S

ELS

Since January 2020 Elsevier has created a COVID-19 resource centre with
free information in English and Mandarin on the novel coronavirus COVID-
19. The COVID-19 resource centre is hosted on Elsevier Connect, the

company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related
research that is available on the COVID-19 resource centre - including this
research content - immediately available in PubMed Central and other
publicly funded repositories, such as the WHO COVID database with rights
for unrestricted research re-use and analyses in any form or by any means
with acknowledgement of the original source. These permissions are
granted for free by Elsevier for as long as the COVID-19 resource centre

remains active.



Clinical Nutrition ESPEN 43 (2021) 1-8

CLINICAL
NUTRITION
ESPEN

Contents lists available at ScienceDirect

Clinical Nutrition ESPEN

journal homepage: http://www.clinicalnutritionespen.com

Narrative Review

Maternal nutrients and effects of gestational COVID-19 infection on N
fetal brain development™ e

M. Camille Hoffman *°, Robert Freedman >, Amanda J. Law * b.¢.d’ Alena M. Clark €,
Sharon K. Hunter °

2 Department of Obstetrics and Gynecology, Division of Maternal Fetal Medicine, University of Colorado Denver School of Medicine, Mail Stop F-546,
Anschutz Medical Center, Aurora, CO, 80045, USA

b Department of Psychiatry, University of Colorado Denver School of Medicine, Mail Stop F-546, Anschutz Medical Center, Aurora, CO, 80045, USA

€ Department of Cell and Developmental Biology, University of Colorado Denver School of Medicine, Mail Stop F-546, Anschutz Medical Center, Aurora, CO,
80045, USA

d Department of Medicine, University of Colorado Denver School of Medicine, Mail Stop F-546, Anschutz Medical Center, Aurora, CO, 80045, USA

€ Department of Nutrition and Dietetics, Campus Box 93, University of Northern Colorado, Greeley, CO, 80639, USA

ARTICLE INFO SUMMARY

Article history:
Received 20 April 2021
Accepted 20 April 2021

Background & aims: Maternal gestational infection is a well-characterized risk factor for offsprings’
development of mental disorders including schizophrenia, autism, and attention deficit disorder. The
inflammatory response elicited by the infection is partly directed against the placenta and fetus and is
the putative pathogenic mechanism for fetal brain developmental abnormalities. Fetal brain abnor-

Keyword,s-' malities are generally irreversible after birth and increase risk for later mental disorders. Maternal im-
Com,nav"us mune activation in animals models this pathophysiology. SARS-CoV-2 produces maternal inflammatory
g?:;;tency responses during pregnancy similar to previously studied common respiratory viruses.

Fetal development Method: Choline, folic acid, Vitamin D, and n-3 polyunsaturated fatty acids are among the nutrients that
Vaccine have been studied as possible mitigating factors for effects of maternal infection and inflammation on
COVID-19 fetal development. Clinical and animal studies relevant to their use in pregnant women who have been

infected are reviewed.
Results: Higher maternal choline levels have positive effects on the development of brain function for
infants of mothers who experienced viral infections in early pregnancy. No other nutrient has been
studied in the context of viral inflammation. Vitamin D reduces pro-inflammatory cytokines in some, but
not all, studies. Active folic acid metabolites decrease anti-inflammatory cytokines. N-3 polyunsaturated
fatty acids have no effect.
Conclusions: Vitamin D and folic acid are already supplemented in food additives and in prenatal vita-
mins. Despite recommendations by several public health agencies and medical societies, choline intake is
often inadequate in early gestation when the brain is forming. A public health initiative for choline
supplements during the pandemic could be helpful for women planning or already pregnant who also
become exposed or infected with SARS-CoV-2.

© 2021 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights

reserved.

1. Introduction
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(WHO/Europe) call for papers on nutritional status and nutritional care in
COVID-19.

Offspring of women pregnant during previous influenza pan-
demics have been found to have a higher incidence of mental ill-

* Corresponding author. Department of Psychiatry F-546, Anschutz Medical
Campus, Aurora, CO, 80045, USA. Fax: +1 303 724 4956.

E-mail addresses: Camille.Hoffman-Shuler@cuanschutz.edu (M.C. Hoffman),
Robert.Freedman@cuanschutz.edu (R. Freedman), Amanda.Law@cuanschutz.edu
(AJ. Law), alena.clark@unco.edu (A.M. Clark), Sharon.Hunter@cuanschutz.edu
(S.K. Hunter).

https://doi.org/10.1016/j.cInesp.2021.04.019

nesses including schizophrenia, autism spectrum disorders, and
attention deficit disorders [1,2]. A study of 57 Chinese infants
whose mothers had COVID-19 infections, 53 in the third trimester,
found that the offspring at 3 months of age had decreased motor,
communication, and social development [3]. Women infected
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earlier in pregnancy had elective abortions. A study of 464 U.S.
women with common viral and bacterial upper respiratory in-
fections in the second trimester found the relative risk for schizo-
phrenia spectrum disorders was >2 in the offspring [4]. There was
no increase in risk with first or third trimester infections. For 8700
Norwegian women with fever in the second trimester, the relative
risk for autism spectrum disorder was 1.4 in the offspring [5]. For
4300 Danish women with fevers between 9 and 16 weeks gesta-
tion, the relative risk for attention deficit disorder was 1.3 in the
offspring [6]. A major period of brain development occurs from 9 to
16 weeks. Family history, indicative of presumptive genetic risk,
interacts synergistically with the risk conveyed by maternal
gestational infection [7]. Assessment of banked gestational serum
samples and blood spots from pregnant women whose offspring
later developed schizophrenia or autism demonstrate increased
concentration of cytokines and C-reactive protein (CRP), which are
biochemical indicators of the maternal inflammatory response
[8—12].

Maternal immune activation is a widely used animal model for
the pathophysiology of maternal infection during pregnancy. To
mimic viral infection without otherwise sickening the dam, poly-
inosinic:polycytidylic acid (poly I:C), a double-stranded RNA similar
to the double-stranded RNA produced during viral infections, is
injected into the dam. To similarly mimic bacterial infection, lipo-
polysaccharide, the endotoxin of gram-negative bacteria, is injec-
ted. Poly I:C and lipopolysaccharide activate Toll-Like-Receptors on
macrophages and other maternal cells [13,14]. Both exposures
result in increased plasma concentrations of Interleukin-6 (IL-6)
and other pro-inflammatory cytokines [15,16]. The placental cho-
rionic villi's fetal Hofbauer macrophages are activated [17]. The
damage to fetal brain depends on the timing of the exposure during
gestation. For example, embryonic day 10—12 exposure of mice
results in damage to the developing basal ganglia. The offspring
have decreased prepulse inhibition and latent inhibition defects
similar to those seen in autism and schizophrenia [15]. Offspring of
dams with null mutation of the IL-6 gene do not exhibit behavioral
changes from maternal immune activation [18].

The effect of the SARS-CoV-2 infection on fetal development was
initially predicted by the U.S. Centers for Diseases Control (CDC) to
be similar to the effect of other respiratory coronaviruses [19]. The
possibility of placental transfer of the virus in severe cases has been
raised; however this is unlikely for most women [20]. Maternal CRP
plasma concentration is increased above reference levels in SARS-
CoV-2 infected pregnant women, consistent with an inflamma-
tory response (Table 1).

Effects of the inflammatory response from maternal SARS-CoV-
2 infection on the brain development of fetuses that could predis-
pose them to later mental illness will not be known for decades, but
it seems likely that future epidemiologists will catalog the inci-
dence of schizophrenia, autism, and attention deficit disorder in
offspring. This paper reviews evidence for specific nutritional ac-
tions that families, their clinicians, and public health authorities
can take to prevent the COVID-19 pandemic from becoming yet one
more landmark study for the adverse effects of maternal inflam-
mation on the fetus and increased risk for mental illness later in life.

2. Literature search

A Medline search for (Nutrients OR Vitamins OR Choline OR Folic
Acid OR fatty acids, omega 3) AND pregnancy AND (coronavirus
infection OR coronavirus) found only one study [21]. Searches in
Clinical Nutrition, Clinical Nutrition ESPEN, and American Journal of
Clinical Nutrition found no articles. A broader search for (Nutrients
OR Vitamins OR Choline OR Folic Acid OR fatty acids, omega 3) AND
pregnancy AND (Viral diseases OR Respiratory Tract Infections)
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found an additional 7 studies, all of which investigated the effects
of prenatal Vitamin D, folic acid, or fish oil supplements on infant
respiratory wheezing. In the animal model literature, a search for
(Nutrients OR Vitamins OR Choline OR Folic Acid OR fatty acids,
omega 3) AND the keyword Maternal Immune Activation found 3
studies. Others were found in a search for Maternal Immune Acti-
vation only. Table 2 is a selection of more recent relevant animal
studies. Table 3 includes all human studies that were retrieved.

3. Results

3.1. Maternal gestational COVID-19 as a fetal inflammatory
challenge

The inflammatory response induced by SARS-CoV-2 infection
can be measured as elevation above normal values in maternal
plasma or serum CRP concentration [22—27]. CRP concentrations in
pregnant women with symptomatic SARS-CoV-2 infections have
been reported for 174 women in China and 79 in Spain and Israel
(Table 1). All studies found a significant increase in CRP in women
with SARS-CoV-2 infection, compared to women in the same clin-
ical setting who were not infected. The samples were generally
taken in the third trimester. CRP concentrations over 10 mg/L are
considered pathological [23]. Mean values in SARS-CoV-2 infected
women across the studies ranged from 5.1 to 20.6 mg/L.

Vaccination produces an inflammatory reaction that is smaller
than viral infection, but nonetheless measurable. Twelve partici-
pants in the Phase 2 trial of BNT162b2, the current Pfizer vaccine,
had CRP levels measured before, one day after, and 8 days after
their immunization at the dose approved for public emergency use.
CRP levels rose for all participants after vaccination, generally by
3 mg/L. Of the 12 participants, 3 had levels exceeding 5 mg/L, the
upper boundary of the reference level, with the highest value
23 mg/L. All CRP levels returned to pre-vaccination levels at 8 days.
Levels were not reported after the 21-day booster immunization
[28]. The Moderna Phase 2 vaccine trial did not report CRP
responses.

3.2. Effects of nutrients in maternal immune activation animal
models

Gestational n-3 polyunsaturated fatty acids deficiency was
associated with higher IL-6 levels in maternal plasma, placenta, and
fetal brain and decreased Y-maze performance, a memory test, in
offspring [29]. Supplementation of dietary docosahexaenoic acid to
three times control levels in another study decreased the maternal
IL-6 response and prevented the adverse effect of gestational Poly
I:C on offspring social behavior with other mice [30]. Postnatal
supplementation with an enriched n-3 polyunsaturated fatty acid
diet decreased global gene methylation, but not for genes targeted
for their importance in brain function, a GABA transaminase and
guanine nucleoside binding protein in GABAg receptors [31].

Vitamin D pretreatment blocked adverse effects of Poly I:C on
social behavior, anxiety behaviors such as abnormal digging, and
tone conditioning, a memory function [32]. There was no effect on
maternal or fetal pro-inflammatory cytokines, however. Decreased
IL-6 response to lipopolysaccharide is reported in isolated placenta
ex vivo after Vitamin D treatment [33].

Folic acid administered before lipopolysaccharide inflammation
moderately decreased preterm delivery; no other effects were re-
ported [34].

Dietary choline supplementation, 5 times control levels,
decreased Poly I:C-stimulated increase in fetal IL-6. The offspring
had fewer anxiety-related behaviors. Null mutation of Chrna?7, the
gene for the a7-nicotinic acetylcholine receptor subunit that is
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Table 1
C-reactive Protein in pregnancy, SARS-CoV-2 infection, and offspring's risk for later mental illness.
Country N C-reactive Protein (CRP) in Gestational Age at Citation
mothers with SARS-CoV-2 (mg/  Birth
L)
China 60 cases 120 20.16 + 41.96 infected versus 17% < 37 weeks Sun G, Zhang Y, Liao Q, Cheng Y. Blood test results of pregnant COVID-19
controls 8.87 + 20.4 uninfected gestation compared  patients: an updated case—control study. Front Cell Infect Microbiol. 2020;
to 7.5% of 10:560,899. doi:10.3389/fcimb.2020.560899.
uninfected, P = 0.06
China 106 cases >10.0 Chen L, Li Q, Zheng D, Jiang H, Wei Y, Zou L et al. Clinical characteristics of
71/106 cases and 8/8 severe pregnant women with Covid-19 in Wuhan, China. N Engl ] Med. 2020 18;
cases 382(25):e100. doi:10.1056/NEJMc2009226.
China 8 cases 6/8 cases >10.0 Chen H, Guo ], Wang C, Luo F, Yu X, Zhang W et al. Clinical characteristics and
intrauterine vertical transmission potential of COVID-19 infection in nine
pregnant women: a retrospective review of medical records. Lancet. 2020;
395(10,226):809—15. doi:10.1016/S0140-6736(2030360-3).
Spain 8 case 5.10 + 7.64; severe cases 2 cases <34 weeks, Ortiz Molina E, Hernandez Pailos R, Pola Guillen M, Pascual Pedreno A,
10.25,15.63 3 cases 34-37 Rodriguez E, Hernandez Martinez A. COVID-19 infection in symptomatic
weeks pregnant women at the midpoint of the pandemic in Spain: a retrospective
3 cases >37 weeks analysis. Ginekol Pol. 2020; 91:755—63. doi:10.5603/GP.a2020.0130.
Spain 60 17.8 (range 0.8—147.4) Pereira A, Cruz-Melguizo S, Adrien M, Fuentes L, Marin E, Perez-Medina T.
Clinical course of coronavirus disease-2019 in pregnancy. Acta Obstet Gynecol
Scand. 2020; 99:839—47. https://doi.org/10.1111/aogs.13921.
Israel 11 20.6, range 5.62—41.01 Mohr-Sasson A, Chayo |, Bart Y, Meyer R, Sivan E, Mazaki-Tovi S et al. Laboratory

Comparison: CRP and offspring risk for mental illness

Finland 777 cases 777 At 11 weeks gestation CRP
controls >10 mg/L increased offspring
schizophrenia odds
ratio = 1.58, 95% CI = 1.04
—2.40, P = 0.03.
Finland 677 cases At 11 weeks gestation CRP
677 controls >9.55 mg/L increased offspring
autism odds ratio = 1.80, 95%
Cl =1.09-2.97, P = 0.02
us. 500 cases 580 At 16—19 weeks gestation CRP

4.391-10.25 increased
offspring autism

OR 1.33 (0.47—3.80) not
significant

controls

characteristics of pregnant compared to non-pregnant women infected with
SARS-CoV-2. Arch Gynecol Obstet. 2020; 302:629—34. doi:10.1007/s00404-
020-05655-7.

Canetta S, Sourander A, Surcel HM, Hinkka-Yli-Salomaki S, Leiviska ], Kellendonk
Cetal. Elevated maternal C-reactive protein and increased risk of schizophrenia
in a national birth cohort. Am ] Psychiatry. 2014; 171(9):960—8. doi: 10.1176/
appi.ajp.2014.13121579.

Brown AS, Sourander A, Hinkka-Yli-Salomaki S, McKeague IW, Sundvall ], Surcel
HM. Elevated maternal C-reactive protein and autism in a national birth
cohort. Mol Psychiatry. 2014; 19(2):259—64. doi:10.1038/mp.2012.197.

Zerbo O, Traglia M, Yoshida C, Heuer LS, Ashwood P, Delorenze GN et al..
Maternal mid-pregnancy C-reactive protein and risk of autism spectrum
disorders: the early markers for autism study. Transl Psychiatry. 2016 Apr 19;
6(4):e783. doi:10.1038/tp.2016.46.

2 Normal value cited by most studies <5 mg/L. Values > 10 mg/L are considered substantially elevated. Most SARS-CoV-2 infected women were sampled in the third

trimester.

activated by choline, prevented response to choline [35]. A similar
study found that choline supplementation attenuates the cytokine
response to lipopolysaccharide inflammation and inhibits NF-«f
signaling in placenta mononuclear cells and AKT phosphorylation.
Choline decreased a7-nicotinic acetylcholine receptors in placenta,
which are predominantly expressed in macrophages [36].

3.3. Interacting effects of maternal gestational infection and
nutrition on offspring outcome

Human trials of choline and Vitamin D supplementation are
ongoing during the COVID-19 pandemic, but most children of
women infected in the first year of the pandemic have not yet
reached the age at which they can be initially assessed [37,38].
Published data are available from children whose mothers experi-
enced common viral respiratory infections, many of which are also
coronaviruses (Table 3). The children in these studies are too young
to have developed diagnosable mental illnesses. However, their
parents can rate their child's attention, social behavior, and other
aspects of behavior and temperament using rating scales that
identify childhood precursors of later problems in school and
psychopathology, including schizophrenia [39—41].

In the only study of choline and folic acid in mothers with viral
respiratory infection, 43 women reported viral infection [21]. A
comparison group of 53 women had neither viral nor bacterial

infections. Viral infection was associated with increased CRP,
11.0 mg/L (SEM 1.4) in infected women versus 7.5 mg/L (SEM 1.2) in
uninfected women, P = 0.047 [42]. Women were provided nutri-
tional information and encouraged to eat foods with higher choline
content but were not given choline supplements or monitored for
dietary intake; 88% of the women were using prenatal vitamins
with folic acid. When the infants reached 3 months of age, mothers
completed the Infant Behavior Questionnaire-Revised Short Form
(IBQ-R), a parent-report measure of infant behaviors indicative of
temperamental reactivity and self-regulation [43]. The IBQ-R Ori-
enting/Regulation Index includes duration of attention, enjoyment
of quiet play, cuddliness and engagement with parents, and
soothability.

Infants of mothers who contracted viral infections and had
choline levels >7.5 puM, the highest 20%ile of choline levels, had
significantly higher (better) 3-month IBQ-R scores on the Regula-
tion dimension and specifically the duration of attention scale in
the Regulation dimension, compared to infants of mothers who had
viral infections and had choline levels <7.5 uM (Fig. 1).

Thirty of the children whose mothers had viral or bacterial in-
fections were re-assessed at 4 years of age using the Child Behavior
Checklist 1/4-5 year version (CBCL1}-5) [44]. Problems in Attention
rated on CBCL1%-5 were significantly decreased for the children of
mothers who also had higher gestational choline concentrations at
16 weeks gestation. Ratings >92nd percentile on the Attention
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Table 2
Maternal immune activation and nutrients in animal models.
Nutrient Inflammation Findings Reference
n-3 poly Lipopoly-saccharide n-3 fatty acid deficiency exacerbated the Labrousse VF, Leyrolle Q, Amadieu C, Aubert A, Sere A,
un-saturated inflammation with high ratio of  inflammatory effect, with increased IL-6 levels Coutureau E et al. Dietary omega-3 deficiency exacerbates
fatty acid linolenic acid to ¢-linolenic acid  in maternal plasma, placenta, and fetal brain inflammation and reveals spatial memory deficits in mice
to produce and decreased Y-maze performance in offspring  exposed to lipopolysaccharide during gestation. Brain Behav
n-3 fatty acid deficiency Immun 2018; 73:427—40. doi:10.1016/j.bbi.2018.06.004.
n-3 poly Poly I:C inflammation with n-3  Higher n-3 fatty acid diet inhibited the maternal = Weiser MJ, Mucha B, Denheyer H, Atkinson D, Schanz N,
un-saturated fatty acids (0.40% vs.1.43%) and  IL-6 response to poly I:C. It also prevented the Vassiliou E et al. Dietary docosahexaenoic acid alleviates
fatty acids n6:n3 ratio (20.77%vs.5.71%). adverse social behavior response after poly I:C.  autistic-like behaviors resulting from maternal immune
activation in mice. Prostaglandins Leukot Essent Fatty Acids.
2016; 106:27—37. doi:10.1016/j.plefa.2015.10.005.
n-3 poly Prenatal Poly I:C RNA Postnatal supplement attenuated I:C RNA Basil P, Li Q, Gui H, Hui TCK, Ling VHM et al. Prenatal immune
un-saturated inflammation with post decrease in global gene methylation, but not for  activation alters the adult neural epigenome but can be partly
fatty acids weaning supplementation, GABA transaminase and guanine nucleoside stabilised by an n-3 polyunsaturated fatty acid diet.
standard n-6 versus enriched n-  binding protein in GABAg receptors Transl Psychiatry. 2018; 8(1):125. doi:10.1038/41398-018-
3 poly-unsaturated fatty acid 0167-x.
diet
Vitamin D Poly I:C RNA inflammation, Vitamin D blocked inflammation decrease in Vuillermot S, Luan W, Meyer U, Darryl E. Vitamin D treatment
pretreatment with Vitamin D 1 social approach, abnormal digging, and tone during pregnancy prevents autism-related phenotypes in a
—25,0H-D conditioning. No effect of maternal or fetal mouse model of maternal immune activation.
400 ng/kg proinflammatory cytokines. Mol Autism. 2017; 8:9. doi:10.1186/s13229-017-0125-0
Vitamin D Lipopolysaccharide In placenta 25-hydroxyvitamin D3, suppressed  Liu NQ, Kaplan AT, Lagishetty V, Ouyang YB, Ouyang Y, Simmons
inflammation in vivo and in lipopolysaccharide induced expression of IL-6 CF et al.
placenta ex vivo. and the chemokine Ccl11. Increased IL-6 in Vitamin D and the regulation of placental inflammation.
Vitamin D tested ex vivo. Vitamin D Receptor VDR null mutant placentas. ] Immunol. 2011; 186(10):5968—74. doi:10.4049/jimmunol.
1003332.
Folic acid Lipopolysaccharide Folic acid diminished lipopolysaccharide Zhao M, Chen YH, Dong XT, Zhou ], Chen X, Wang H et al. Folic
inflammation with folic acid decreased preterm delivery from 100% to 64% acid protects against lipopolysaccharide-induced preterm
3 mg/kg 1 h before. delivery and intrauterine growth restriction through its anti-
inflammatory effect in mice.
PLoS One. 2013; 8(12):e82713. doi:10.1371/journal.pone.
0082713.
Choline Poly I:C RNA inflammation with ~ Choline supplement decreased RNA-stimulated =~ Wu WL, Adams CE, Stevens KE, Chow KH, Freedman R, Patterson
choline 1.1 g versus 5 g diets increase in fetal brain IL-6, offspring anxiety- PH. The interaction between maternal immune activation and
like behavior in open field, and repetitive alpha 7 nicotinic acetylcholine receptor in regulating behaviors
marble burying. Chrna7 null mutation increased  in the offspring. Brain Behavimmun. 2015; 46: 192—205. doi:10.
fetal brain 116 response to RNA and offspring 1016/j.bbi.2015.02.005.
behavioral deficits.
Choline Lipopolysaccharide Higher choline attenuated inflammatory Zhang M, Han X, Bao J, Yang ], Shi SQ, Garfield RE et al.

inflammation with choline 1.1 g
versus 5 g diets

cytokines, decreased placental o7nAChR,
lowered NF-kB signaling in placenta
mononuclear cells, and inhibited placental AKT
phosphorylation.

Choline supplementation during pregnancy protects against
gestational lipopolysaccharide-induced inflammatory
responses.

Reprod Sci. 2018; 25(1):74—85. doi:10.1177/
1933719117702247.

Deficit Hyperactivity Disorder (ADHD) scale occurred in 8 of the 83
children between ages 40 and 48 months. Ratings at this level are
generally associated with children referred for clinical evaluations
[45]. Seven of these 8 children were from mothers who had
gestational choline concentrations <7.5 uM CBCL1'-5 ratings were
also acquired for children whose mothers participated in a ran-
domized, placebo-controlled trial of phosphatidylcholine supple-
mentation 6300 mg daily, equivalent to 900 mg choline. Among the
9 children whose mothers had gestational infections, Attention and
Aggression problems were significantly lower if the mothers had
received the phosphatidylcholine supplement [46]. Similar severity
of childhood problems in Attention were rated retrospectively on
the CBCL1':-5 by parents of offspring who developed schizophrenia
in later life [41]. Choline levels >7.5 pM are within 1 standard de-
viation of mean reached with 6300 mg supplementation.

None of the other maternal nutrients have been specifically
assessed in the context of the effects of maternal viral or bacterial
infection on offspring's outcome. Investigations have primarily
focused on the maternal inflammatory milieu, independent of
infection. Effects of Vitamin D deficiency on inflammation have
been investigated. Increased placenta pathology and increased
rates of bacterial vaginosis have been found [47,48]. However,
higher levels of Vitamin D have also been associated with increased
IL-6 plasma concentrations [49]. n-3 polyunsaturated fatty acid

supplements did not affect placental inflammatory cytokines [50].
Folic acid metabolites, specifically 5-methyltetrahydrofolate, did
not affect pro-inflammatory cytokines, but did decrease concen-
trations of anti-inflammatory cytokines [51]. Multiple micro-
nutrients did not affect serum markers of inflammation, including
CRP [52].

4. Discussion

Research into the pathogenic effects of SARS-CoV-2 for fetal
brain development and its possible interaction with maternal
nutrition will not be conclusive until long after the pandemic is
over. The research reviewed in this paper suggests that higher
levels of maternal choline, together with other nutrients, might
mitigate some of the effects of infection on fetal brain development,
based on experience with other respiratory viruses and animal
models. Otherwise, based on historical experience with previous
pandemics, SARS-CoV-2 infection of the mother can be predicted to
significantly affect the offspring's later cognitive and behavioral
development and eventually the risk for mental illness. Several
individuals who received a vaccine had substantial CRP elevation,
with levels as high as those observed in infected women. Vacci-
nation protocols for pregnant women might include provisions to
encourage maternal choline and other prenatal vitamins' adequacy.
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Table 3

Maternal infection and inflammation and nutrients in human gestation.
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Nutrient

Subjects

Findings

Reference

Choline

Vitamin D

Vitamin D

Vitamin D

Omega-3 fatty
acids

Folate

Multiple micro-
nutrients

N = 43 women with 1st
trimester viral infection, N = 53
no infection

N = 2648 high risk women with
placenta exami-nation

N = 158 adolescents at 26
weeks gestation

N = 178 women 21 weeks.
gestation

N = 51 women with n-3 fatty
acid supplements at 20 weeks
gestation

N = 417 women
9.5 weeks gestation

N = 740 women at 32 weeks
gestation after folic acid, iron,
zinc, and multivitamin
supplements

For infants of mothers with choline levels >7.5 pM,
there was no effect of viral infection on IBQ-R
Regulation,

compared to infants of mothers who were not infected.
Physiological development of newborns' cerebral
inhibition was adversely affected in mothers with
higher CRP and IL-6 plasma levels at 16 wks gestation.
Higher maternal choline levels diminished this effect.

Pathological placenta changes in women with lowest
quartile Vitamin D 13 wks gestation, compared to
highest quartile.

Pregnant teens with Vitamin D < 30 ng/mL were more
likely to test positive for candida and bacterial
vaginosis. No significant effect on inflammatory
cytokines.

Vitamin D serum concentration at 10 wks Inversely
associated with IL-6 concentration

Placenta inflammatory cytokines not affected by
supplement

5-methyltetrahydrofolate, 65% of folate vitamers, had
no relation to cervical fluid inflammatory cytokines and
negative relation to anti-inflammatory cytokines

Serum markers of inflammation, ¢.-acid glycoprotein
and C-reactive protein, were not significantly decreased
by any of the supplements.

Freedman R, Hunter SK, Law AJ, D'Alessandro A, Noonan
K, Wyrwa A, Camille Hoffman M. Maternal choline and
respiratory coronavirus effects on fetal brain
development.

J Psychiatr Res 2020; 128:1—4. doi: 10.1016/j.jpsychires.
2020.05.019.

Hunter SK, Hoffman MC, D'Alessandro A, Noonan K,
Wyrwa A, Freedman R et al. Male fetus susceptibility to
maternal inflammation: C-reactive protein and brain
development. Psychological Medicine 2019; doi:10.
1017/S0033291719003313 [Epub ahead of print].
Zhang Q, Chen H, Wang Y, Zhang C, Tang Z, Li H, Huang
X, Ouyang F, Huang H, Liu Z. Severe vitamin D deficiency
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Table 4
Current daily recommended values of selected nutrients for pregnant women.
European Food Safety Authority [73] U.S. Food and Drug Administration>> World Health Organization [74,75]"
Folate 600 g dietary food equivalents or 600 g dietary food equivalents or 400 pg folic acid supplement
400 pg folic acid supplement 400 pg folic acid supplement
Vitamin D 15 pg 15 pg 5 g if deficiency suspected, e.g.,
low sunlight exposure
Choline 480 mg 550 mg Not considered
Alpha Linoleic Acid® l4¢g 16¢g Not considered
Linoleic Acid® 13g 17¢g Not considered

2 General recommendations, not specifically for pregnant women.

> WHO recommends daily iron 30—60 mg supplementation for all pregnant women. European Food Safety Authority and U.S. Food and Drug Administration recommend

supplemental iron only for women with evidence for iron deficiency.

Table 5
Effects of phosphatidylcholine and choline supplements on plasma choline concentration in pregnant women.
Supplement and Choline puM first post % Predicted Reference
gestational week supplement concentration, plasma
initiated mean =+ std. deviation concentration >7.5 pM*?
Phosphatidylcholine 13.7 £ 4.2 93 Fischer LM, da Costa KA, Galanko ], Sha W, Stephenson B, Vick ] et al. Choline

5400 mg at 18 weeks

Phosphatidyl-choline 152 + 8.1 83
6300 mg at 17 weeks

Choline bitartrate 2.5 g 10.7 + 4.2 78
at 23 weeks

Choline chloride 82+12 72

550 mg at 27 weeks

No supplement, 16 71+19 42
weeks concentration

intake and genetic polymorphisms influence choline metabolite concentrations
in human breast milk and plasma. Am ] Clin Nutr. 2010; 92(2):336—46. doi: 10.
3945/ajcn.2010.29459.

Ross RG, Hunter SK, Hoffman MC et al. Perinatal phosphatidylcholine
supplementation and early childhood behavior problems: evidence for CHRNA7
moderation. Am J Psychiatry. 2016; 173:509—516. doi:10.1176/appi.ajp.2015.
15091188

Jacobson SW, Carter RC, Molteno CD, Meintjes EM, Senekal MS, Lindinger NM
et al. Feasibility and acceptability of maternal choline supplementation in heavy
drinking pregnant women: a randomized, double-blind, placebo-controlled
clinical trial. Alcohol Clin Exp Res. 2018; 42(7):1315—26. doi: 10.1111/acer.
13768.

Yan ], Jiang X, West AA, Perry CA, Malysheva OV, Devapatla S et al. Maternal
choline intake modulates maternal and fetal biomarkers of choline metabolism
in humans. Am | Clin Nutr. 2012; 95(5):1060—71. doi:10.3945/ajcn.111.022772.
Wau BTF, Dyer RA, King DJJ, Richardson K], Innis SM. Early second trimester
maternal plasma choline and betaine are related to measures of early cognitive
development in term infants. PLoS ONE. 2012; 7:e43448. doi:10.1371/journal.
pone.0043448.

@ Estimated % is based on the assumption of a normal distribution.

Vitamin D and folic acid are already in optimal amounts in standard
prenatal vitamin formulations.

Maternal plasma concentrations of choline >7.5 uM, associated
with better development of attention and other orienting/regula-
tion capabilities in early childhood, are within one standard devi-
ation of the mean concentration in women receiving
phosphatidylcholine supplementation. Over 80% of supplemented
women would thus be expected to have this range of concentra-
tions, but it was obtained by only 20% of women from diet alone
[21]. The European Food Safety Authority (EFSA) and U.S. Food and
Drug Administration (FDA) recommend daily choline intake, 480
and 550 mg respectively during pregnancy (Table 4). Recent FDA
guidance explicitly makes no recommendation for or against sup-
plements [53]. Higher choline intake is also recommended during
lactation. Calf's liver, beef, egg yolks, salmon and soybeans are
potential sources of choline, but dietary surveys in many countries
find that women fail to eat sufficient amounts [54—59]. For
example, a recent survey of 90 US. women estimated dietary intake
318 + 68 mg, with no woman reaching the recommended amount
[60]. Thus for many pregnant women, increased choline intake
from diet or supplements would not only benefit fetal develop-
ment, but also overcome deficiency that is associated with
increased incidence of non-alcoholic fatty liver and muscle damage
during pregnancy [61].

Moderate increases of choline in diets do not raise choline
levels, but supplements raise levels and can overcome effects of

polymorphisms in PEMT, the gene for phosphatidylethanolamine
transferase, that otherwise lower choline levels [62—64]. Choline
and phosphatidylcholine, or lecithin, are widely available as health
supplements without prescription. Citicoline, an inosine—choline
combination, is also available. A comparison of choline levels
reached with supplements studied in clinical trials suggests that
any of the formulations studied can facilitate adequate levels for
many or most women (Table 5) [65—67].

The issue of whether increasing choline intake through diet or
supplements can cause atherogenesis by increasing concentra-
tions of potentially toxic trimethylamine oxide (TMAO) is
controversial [68]. Choline is metabolized by some gut micro-
bacteria to trimethylamine, the precursor of TMAO. Most dietary
choline is in the form of phosphatidylcholine, which is relatively
impervious to bacterial decomposition. Three eggs per day for 4
weeks in 38 young adults raised fasting plasma choline concen-
tration to over 8 pM and did not raise TMAO levels [69]. Higher
choline-containing diets >486 mg/day were not associated with
increased risk of cardiovascular disease in 14,430 middle aged
men and women in the 14-year Atherosclerosis Risk in Commu-
nities study [70]. Phosphatidylcholine supplements containing
600 mg choline in 37 healthy men did not increase plasma or
urinary TMAO, whereas choline bitartrate containing 600 mg
raised plasma TMAO 3-fold [67]. A pharmaceutical company is
developing an inhibitor of bacterial production of trimethylamine
and commissioned a systematic review of effects of choline and
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choline and phosphatidylcholine supplements in fetal develop-
ment [71,72].

The nutritional needs and metabolic physiology of human
pregnancy are different from the nutritional needs and metabolic
physiology of middle-aged men and women. Current evidence
supports phosphatidylcholine from diet or supplements as a safe,
effective nutrient to support fetal development.

5. Conclusions

Experience from other pandemics predicts that the COVID-19
pandemic is likely to increase the risk for schizophrenia, autism,
attention deficit disorder, and other behavioral and cognitive
problems in offspring whose mothers are infected during gestation.
Higher maternal choline plasma levels are associated with more
normal fetal development in all mothers and, in particular, mothers
who are infected, but most women have lower choline plasma
levels and dietary intake below currently recommended amounts.
More widespread availability of phosphatidylcholine supplements
for pregnant women may help mitigate the risks from SARS-CoV-2
infection to their fetuses. The time course of fetal and child
development prohibits assessment of effectiveness of nutrient in-
terventions until after the pandemic has subsided, but by then the
opportunity to positively impact fetal brain development will have
passed. The cost of providing prenatal choline or phosphatidyl-
choline supplements to women is quite low compared to the life-
time cost of caring for a child who later develops mental illness.
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