., 2001; 
Pesce et al., 2009). Moreover, their gene expression level is very low 
compared to the other investigated genes. Therefore, these genes may 
not be the target of choice for COVID-19 treatment. Overall, on per-
forming differential gene expression analysis, network analysis, gene 
ontology studies and literature survey, it is clearly evident that ELANE 
and LTF gene plays significant role in generation of cytokine storm 
simultaneously resulting death of COVID-19 patients. 

It is also worth mentioning that recent research in COVID-19 high-
lights that increased immune response intervenes in the treatment. For 
instance, the development of cytokine storm in patients resulted in acute 
respiratory distress syndrome (ARDS) and ultimately leads to death in 
many cases (Prompetchara et al., 2020; Shi et al., 2020). Moreover, 38% 
of 99 patients in Wuhan were reported with increased neutrophils and 
hence immune evasion in coronavirus treatment has become essential 
(Li et al., 2020; Abella et al., 2015). Importantly, the above-identified 
DEGs had similar processes of provoking immune responses and cyto-
kine production against SARS-CoV. Hence targeting ELANE and LTF 
certainly prevents the development of cytokine storms which in turn 
prevents deaths of patients due to ARDS and organ failure. 

4. Conclusions 

In the present investigation, our objective was to establish a 
comprehensive gene expression profile study using microarray data that 
corresponds to the patients with SARS-CoV in order to investigate the 
underlying mechanisms associated with high mortality of coronavirus. 
Our analysis strongly suggests that the severity of the disease seems to 

Table 1 
Number of significant genes identified in given datasets.  

S. 
no 

GSE ID Number of 
genes 

No. of up-regulated 
genes 

No. of down- 
regulated genes  

1 GSE1739  79  42  37  
2 GSE33267  101  84  17  
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Fig. 2. Protein-protein interaction analysis after verifying using STRING database. Pink color denotes up-regulated genes and yellow color represents down- 
regulated genes. 

Fig. 3. Gene ontology analysis of differentially expressed genes after screening using ShinyGO database. Orange, green and blue color bar represents biological 
process, cellular component and molecular function of GO terms. 
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change the genetic profile substantially between healthy and affected 
patients. In particular, the high disease mortality in some patients has 
been closely associated with dysregulation of the 3 hub genes such as 
CAMP, ELANE, and LTF. Note that CAMP serves a variety of biological 
roles such as immune regulation, wound healing, angiogenesis, and 
anticancer functions. Hence, CAMP cannot be targeted for mitigating 
cytokine storm. Hence, we hypothesize that only ELANE and LTF have 
been shown to induce higher levels of pro-inflammatory cytokines in the 
lungs, known as the cytokine storm phenomenon. This contributes to its 

Table 2 
Gene ontology analysis of significant genes  

S. no GO terms No. of 
genes 

Name of the genes  

1 Immune system 
process  

36 PGLYRP1, LEF1, CXCR5, CXCR1, 
CAMP, DEFA4, ELANE, LTF, CR2, 
ARG1, SLPI, MS4A1, S100A12, 
RNASE2, RNASE3, AZU1, MPO, 
MMP9, EPAS1, LCN2, ATM, PADI4, 
HP, CRISP3, IL21R, BIRC3, CEACAM6, 
IL1R2, CEACAM8, CHI3L1, TCN1, 
GNS, MS4A3, S100P, CCT2, MGAM.  

2 Immune response  33 PGLYRP1, CXCR5, CXCR1, CAMP, 
DEFA4, ELANE, LTF, SLPI, MS4A1, 
S100A12, RNASE3, CR2, ARG1, LEF1, 
LCN2, PADI4, AZU1, CRISP3, MPO, 
BIRC3, CEACAM6, MMP9, IL1R2, 
CEACAM8, CHI3L1, TCN1, GNS, 
MS4A3, S100P, CCT2, RNASE2, HP, 
MGAM.  

3 Leukocyte activation  32 PGLYRP1, LEF1, CR2, ARG1, MS4A1, 
ATM, CXCR5, AZU1, IL21R, MPO, 
LTF, CEACAM6, CRISP3, MMP9, SLPI, 
CEACAM8, CHI3L1, TCN1, GNS, 
LCN2, MS4A3, S100A12, CXCR1, 
S100P, CAMP, DEFA4, CCT2, 
RNASE2, RNASE3, ELANE, HP, 
MGAM.  

4 Extracellular region  32 MPO, PGL,YRP1, LTF, CRISP3, MMP9, 
CR2, SLPI, CEACAM8, EIF2S3, 
CHI3L1, TCN1, GNS, RAB13, LCN2, 
MS4A1, S100P, CAMP, CCT2, 
RNASE2, AZU1, ELANE, HP, MGAM, 
DEFA4, CEACAM6, KIF20A, ARG1, 
ADM, RNASE3, IL1R2, S100A12, 
TNFRSF25.  

5 Endomembrane 
system  

30 CAMP, AZU1, MPO, LTF, CRISP3, 
CENPF, RAB13, DEFA4, ELANE, 
KIF20A, SGPP1, CHI3L1, MS4A3, 
PGLYRP1, CEACAM6, MMP9, ARG1, 
SLPI, CEACAM8, TCN1, GNS, LCN2, 
S100A12, CXCR1, S100P, CCT2, 
RNASE2, RNASE3, HP, MGAM.  

6 Immune effector 
process  

29 PGLYRP1, RNASE2, AZU1, ELANE, 
MPO, CR2, ARG1, LEF1, LTF, BIRC3, 
CEACAM6, CRISP3, MMP9, SLPI, 
CEACAM8, CHI3L1, TCN1, GNS, 
LCN2, MS4A3, S100A12, CXCR1, 
S100P, CAMP, DEFA4, CCT2, 
RNASE3, HP, MGAM.  

7 Extracellular region 
part  

29 MPO, PGLYRP1, LTF, CRISP3, MMP9, 
CR2, SLPI, CEACAM8, EIF2S3, 
CHI3L1, TCN1, GNS, RAB13, LCN2, 
MS4A1, S100P, CAMP, CCT2, 
RNASE2, AZU1, ELANE, HP, MGAM, 
DEFA4, CEACAM6, KIF20A, ARG1, 
ADM, RNASE3.  

8 Extracellular space  28 MPO, PGLYRP1, LTF, CRISP3, MMP9, 
CR2, SLPI, CEACAM8, EIF2S3, 
CHI3L1, TCN1, GNS, RAB13, LCN2, 
MS4A1, S100P, CAMP, CCT2, 
RNASE2, AZU1, ELANE, HP, MGAM, 
DEFA4, CEACAM6, ARG1, ADM, 
RNASE3.  

9 Response to stress  27 MPO, PGLYRP1, GINS2, EDAR, ATM, 
CAMP, DEFA4, FANCF, ELANE, HP, 
LTF, MMP9, EPAS1, SLPI, LCN2, 
S100A12, RNASE2, RNASE3, AZU1, 
IL1R2, CR2, ARG1, CHI3L1, ADM, 
PADI4, CRISP3, BIRC3.  

10 Response to external 
stimulus  

26 MPO, PGLYRP1, CXCR5, CXCR1, 
CAMP, DEFA4, LTF, SLPI, LEF1, LCN2, 
S100A12, RNASE2, RNASE3, AZU1, 
ELANE, IL,1R2, ARG1, ADM, ATM, 
MS4A1, HP, CHI3L1, RAB13, BIRC3, 
MMP9, CR2.  

11  23  

Table 2 (continued ) 

S. no GO terms No. of 
genes 

Name of the genes 

Multi-organism 
process 

MPO, PGLYRP1, CAMP, DEFA4, 
FANCF, LTF, SLPI, LEF1, LCN2, 
S100A12, RNASE2, RNASE3, AZU1, 
ELANE, BIRC3, MMP9, CR2, ARG1, 
ADM, ATM, MS4A1, CCT2, HP.  

12 Extracellular 
organelle  

21 MPO, PGLYRP1, LTF, MMP9, CR2, 
SLPI, CEACAM8, EIF2S3, CHI3L1, 
GNS, RAB13, LCN2, MS4A1, S100P, 
CAMP, CCT2, RNASE2, AZU1, ELANE, 
HP, MGAM.  

13 Hydrolase activity  17 MMP9, PGLYRP1, KIF20A, ARG1, 
GINS2, GNS, RAB13, PADI4, RNASE2, 
RNASE3, ELANE, HP, AZU1, LTF, 
SGPP1, EIF2S3, MGAM.  

14 Carbohydrate 
derivative binding  

14 PGLYRP1, CHI3L1, GNS, CAMP, MPO, 
LTF, RAB13, RNASE3, AZU1, ELANE, 
KIF20A, EIF2S3, ATM, CCT2.  

Fig. 4. Top 10 genes with higher degree of interaction.  

Table 3 
Identification of top 10 genes based on the features of the network.  

S. 
no 

Gene 
name 

Degree Betweenness 
centrality 

Closeness 
centrality 

Average 
shortest path 
length  

1 ELANE  22  0.105408  0.516484  1.93617  
2 MPO  20  0.13815  0.516484  1.93617  
3 ARG1  20  0.117982  0.484536  2.06383  
4 DEFA4  19  0.028527  0.447619  2.234043  
5 CAMP  17  0.046265  0.474747  2.106383  
6 MMP9  17  0.319459  0.51087  1.957447  
7 LTF  16  0.007201  0.456311  2.191489  
8 LCN2  15  0.01955  0.451923  2.212766  
9 PGLYRP1  15  0.003853  0.451923  2.212766  
10 HP  15  0.003853  0.451923  2.212766  
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high virulence and may account for the unusually high mortality rate 
during the outbreak. We conclude from our investigation that the inhi-
bition of ELANE and LTF directly protects the lung by lowering the 
neutrophil burden and enhance host defense by protecting locally pro-
duced anti-inflammatories in severe SARS-CoV patients. Thus, timely 
control of the cytokine storm in its early stage through immunomodu-
lators and cytokine antagonists, as well as the reduction of lung in-
flammatory cell infiltration, is the key to improve the treatment success 
rate of coronavirus patients. 
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