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Abstract

Genetic and environmental covariances between pairs of complex traits are important quan-

titative measurements that characterize their shared genetic and environmental architec-

tures. Accurate estimation of genetic and environmental covariances in genome-wide

association studies (GWASs) can help us identify common genetic and environmental fac-

tors associated with both traits and facilitate the investigation of their causal relationship.

Genetic and environmental covariances are often modeled through multivariate linear

mixed models. Existing algorithms for covariance estimation include the traditional restricted

maximum likelihood (REML) method and the recent method of moments (MoM). Compared

to REML, MoM approaches are computationally efficient and require only GWAS summary

statistics. However, MoM approaches can be statistically inefficient, often yielding inaccu-

rate covariance estimates. In addition, existing MoM approaches have so far focused on

estimating genetic covariance and have largely ignored environmental covariance estima-

tion. Here we introduce a new computational method, GECKO, for estimating both genetic

and environmental covariances, that improves the estimation accuracy of MoM while keep-

ing computation in check. GECKO is based on composite likelihood, relies on only summary

statistics for scalable computation, provides accurate genetic and environmental covariance

estimates across a range of scenarios, and can accommodate SNP annotation stratified

covariance estimation. We illustrate the benefits of GECKO through simulations and appli-

cations on analyzing 22 traits from five large-scale GWASs. In the real data applications,

GECKO identified 50 significant genetic covariances among analyzed trait pairs, resulting in

a twofold power gain compared to the previous MoM method LDSC. In addition, GECKO

identified 20 significant environmental covariances. The ability of GECKO to estimate envi-

ronmental covariance in addition to genetic covariance helps us reveal strong positive corre-

lation between the genetic and environmental covariance estimates across trait pairs,

suggesting that common pathways may underlie the shared genetic and environmental

architectures between traits.
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Author summary

Phenotypic covariance between pairs of traits can be partitioned into two components:

genetic covariance and environmental covariance. Effective partitioning of phenotypic

covariance and accurate estimation of the genetic and environmental covariances can

help us understand the relationship between traits and shed light on the causal and media-

tion mechanisms underlying disease etiology. Here we present a new computational

method, GECKO, for estimating genetic and environmental covariances using summary

statistics from GWASs. GECKO improves covariance estimation accuracy upon previous

methods and provides environmental covariance estimates in addition to genetic covari-

ance estimates. We illustrate the benefits of GECKO through extensive simulations and

applications to 22 traits collected from five GWASs.

Introduction

Phenotypic covariance between pairs of traits describes how one trait varies with respect to

another in the population. Phenotypic covariance can be naturally partitioned into two com-

ponents: the genetic covariance, which represents the part of the phenotypic covariance

explained by common genetic factors; and the environmental covariance, which represents the

part of the phenotypic covariance explained by common environmental factors [1]. The

genetic and environmental covariances serve as important quantifications for measuring the

relative contribution of genetic and environmental factors to phenotypic covariance, thus rep-

resenting a key for understanding the nature versus nurture debate. Estimating and partition-

ing the phenotypic covariance between pairs of traits can facilitate the identification of

common genetic and environmental factors underlying correlated traits, help investigate the

potential causal relationship among them, and enhance our understanding of trait co-evolu-

tion under common evolutionary constraints [2–4].

A standard statistical model for estimating genetic and environmental covariances in

genome-wide association studies (GWASs) is the multivariate linear mixed model (mvLMM)

[5]. mvLMM extends the univariate linear mixed model commonly applied in genetic studies

to accommodate multiple correlated phenotypes [5]. mvLMM relies on random effects to

effectively capture the shared genetic and environmental architecture underlying multiple cor-

related traits. mvLMM has been widely applied for genetic covariance estimation in both ani-

mal breeding studies [6] and GWASs [3,5,7–9]. Standard fitting algorithms for mvLMM

include the traditional restricted maximum likelihood estimation method (REML) and the

recent method of moments (MoM). Compared to the traditional REML [3,5], the recent MoM

approaches, including LD score regression (LDSC) [10] and GNOVA [11], require only sum-

mary statistics and are computationally efficient. Consequently, MoM algorithms have enabled

applications of mvLMM for genetic covariance estimation in many large scale GWASs, reveal-

ing important genetic covariance structures underlying correlated traits.

Despite the popularity of MoM algorithms for covariance estimation, however, two impor-

tant limitations of MoM exist. First, MoM algorithms are often statistically inefficient and pro-

duce less accurate parameter estimates when compared to the likelihood-based REML

approach [12]. Indeed, estimation accuracy of MoM is known to vary depending on the under-

lying model parameters [12], and, as we show here, also depending on the sample composition

of studies–whether the pair of phenotypes are measured on the same set of individuals or not.

Second, and perhaps more importantly, existing MoM algorithms have been primarily focused
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on genetic covariance estimation but have so far ignored environmental covariance estimation

[10,11]. Failing to provide environmental covariance estimates is a significant restriction, con-

sidering that environmental covariance is an essential and indispensable component of the

phenotypic covariance [1].

Here, we present a new method, for estimating both genetic and environmental covari-

ances using GWAS summary statistics, that improves estimation accuracy of MoM algo-

rithms while keeping computation in check. Our method relies on composite likelihood, is

scalable computationally, uses only summary statistics, provides accurate genetic and envi-

ronmental covariance estimates across a range of scenarios, and accommodates SNP annota-

tion stratified covariance estimation. We refer to our method as Genetic and Environmental

Covariance estimation by composite-likelihood Optimization (GECKO). We illustrate the

benefits of GECKO with simulations and applications to 22 traits collected from five large

scale GWASs.

Methods

Model specification

We consider an mvLMM [5] to model two phenotypes of interest jointly. These two pheno-

types could be collected from a single study or from two studies with either non-overlapping

or partially overlapping individuals. We denote y1 and y2 as the two phenotype vectors, mea-

sured on n1 and n2 individuals, respectively. We denote ns as the number of overlapping indi-

viduals who have both phenotypes measured. In the case of two separate studies, the sample

size n1 generally does not equal to n2 and ns = 0. In the case of a single study with completely

overlapping individuals, the sample size n1 = n2 = ns. Besides phenotypic measurements, all

individuals have their genotypes measured on a common set of m SNPs. We denote the n1 by

m matrix X1 as the genotype matrix for the n1 individuals measured with the first phenotype

and denote the n2 by m matrix X2 as the genotype matrix for the n2 individuals measured with

the second phenotype. To facilitate computation, we center and standardize each phenotype

vector as well as each column of the genotype matrices to have a mean of zero and a standard

deviation of one. We consider the following regression model to related phenotypes to geno-

types

y1 ¼ X1b1 þ �1;

y2 ¼ X2b2 þ �2;
ð1Þ

where β1 and β2 are m-vectors of genotype effect sizes for the two phenotypes, respectively;

and �1 and �2 are vectors of environmental effects/residual errors, with dimension n1 and n2,

respectively.

We follow the standard mvLMM assumption and assume that the genetic effect sizes of j’th
SNP on the two phenotypes follow a multivariate normal (MVN) distribution a priori

b1j

b2j

 !
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0
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where h2
1

represents the heritability of the first phenotype; h2
2

represents the heritability of the

second phenotype; and ρg represents the genetic covariance, which characterizes the pheno-

typic covariance explained by genetic effects. We further define the genetic correlation as

gg ¼
rgffiffiffiffiffiffi
h2

1
h2
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p .
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For the ns individuals who have both phenotypes measured, we assume that their environ-

mental effects for the i’th individual follow

�1i

�2i

 !

� MVN
0

0
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;
1 � h2

1
re

re 1 � h2
2

 ! !

; ð3Þ

where ρe represents the environmental covariance, which characterizes the phenotypic covari-

ance explained by environmental effects. The environmental correlation is further defined as

ge ¼
reffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� h2
1
Þð1� h2

2
Þ

p : For the remaining individuals who only has one phenotype measured, we

assume that �1i for the i’th individual follows a normal distribution N(0, 1 � h2
1
) while �2j for

the j’th individual follows another normal distribution N(0, 1 � h2
2
).

We develop a composite likelihood based algorithm to perform estimation and inference

for the mvLMM model defined in Eqs (1)–(3). The composite likelihood based algorithm

requires only summary statistics as input and is both computationally and statistically effi-

cient. For input summary statistics, we obtain the marginal z-score for each SNP-phenotype

pair by fitting a univariate linear regression model. Specifically, the marginal z-score of j’th
SNP for d’th phenotype (d = 1, 2) is zdj ¼ XT

djyd=
ffiffiffiffiffind
p

, where Xdj represents j’th column of the

genotype matrix Xd. We derive the marginal distribution for the two z-scores of each j’th
SNP based on mvLMM. Such marginal distribution is in the following form (details in the

S1 Text):
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Here ρ = ρe+ρg; lj ¼
Pm

i¼1
r2
ij is the LD score for the j’th SNP computed based on a reference

panel, with rij being the correlation coefficient between j’th SNP and i’th SNP.

We denote Pðz1j; z2jjh2
1
; h2

2
; rg ; rÞ as the likelihood obtained based on Eq (4). The marginal

z-scores for different SNPs are correlated with each other due to linkage disequilibrium (LD).

Consequently, the joint likelihood for genome-wide marginal z-scores are in a complicated

form, on which parameter estimation is computationally challenging to carry out. To enable

estimation with summary statistics, we approximate the complicated joint likelihood with a

relatively simple composite likelihood, which is represented as a weighted product of individ-

ual marginal likelihood across genome-wide SNPs [13]:

Pðz11; z21; . . . ; z1m; z2mjh
2

1
; h2

2
; rg ; rÞ ¼

Qm
j¼1
Pðz1j; z2jjh

2

1
; h2

2
; rg ; rÞ

wj ; ð5Þ

where each individual likelihood is powered to wj, a j’th SNP specific weight. The weight wj is

critical for ensuring estimation accuracy of the composite likelihood based algorithm in the

presence of LD [14]. Intuitively, if j’th SNP is in LD with many other SNPs, then the marginal

likelihood of (z1j, z2j) contains similar information as the marginal likelihood of the other

SNPs that are in LD with the j’th SNP. Consequently, we can choose a small wj to down-weight

the j’th marginal likelihood. In contrast, if the j’th SNP is in LD with only a limited number of

SNPs, then the marginal likelihood of (z1j, z2j) contains important information that cannot be

replaced by that of the other SNPs. Consequently, we want to choose a large wj to up-weight

the j’th marginal likelihood. To captivate such intuition, we set wj = 1/lj with lj being the LD

score of the j’th SNP. Such choice of wj is optimum for achieving maximum estimation accu-

racy of composite likelihood for the specific setting where the SNP correlation matrix is block

diagonal [14]: SNPs within blocks have identical genotypes with correlations among them
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being one, while SNPs between blocks have zero correlations. In this setting, it has been shown

that the optimal weighting choice is wj = 1/(mi−1), where mi is the number of SNPs in i’th
block to which the j’th SNP belongs [14]. This optimal weight choice wj = 1/(mi−1) is equiva-

lent to wj = 1/lj, the weighting choice we make for our method. In addition, the composite like-

lihood under our weighting choice of wj = 1/lj is equivalent to the full likelihood when SNPs

are uncorrelated with each other. The weight choice of wj = 1/lj also relates our method to

LDSC and MQS in the single phenotype setting (details in S1 Text) [12]. Therefore, our

method can also be viewed as a natural extension of LDSC and MQS towards modeling multi-

ple phenotypes.

With the above composite likelihood, we develop an expectation maximization (EM) algo-

rithm [15] paired with an Newton-Raphson (NR) algorithm [16,17] to perform parameter esti-

mation. In addition, we use the jackknife algorithm [10,18] to estimate standard errors for the

parameter estimates. The composite likelihood-based algorithm allows us to perform unbiased

parameter estimation [13] and make inference using only summary statistics in a computa-

tionally scalable fashion. The composite likelihood-based algorithm can also be easily extended

to handle multiple genetic components in the presence of SNP annotations (details in the S1

Text). We refer to our method as genetic and environmental covariance estimate by compos-

ite-likelihood optimization (GECKO). GECKO is implemented as an R package, freely avail-

able at www.xzlab.org/software.html.

Simulation settings

We used genotype data from the Welcome Trust Case Control Consortium (WTCCC) study

and simulated phenotypes. Specifically, we obtained 384,733 SNPs from 2,938 control samples

in the WTCCC. We filtered out SNPs with a minor allele frequency less than 5%, with a

Hardy–Weinberg equilibrium p-value less than 0.001, or that are strand-ambiguous. We

focused on the remaining 289,994 SNPs and simulated pairs of traits. In each simulation, we

first simulated the genetic effect sizes for all SNPs based on Eq (2) with different genetic covari-

ance values (more details below). We simulated the environmental effects based on Eq (3) with

different environmental covariance values. We then summed the genetic effects and the envi-

ronmental effects to obtain simulated phenotypes based on Eq (1). Afterwards, we computed

marginal z-scores for each trait SNP pair using linear regression. We also computed LD scores

using all individuals, with a window size set to be 1MB to minimize the influence of LD decay

following the recommendation of LDSC [19]. Finally, we applied different methods to estimate

the genetic and environmental covariance based on the resulting z-scores and LD scores. In

the simulations, we examined different combinations of genetic and environmental covariance

values, examined the influence of sample overlap on estimation accuracy, and examined the

setting where genetic effects vary across different genetic annotations. In total, we examined

four main simulation settings as described below:

Setting I. We kept the environmental covariance constant and varied the genetic covari-

ance to evaluate the influence of environmental covariance on the estimation accuracy of the

genetic covariance. Specifically, we set the environmental covariance to either -0.1, 0, or 0.1.

For each environmental covariance value, we varied the genetic covariance from -0.4 to 0.4 by

a step of 0.05. We also set the heritability of both traits to be 0.5. A total of 51 scenarios (3 envi-

ronmental covariance x 17 genetic covariance values) were examined in setting I.

Setting II. We kept the genetic covariance constant and varied the environmental covari-

ance to evaluate the influence of genetic covariance on the estimation accuracy of the environ-

mental covariance. To do so, we set the genetic covariance to be either -0.1, 0, or 0.1. For each

genetic covariance value, we varied the environmental covariance from -0.4 to 0.4 by a step of
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0.05. We also set the heritability of both traits to be 0.5. A total of 51 scenarios (3 genetic

covariance x 17 environmental covariance values) were examined in setting II.

Setting III. Both settings I and II are based on the one study design where the two traits

are measured on the same set of individuals. Here, we examined the influence of sample com-

position/overlap between the two traits on the estimation accuracy of the genetic covariance

and environmental covariance. Specifically, we examined three study designs: the one study

design where both traits are measured on the same set of individuals; the two study design

where the two traits are measured on two sets of non-overlapping individuals; and the two par-

tially overlapping study design where the two traits are measured on two studies with sample

overlap. In the one study design, we used all 2,938 individuals to simulate both phenotypes. In

the two study design, we used a randomly selected 1,500 individuals as study one sample to

simulate the first phenotype and used the remaining 1,438 individuals as study two sample to

simulate the second phenotype. In the two partially overlapping study design, we randomly

selected 500 individuals from each study on top of the two study design and added them to the

other study. Therefore, we have 2,000 individuals in study one and 1,938 individuals in study

two, with 1,000 overlapping individuals. In each case, we set the heritability of both traits to be

0.5. We varied the genetic covariance from -0.4 to 0.4 by a step of 0.05. In the one study design

and the two overlapping study design, we set the genetic covariance to be 0.1, and varied the

environmental covariance from -0.4 to 0.4 by a step of 0.05. A total of 85 scenarios (3 study

designs x 1 genetic covariance x 17 environmental covariance values + 2 study designs x 1 envi-

ronmental covariance x 17 genetic covariance values) were examined in setting III.

Setting IV. We examined genetic and environmental covariance estimation accuracy in

the presence of multiple genetic covariance and environmental covariance. To do so, we

divided SNPs into two categories following [20]: one functional category (132,557 SNPs) that

includes all SNPs inside coding, UTR, promoter, exon or intron regions; and another non-

functional category (157,437 SNPs) that include the remaining SNPs. We set the heritability of

both traits to be 0.5 and evenly divided the heritability explained by each category of SNPs to

be 0.25. For genetic covariance estimation, we set the genetic covariance of the non-functional

annotation regions to be zero and varied the genetic covariance of the functional annotation

regions from -0.2 to 0.2 by 0.025 following [11]. For environmental covariance estimation, we

set the heritability of both traits to be 0.5 and evenly divided the heritability explained by each

category of SNPs to be 0.25. In addition, we set the genetic covariance for the functional anno-

tation region to be 0.05, set the genetic covariance for the non-functional annotation region to

be 0, and varied the environmental covariance from -0.4 to 0.4 by a step of 0.05. A total of 85

scenarios (3 study designs x 1 genetic covariance x 17 environmental covariance values + 2

study designs x 1 environmental covariance x 17 genetic covariance values) were examined in

setting IV.

Besides the above four main simulation settings, we also considered three additional simu-

lation settings:

The dense genotype setting where we used 1,819,851 imputed WTCCC SNPs based on the

1,000 Genome phase three reference panel for simulations. We examined all 85 scenarios in

the simulation setting III. The moderate heritability setting where we used a heritability of

0.15 instead of 0.5 and examined all 85 scenarios in simulation setting III. Note that the herita-

bility of 0.15 is close to the mean heritability estimate in our real data application

(mean = 0.155). The mismatched LD setting where the LD score is not computed from the

data at hand but from a separate reference panel. Specifically, we used LD score computed

from 503 individuals with European ancestry from the 1,000 Genomes project reference panel

instead of that computed based on WTCCC. We considered mismatched LD setting in all 85

scenarios in setting III. The overlap sample number misspecification setting where we
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examined the two partially overlapping study design in simulation setting III and set ns incor-

rectly to be 250, 500, 1,250, or 1,500 (while the true number is 1,000). We examined a total of

136 scenarios (4 ns choices x 1 genetic covariance x 17 environmental covariance values + 4 ns
choices x 1 environmental covariance x 17 genetic covariance values) in this setting.

For each scenario in the simulation settings III and IV, we performed 1,000 simulation rep-

licates. For each scenario in the remaining six simulation settings, we performed 100 simula-

tion replicates. We calculated type I error and power based on these replicates to check the

performance of GECKO under different sample compositions. Because different methods

have different control of type I error, we compared the power of different methods at a fixed

type I error rate instead of a nominal p-value threshold. Specifically, we ranked p-values from

different methods under the null, obtained for each method its p-value threshold that corre-

sponds to a 5% type I error rate, and used this p-value threshold for the given method as the

cutoff to calculate its power. Therefore, a different p-value threshold is used for each different

method, ensuring fair power comparison at a fixed type I error rate.

Compared methods

We mainly compared our method with two existing summary statistic based methods: LDSC

and GNOVA. Both these two methods estimate the genetic covariance through MoM and

both of them rely on marginal z-scores and LD scores as input. In LDSC, we used the default

setting for genetic covariance estimation. In GNOVA, we also used the default setting in the

one study design and the two partially overlapped study design; and we followed the recom-

mendation of GNOVA in the two separate study design to improve estimation performance.

Neither GNOVA nor LDSC estimate can directly estimate or test environmental covariance.

LDSC outputs an estimate for the intercept covariance, which can be approximately consid-

ered as the summation of the genetic covariance and the environmental covariance. Therefore,

we post hoc processed the LDSC output, obtained the difference between the intercept covari-

ance estimate and the genetic covariance estimate and treated it as an ad hoc estimate for the

environmental covariance. However, we are unable to test for the environmental covariance

using LDSC: LDSC does not output the standard error for the environmental covariance and

it is not straightforward to extract such standard error in a post hoc fashion. For GNOVA, we

also obtained the LDSC estimate of the LDSC intercept covariance, from which we subtracted

the GNOVA genetic covariance estimate to obtain an ad hoc estimate for the environmental

covariance. In stratified analysis, we obtained the GNOVA genetic covariance estimates

through the above procedure in each annotation region separately. Afterwards, we obtained

the environmental covariance estimate by taking the difference between the LDSC intercept

estimate and the summation of GNOVA genetic covariance estimates across annotation

regions. Besides the above summary statistics based methods, we also compared to the individ-

ual level data based method mvLMM. Specifically, we fitted mvLMM using GCTA and exam-

ined the simulation setting III with different sample overlap compositions. Finally, we note

that we used 1/lj as the weight for the composite likelihood in GECKO throughout the text as

explained above, where lj is the LD score of the j’th SNP.

Real data analysis

We applied our method to analyze GWAS summary statistics for 22 traits collected from five

GWASs. These 22 traits include nine non-impedance traits from the UK biobank [21] that

have SNP heritability greater than 0.05, four lipid traits from the Global Lipids Genetics Con-

sortium (GLGC) [22], five birth traits from Early Growth Genetics (EGG) Consortium [23–

28], two anthropometric measures from the Genetic Investigation of ANthropometric Traits
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(GIANT) Consortium [29,30], and two bone density measurements from the GEnetic Factors

for OSteoporosis Consortium (GEFOS) [31]. Details of these traits are provided in the S1

Table. The 22 traits can be classified into four categories: anthropometric traits (e.g., height

and BMI), hematological traits (e.g., WBC and RBC), birth traits (e.g., birth weight and birth

length), and metabolic traits (e.g., TG and HDL). For analysis, we first obtained a common set

of SNPs shared across all traits. We filtered out SNPs with minor allele frequency (MAF) less

than 0.05, with Hardy-Weinberg equilibrium (HWE) p-value less than 0.001, or that are

strand-ambiguous. We used the R package liftOver to match SNP base positions onto NCBI 37

build whenever necessary. We further overlapped SNPs with those available in the 1,000

Genomes project and focused on a final set of 611,444 SNPs for analysis. On the final set of

SNPs, we calculated LD scores based on 503 individuals with European ancestry from the

1,000 Genomes project [32] with a window size of 1 MB as recommended by LDSC [19]. We

applied GECKO together with LDSC and GNOVA to analyze all trait pairs among the 22 traits.

We declared significance in covariance estimates based on Bonferroni corrected thresholds.

For each trait pair in turn, we also performed gene set enrichment analysis using GSA-SNP2

[33] to identify enriched gene sets. We further compared the proportion of enriched gene sets

in trait pairs with either significant or non-significant genetic covariances.

In addition, we examined the performance of different methods on denser genotypes in the

real data. Specifically, we focused on the 13 phenotypes from GLGC (4) and UKBB (9) that

have a much higher number of genotypes as compared to the remaining phenotypes. We

obtained a common set of SNPs among these 13 phenotypes and retained SNPs that are also

available in the 1,000 Genomes project reference panel. We then filtered out SNPs with minor

allele frequency (MAF) less than 0.05, with Hardy-Weinberg equilibrium (HWE) p-value less

than 0.001, or that are strand-ambiguous. After filtering, we obtained a final set of 1,731,189

SNPs for analysis.

Results

GECKO is described in the Methods section, with technical details provided in the S1 Text.

Briefly, GECKO analyzes pairs of traits one at a time. For each pair, it relies on a composite

likelihood-based algorithm to estimate and test the genetic and environmental covariances.

Genetic and environmental covariance estimation

We performed simulations to compare the estimation accuracy of GECKO with two existing

approaches, LDSC and GNOVA. Simulation and comparison details are provided in the Meth-

ods. Briefly, we used genotypes from WTCCC to simulate pairs of traits. We examined a total

of 238 simulation scenarios in four main simulation settings. We first examined the one study

design where both traits are measured on the same set of individuals (n = 2,938). We examined

the estimation accuracy of the three methods for a range of genetic covariance values in the

setting where the environmental covariance is either zero (Fig 1A and 1B), positive (S1A and

S1B Fig), or negative (S1C and S1D Fig). All three methods provide approximately unbiased

estimates of the genetic covariance regardless of the environmental covariance values (Figs 1A

and S1A and S1C). To quantify estimation accuracy, we computed the mean squared error

(MSE) for estimates obtained from different methods. To facilitate visualization, we also con-

trasted the MSE from each of the other two methods to GECKO by computing an MSE ratio

(Figs 1B and S1B and S1D). The MSE ratio measures the inverse of the relative statistical effi-

ciency of a given method with respect to GECKO: an MSE ratio above one suggests that

GECKO provides more accurate estimates while an MSE ratio below one suggests the oppo-

site. In addition, the MSE ratio directly quantifies how effective the two methods are in using

PLOS GENETICS Genetic and environmental covariance estimation with composite likelihood
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the samples, as the estimation variance is a function of sample size due to the central limit the-

orem. For example, an MSE ratio of 1.11 would imply that GECKO effectively increases the

sample size by 1.11−1 = 11% as compared to the other method. The MSE ratio results show

that GECKO provides more accurate genetic covariance estimates than the other two methods

across a wide range of scenarios. The performance of GECKO is often followed by LDSC. For

example, when the environmental covariance is zero, the MSE ratio of LDSC ranges from 0.92

to 1.39 with a mean of 1.11 (with the ratio in 70.6% of simulation replicates being above 1),

while the MSE ratio of GNOVA ranges from 1.01 to 1.87 with a mean of 1.22. The overall

results do not vary much with respect to the environmental covariance values. For example,

when the environmental covariance is 0.1, the MSE ratio of LDSC ranges from 0.86 to 1.48

with a mean of 1.16 (with 82.3% above 1), while the MSE ratio of GNOVA ranges from 1.04 to

1.69 with a mean of 1.26. Similarly, when the environmental covariance is -0.1, the MSE ratio

of LDSC ranges from 0.95 to 1.59 with a mean of 1.13 (with 76.5% above 1), while the MSE

ratio of GNOVA ranges from 1.05 to 1.65 with a mean of 1.25. The estimation accuracy of the

genetic correlation with varying environmental correlation showed a similar overall pattern as

the results on genetic covariance estimation (S2A, S2B and S3A–S3D Figs). Besides genetic

covariance estimation, we also examined the estimation accuracy of environmental covariance

with varying genetic covariances. Because LDSC and GNOVA do not provide environmental

Fig 1. Comparison of genetic and environmental covariance estimation of different methods in simulations.

Compared methods include GECKO (purple), GNOVA (grey), and LDSC (green). Results are shown for the one study

design (first row: A, B, G, H), two partially overlapped study design (second row: C, D, I, J), and two separate study

design (third row: E, F). Boxplots display estimated genetic covariances (A, C, E) and environmental covariances (G, I)

on y-axis versus the true covariances on x-axis across simulation replicates. Estimation accuracy is measured by the

ratio of mean square errors (MSE), which contrast the MSE from GNOVA or LDSC with respect to GECKO, across

various true covariances on x-axis, for genetic (B, D, F) and environmental covariances (H, J). An MSE ratio below one

suggests that GECKO performs worse than the other method; above one otherwise.

https://doi.org/10.1371/journal.pgen.1009293.g001
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covariance estimates, we had to post-process LDSC and GNOVA output to obtain these esti-

mates in an ad hoc fashion (details in Methods). The results on environmental covariance esti-

mation are largely consistent with genetic covariance estimation results. For example, all three

methods provide reasonably unbiased environmental covariance estimates regardless of the

genetic covariance values (Figs 1G and S1E and S1G). GECKO produces more accurate envi-

ronmental covariance estimates than both LDSC and GNOVA in most (78.4%) simulation sce-

narios (Figs 1H and S1F and S1H).

Examining the detailed scenarios in which different methods perform well yields further

insights. Specifically, LDSC is particularly effective in the scenario where the genetic and envi-

ronmental covariance sums to zero. For example, when the environmental covariance is zero,

the estimate by LDSC is accurate when the true genetic covariance is close to zero, even slightly

more so than GECKO. However, the performance of LDSC degrades quickly when the sum-

mation of genetic and environmental covariance differs far away from zero. The performance

dependence of LDSC with respect to the summation of the true covariances closely resembles

its performance dependence on the true heritability for heritability estimation–LDSC herita-

bility estimate is also more accurate when the true heritability is close to zero [12]. In contrast,

the performance of GNOVA is almost in the opposite direction of LDSC: the estimation accu-

racy of GNOVA is the worst when the genetic and environmental covariance sum to zero and

improves when the sum deviates away from zero. The different performance dependence on

the true covariance values in GNOVA and LDSC is likely resulted from different MoM type

algorithms used in the two methods [12]. Different from LDSC and GNOVA, the performance

of GECKO is reasonably stable across a range of genetic and environmental covariance values

(Figs 1B and S1B and S1D), supporting the benefits of performing inference in a composite

likelihood framework.

Sample overlap, type I error control, and stratified analysis

Besides the above settings where both traits are measured on the same set of individuals, we

also examined settings where the two traits are measured on two studies, with either no over-

lapping or partially overlapping individuals between the two. Specifically, we set the first study

sample size n1 = 1,500 and the second study sample size n2 = 1,438 in the two separate study

design. We also set n1 = 2,000, n2 = 1,938, with overlap sample size ns = 1,000 in the two par-

tially overlapped study design. The results are largely consistent with the one study design

described in the previous section. For example, all methods provide approximately unbiased

estimates for both the genetic covariance (Fig 1C and 1E) and the environmental covariance

(Fig 1G and 1I). Compared to the other two methods, GECKO produces more accurate esti-

mates of the genetic covariance in most (82.3%) scenarios (Fig 1D and 1F) and more accurate

estimates of the environmental covariance in most (70.6%) scenarios (Fig 1H and 1J). As

expected, the proportion of individual overlap between studies positively influences the esti-

mation accuracy of all methods. For example, the average MSE of the genetic covariance esti-

mates by GECKO increases from 0.012 in the one study design to 0.026 in the two partially

overlapped study design, and further to 0.043 in the two separate study design. Certainly, all

these compared methods are based on summary statistics and use either method of moments

or composite likelihood. Consequently, these methods produce less accurate genetic and envi-

ronmental covariance estimates as compared to the full likelihood based method mvLMM,

which uses individual level data (S4 Fig). For example, the MSE ratio of mvLMM over

GECKO for genetic covariance estimation is much smaller than one in the presence of sample

overlap though it becomes closer to one in the two separate study design. Overall, the results

suggest that the performance of GECKO is robust with respect to sample compositions.
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Besides estimation, we found that both LDSC and GECKO control for type I error well for

genetic covariance testing and produce conservative p-values across study designs (Table 1).

Consistent with [11], GNOVA also produces reasonably calibrated type I error control in the

two separate study design. However, GNOVA produces inflated type I error in both one study

design and two overlapping study design, sometimes several times larger than expected

(Table 1); both these two study designs were not explored in [11]. In addition, GECKO is the

only method capable of testing the environment covariance, producing controlled type I error

and conservative p-values across settings (Fig 2D and 2E and Table 1). Because different meth-

ods have different control of type I error, we compared the power of different methods at a

fixed type I error rate instead of a nominal p-value threshold. In the analysis, we found that

GECKO is also more powerful than the other two methods in testing genetic covariance,

despite the relatively small sample sizes used in simulations. For example, in the one study

design, GECKO improves power by 4.05% and 32.4% on top of LDSC and GNOVA, respec-

tively (Fig 2A). In the partially overlapped study design, GECKO improves power by 3.72%

and 9.44% on top of LDSC and GNOVA, respectively (Fig 2C). GNOVA is even more power-

ful than the other two methods in the two separate study design (Fig 2E).

Next, we examined the performance of GECKO in estimating annotation-stratified genetic

covariance and environmental covariance. To do so, we partitioned the whole genome into

two non-overlapping annotation categories and applied both GECKO and GNOVA to esti-

mate the two annotation-stratified genetic covariances. We did not include LDSC here as it

cannot estimate annotation-stratified covariances. The results in the annotation-stratified

analysis are largely similar to the results for non-stratified analysis. For example, both GECKO

and GNOVA provided approximately unbiased estimates of the partitioned genetic covari-

ances regardless of the study design (Fig 3A, 3C and 3E). GECKO also produces more accurate

genetic covariance estimates than GNOVA. For example, in the one study design, the MSE

ratio of GNOVA ranges from 1.01 to 1.08 with a mean of 1.05 (Fig 3B). The relative accuracy

of GECKO with respect to GNOVA improves with reduced sample overlap. For example, the

MSE ratio of GNOVA to GECKO ranges from 1.10 to 1.23 with a mean of 1.17 in the two sepa-

rate study design (Fig 3D), and ranges from 1.16 to 1.44 with a mean of 1.36 in the two partially

overlapping study design (Fig 3F). In terms of environmental covariance, GNOVA cannot

directly perform estimation in the presence of stratified annotations so we had to use a post
hoc procedure to obtain environmental covariance estimates from GNOVA. Consistent with

results on the unstratified environmental covariance estimation, GECKO provided approxi-

mately unbiased estimate of environmental covariance regardless of study design (Fig 3G and

3I) and is more accurate than GNOVA (Fig 3H and 3J).

Besides estimation, we found that GECKO is more powerful than GNOVA in testing

genetic covariance in the one study design and the two partially overlapped study design. For

Table 1. Type I error control of different methods under null simulations.

Type I Error (alpha = 0.05, 0.005) Genetic Covariance Environmental Covariance

One Study Two Study Overlapped One Study Overlapped

GECKO 2% (0.2%) 2% (0.8%) 2% (0.6%) 2% (0.2%) 3% (0.5%)

LDSC 3% (0.3%) 1% (0) 2% (0.1%) NA NA

GNOVA 37% (17.6%) 7% (0.8%) 27% (10.9%) NA NA

The table displays the type I error of different methods at a nominal p-value threshold of 0.05 and 0.005 (in parentheses) for testing the genetic covariance (first three

columns) or the environmental covariance (last two columns) under null simulations with three different study designs. The three different study designs include the

one study design, two separate study design, and two study design with partially overlapped individuals. LDSC and GNOVA cannot be used for testing the

environmental covariance so NAs are shown in the corresponding cells.

https://doi.org/10.1371/journal.pgen.1009293.t001
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example, in the one study design, GECKO improves power by 17.94% on top of GNOVA (S5A

Fig). In the partially overlapped study design, GECKO improves power by 2.59% on top of

GNOVA (S5B Fig). However, GNOVA is more powerful than GECKO in the two separate

study design (S5C Fig), presumably due to its implicit modeling assumption that the environ-

mental covariance is zero, which happens to be true in the two separate study design.

Alternative simulations and model misspecifications

Besides the main simulations, we examined the performance of GECKO and the other meth-

ods with additional simulation settings including those under different model misspecifica-

tions. We first examined the performance of different methods under simulations with denser

Fig 2. Power comparison of different methods in detecting non-zero genetic and environmental covariances in

simulations. Compared methods include GECKO (purple, solid line), GNOVA (grey, dotted line), and LDSC (green,

dashed line). Results are shown for the one study design (first row: A, D), two partially overlapped study design

(second row: B, E) and two separate study design (third row: C). Power (y-axis) of different methods are shown with

respect to the true covariances (x-axis) for detecting non-zero genetic covariances (A, B, C) and environmental

covariances (D, E). Power is shown based on a type I error of 0.05 but not a nominal p-value of 0.05. The power of

GNOVA and LDSC for detecting non-zero environmental covariance are not shown because GNOVA and LDSC

cannot test for environmental covariance.

https://doi.org/10.1371/journal.pgen.1009293.g002
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Fig 3. Comparison of genetic and environmental covariance estimation in presence of stratified genetic components for different methods in simulations.

Compared methods include GECKO (purple) and GNOVA (grey). Results are obtained in the presence of stratified genetic components. Results are shown for the one

study design (first row: A, B, G, H), two partially overlapped study design (second row: C, D, I, J) and two separate study design (third row: E, F). Boxplots display the

estimated total genetic covariances (A, C, E) and environmental covariances (G, I) on y-axis versus the true covariances on x-axis across simulation replicates.

Estimation accuracy is measured by the ratio of mean square errors (MSE), which contrast the MSE from GNOVA or LDSC with respect to GECKO, across various true

covariances on x-axis, for genetic (B, D, F) and environmental covariances (H, J). An MSE ratio below one suggests that GECKO performs worse than the other method;

above one otherwise.

https://doi.org/10.1371/journal.pgen.1009293.g003
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genotypes. Specifically, we used imputed genotypes and performed simulations under setting

III. We found that the results under denser genotypes are largely consistent with the above

main results (S6 Fig). We then examined the performance of different methods based on a

moderate heritability of 0.15 instead of 0.5. A heritability of 0.15 is close to the mean heritabil-

ity estimate obtained in our real data application. The results with moderate heritability are

also largely consistent with the main results (S7 Fig). We further examined a LD mismatch set-

ting, where we calculated LD scores and subsequent composite likelihood weights based on

the 1,000 Genomes project reference panel instead of directly from the data at hand. The

results are largely consistent with the main simulations: all methods provide approximately

unbiased estimates for both the genetic (S8A, S8C and S8E Fig) and environmental covari-

ances (S8G and S8I Fig) while GECKO produces more accurate estimates of the genetic covari-

ance (S8B, S8D and S8F Fig) and the environmental covariance in most (82.3% and 76.5%)

scenarios (S8H and S8J Fig). We also examined another model misspecification setting where

the number of overlapping individuals is mis-specified. Because the genetic covariance and the

number of overlapping individuals are two parameters that are separable from each other in

the model, the estimation of genetic covariance from different methods would not be affected

by the misspecification of the number of overlapping individuals (S9A, S9C, S9G, and S9I Fig).

Indeed, the MSE ratio comparing different methods remains the same (S9B, S9D, S9H and S9J

vs S9F Fig). However, the environmental covariance and the number of overlapped individuals

are two parameters that are coupled together in the model and are thus not identifiable from

each other. Consequently, when the number of overlapping individuals is mis-specified, the

environmental covariance estimate would become biased for all three methods (S10A, S10C,

S10G and S10I Fig), although the MSE ratio comparing different methods remains largely the

same (S10B, S10D, S10H and S10J vs S10F Fig).

Finally, we note that the computational complexity of GECKO scales linearly with the num-

ber of individuals and with the number of SNPs. While GECKO requires iterative optimization,

the linear computational complexity of GECKO makes it reasonably efficient as compared to

MoM based approaches. Indeed, across simulation settings, the average computing time for

covariance estimation is 95.43s, 7.41s, and 7.67s for GECKO, LDSC and GNOVA, respectively.

Real data applications

We applied GECKO and LDSC to analyze 22 quantitative traits from five different GWASs.

These traits belong to five distinct phenotype groups that include birth traits, lipid traits, bone

density traits, blood traits, and anthropometric measures. The heritability estimates of 22 traits

range from 0.047 to 0.368 with a mean heritability estimate being 0.155. We focused on all 231

pairs of traits and a common set of 611,444 SNPs for analysis. We did not include GNOVA in

comparison as it does not provide a well-controlled type I error for testing. Across pairs of

traits, the genetic correlation estimates from GECKO range from -0.731 to 0.945, and the envi-

ronmental correlation estimates from GECKO range from -0.363 to 0.875. In the analysis,

GECKO identified 50 significant genetic correlations based on Bonferroni correction (p-

value < 0.00022 (0.05/231); Fig 4A). Among them, a higher proportion of significant genetic

correlation are obtained among trait pairs collected in the same study (19 out of 54; 35.19%)

than that collected in separate studies (31 out of 177; 17.51%), consistent with the fact that

traits are collected in the same study if they likely share a common genetic background. Con-

sistent with the lower power of LDSC in simulations, LDSC identified 24 significant genetic

correlations, the majority of which (19) were also identified by GECKO (S11 Fig) and 19 of

which were obtained among trait pairs collected in the same study. Among the 19 pairs of

traits with significant genetic correlation identified by both methods, the majority of them
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have previous literature support (S2 Table). For example, both methods identified positive

genetic correlation between LSBMD and FNBMD, and between BMI and TG, as well as nega-

tive genetic correlation between BMI and HDL, and between TG and HDL [10,11]. In terms of

the 31 significant genetic correlation obtained only by GECKO, many of them also have previ-

ous literature support. For example, the positive genetic correlation between BMI and WBC

(correlation = 0.091; p-value = 2.24×10−12) is consistent with the previous study that common

inflammatory pathways may underlie both traits: high BMI and obesity is considered as a

chronic inflammatory condition with which elevated WBC is widely recognized to be associ-

ated with [34,35]. As another example, the positive genetic correlation between BMI and SBP

(correlation = 0.06; p-value = 1.46×10−6) suggests that either common genetic pathways may

underlie both BMI and SBP or that a potentially causal positive effect of BMI on hypertension

exist as suggested previously [36]. Indeed, gene set enrichment analysis (GSEA) identified thy-

roid hormone receptor binding pathway (WBC q-value = 0.00079; BMI q-value = 0.033) and

cytokine-mediated signaling pathway (WBC q-value = 0.0014; BMI q-value = 0.013) as

enriched in genes associated with BMI or SBP [37–39]. Similarly, the positive genetic correla-

tion between BMI and LDL (correlation = 0.23; p-value = 4.14×10−9) suggests that either com-

mon genetic pathways underlie both BMI and LDL or BMI has a positive and potentially

causal effect on LDL as suggested previously [40,41]. Indeed, GSEA identified lipid storage

pathway (BMI q-value = 0.022; LDL q-value = 1.29×10−7) and receptor biosynthetic process

pathway (BMI q-value = 0.0067; LDL q-value = 0.0001) as enriched in genes associated with

BMI or LDL, supporting common genetic regulation underlying the two traits. Besides posi-

tive genetic correlation, the identified negative genetic correlation between pairs of traits are

also consistent with previous literature. For example, the negative genetic correlation identi-

fied between height and LDL (correlation = -0.16; p-value = 2.96×10−13) is consistent with

Fig 4. Genetic and environmental correlation estimation by GECKO across pairs of 22 GWAS traits. A: heatmap

displays genetic (lower triangle) and environmental (upper triangle) correlation estimates for pairs of traits from

GECKO. A cross in the square represents statistically significant correlation estimates for the trait pair after Bonferroni

correction. Environmental correlation estimation is carried out only for pairs of traits that are collected in the same

study (non-grey boxes). B: violin plot displays the proportion of significantly enriched gene sets detected for pairs of

traits with non-significant genetic correlation estimates (purple) and for pairs of traits with significant genetic

correlation estimates (green). C: scatterplot contrasts the genetic correlation estimates (y-axis) versus the

environmental correlation estimates (x-axis) for pairs of traits that are collected in the same study. Traits are organized

into five different phenotype categories (figure legend).

https://doi.org/10.1371/journal.pgen.1009293.g004
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previous studies that height associated SNPs display negative associations with LDL [42]. In

addition, GSEA analysis revealed that, consistent with previous studies [43], the steroid bio-

synthetic process is enriched in genes associated with both height and LDL (LDL q-value =

0.0002; height q-value = 0.038). Similarly, the negative genetic correlation between WBC and

height (correlation = -0.065, p-value = 1.60×10−12) is also supported by GSEA analysis, where

we found that the receptor biosynthetic process (WBC q-value = 0.01, height q-value = 0.01)

and the multicellular organism growth pathways (WBC q = 0.004, height q-value = 0.009) are

both enriched in genes associated with either of the two traits [44]. Overall, the proportion of

enriched pathways identified in trait pairs with a significant genetic correlation is 4.4 fold

higher than that in trait pairs with non-significant genetic correlation (7.0% vs 1.6%; p-

value < 1×10−4; Fig 4B).

Besides genetic correlation, we also applied GECKO to obtain environmental correlation

estimates among 54 trait pairs in which both traits were measured on a common set of individ-

uals. We did not apply LDSC for environmental correlation estimation becaues it cannot test

the environmental correlation. The estimated environmental correlation estimates are posi-

tively correlated with the genetic correlation estimates across trait pairs (Spearman correla-

tion = 0.707; Fig 4C), with the two estimates sharing the same sign for majority of trait pairs

(45 out of 54; 83.3%). The positive correlation between the environmental correlation esti-

mates and genetic correlation estimates is highest for pairs of traits in the lipid phenotype

group (correlation = 0.98) where 100% of the trait pairs share the same sign, and is the lowest

for pairs of traits in the blood phenotype group (correlation = 0.25) where 66.7% of the trait

pairs share the same sign. 9 trait pairs (out of 54 pairs) showed opposite signs of the genetic

and environmental covariance estimates, though none of these pairs were statistically signifi-

cant. Among the 54 analyzed trait pairs, GECKO identifies 24 significant environmental corre-

lation based on Bonferroni correction (p-value < 0.0009 (0.05/54); Fig 4A). Among them, 11

pairs have significant genetic correlation estimates with the same sign. The significant environ-

mental correlation estimates are identified among pairs of traits within each of the three phe-

notypic categories that include birth traits, metabolic traits, and anthropometric traits (S3

Table). For example, significant positive environmental correlation is observed between birth

length and birth weight (correlation = 0.31; p-value = 4.24×10−37), between birth weight and

infant head circumference (correlation = 0.18; p-value = 1.25×10−5), and between childhood

BMI and pubertal growth (correlation = 0.19; p-value = 3.49×10−3). Such positive environmen-

tal correlation estimates suggest that common environmental factors, such as maternal health

status and maternal dietary, may influence birth traits in a coherent fashion [45–48]. As a sec-

ond example, the significantly positive environmental corelation estimates between bone min-

eral density at femoral neck (FNBMD) and lumbar spine (LSBMD; correlation = 0.52; p-

value = 3.02×10−63) suggest that environmental factors such as physical activity may influence

bone mineral density at two different anatomical locations in a similar fashion [49]. As a third

example, the significantly negative environmental correlation estimate between height and

BMI (correlation = -0.09, p-value = 4.93×10−25) suggests that environmental factors such as

television watching, physical activity, and smoking habits may influence height and BMI in

different directions [50–52]. Finally, paring the genetic correlation estimates with the environ-

mental correlation estimates helps us better understand the main contribution of phenotypic

correlation between pairs of traits. For example, previous studies have identified a positive

phenotypic association between WBC and pulse rate [53]. Such positive phenotypic associa-

tion appeared to be accounted for by a positive environmental correlation between the traits

(genetic correlation = 0.097, p-value = 2.28×10−3; while environmental correlation = 0.16, p-

value = 6.90×10−8), suggesting that common environmental factors for inducing inflammatory

response could underlie heart rate variation as previous studies suggest [34,54].
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Finally, we examined the influence of SNP density on covariance estimation. Specifically,

we focused on 13 phentoypes that have a larger number of SNPs than the remaining pheno-

types and analyzed the 78 trait pairs among them using the dense set of SNPs (details in Meth-

ods). In the analysis, GECKO identified 37 significant genetic correlations based on

Bonferroni correction (p-value < 0.00064) while LDSC identified 24, 22 of which were also

identified by GECKO. Importantly, the genetic correlation estimates obtained with the dense

set of SNPs is highly consistent with the estimates obtained earlier (Spearman correla-

tion = 0.865). In addition, 28 significant estimates are shared in common between the signifi-

cant genetic correlations detected using the dense set of SNPs and the using early non-dense

SNPs (S4 Table). Besides genetic corrections, the environmental correlation estimates obtained

with the dense set of SNPs is highly correlated with the estimates obtained with the earlier

non-dense set of SNPs, with Spearman correlation being 0.98 between the two. In addition, 15

significant environmental correlation estimates are shared in common between the significant

environmental correlations detected using the dense set of SNPs and the early non-dense set of

SNPs (S4 Table). Overall, SNP density does not appear to influence the GECKO results.

Discussion

We have presented our method, GECKO, for estimating genetic and environmental covari-

ances in GWASs. The same estimation formula of GECKO can be derived under either a ran-

dom design genotype matrix assumption as assumed in LDSC or a fixed design genotype

matrix assumption as assumed in GNOVA (S1 Text), highlighting the robustness of GECKO

estimation under different modeling assumptions on the genotype matrix. GECKO provides

accuracy genetic and environmental covariance estimates across a range of scenarios including

various study sample compositions. By providing the option of estimating and testing the envi-

ronmental covariance in additional to the genetic covariance, GECKO complements existing

approaches for fitting mvLMM and facilities the investigation of both the genetic and environ-

mental underpinning of complex traits. The composite-likelihood framework of GECKO is

also general and may be paired with several recent methodological advances in the field for a

variety of additional applications. For example, GECKO may be paired with the likelihood

framework of the high definition likelihood inference (HDL) method and rely on block-wise

LD matrix approximation to further improve estimation accuracy [55]. GECKO may be

extended for local genetic correlation estimation based on the recent SUPERGNOVA frame-

work by decorrelating summary statistics among local SNPs with the top principle compo-

nents extracted from the local LD matrix [56]. GECKO may be extended towards trans-ethnic

genetic correlation estimation based on a similar strategy used in [57]. Exploring extensions of

GECKO for these additional applications may yield fruitful results in the future.

GECKO relies on composite likelihood for covariance estimation. A key ingredient of com-

posite likelihood is the use of SNP weights, which weight the individual marginal likelihood of

each SNP to achieve improved estimation accuracy. The optimal choice of SNP weights is only

known in specific settings including the setting where LD displays a block-diagonal pattern

and the setting where SNPs are all uncorrelated with each other. Our use of the inverse LD

score as SNP weights corresponds to such optimal weights in the absence of LD or in the pres-

ence of block diagonal LD structure. Certainly, such SNP weight choice may not be optimal

for general non-block diagonal LD structures. Consequently, future explorations on the use of

other SNP weighting choices may lead to more accurate covariance estimates through the

composite likelihood estimation framework.

We have primarily focused on estimating covariances for quantitative traits using mvLMM.

Estimating covariances for binary diseases requires the use of multivariate liability threshold
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model to account for both the binary nature of disease outcomes and the sample ascertainment

associated with case control studies. In the univariate case, the linear mixed model can be

viewed as an approximate form of the liability threshold model when individual relatedness is

low [58–60]. Consequently, SNP heritability estimates can be obtained for disease outcomes

by using standard MoM algorithms, where we can treat the binary outcome as a continuous

outcome, fit a univariate linear mixed model to estimate heritability on the observed scale, and

finally perform a scaling transformation to obtain heritability on the liability scale [58–60]. A

recent study suggests that mvLMM can be similarly viewed as an approximated form of the

multivariate liability threshold model [58]. Consequently, GECKO may be extended to esti-

mate genetic and environmental covariances in case-control studies. However, as it is well rec-

ognized that the REML approach in the univariate linear mixed model can greatly

underestimate the true heritability [58,59], it would be important to investigate whether the

composite likelihood approach would produce unbiased covariance estimates as likelihood

based approaches.

While we have focused on estimating both the genetic and environmental covariances in

the present study, we acknowledge that the estimation of the environmental covariance is

likely more susceptible to technical artifacts than the estimation of the genetic covariance. Spe-

cifically, technical artifacts such as population stratification or other confounding factors are

likely absorbed into the second covariance term in the marginal likelihood in Eq (4) but not

the first covariance term there. Consequently, such artifacts may influence the estimation of

the environmental covariance which is also in the second term, while leaving alone the genetic

covariance which is primarily in the first term. In the univariate LMM case, LDSC introduces

an additional intercept parameter to control for population stratification in heritability estima-

tion [10]. We have used an alternative strategy, relying on the fact that population stratification

increases SNP-SNP correlations on top of what would be expected under LD alone, to extend

GECKO to control for population stratification in covariance estimation (S1 Text). In particu-

lar, the extension of GECKO introduces three additional intercept parameters to control for

population stratification that are present in the two unique samples of the two studies as well

as in the common samples shared between the two studies, respectively. Such extension of

GECKO effectively includes the univariate LDSC approach for controlling for population

stratification as a special case. Unfortunately, the environmental covariance cannot be directly

estimated in the extended GECKO due to model identifiability issues, unless we make an addi-

tional modeling assumption that the same level of population stratification occurs in the

unique and common samples. In this case, only one intercept is needed to control for popula-

tion stratification, allowing us to solve the model identifiability issue and estimate the environ-

mental covariance. Examining the effectiveness of such extension in GECKO to control for

population stratification is an important future research avenue.

Supporting information

S1 Fig. Comparison of genetic and environmental covariance estimation of different meth-

ods in simulations. Compared methods include GECKO (purple), GNOVA (grey), and LDSC

(green). Results are shown for the one study design with positive genetic or environmental

covariance (first row: A, B, E, F) and the one study design with negative genetic or environ-

mental covariance (second row: C, D, G, H). Boxplots display estimated genetic covariances

(A, C) and environmental covariances (E, G) on y-axis versus the true covariances on x-axis

across simulation replicates. Estimation accuracy is measured by the ratio of mean square

errors (MSE), which contrast the MSE from GNOVA or LDSC with respect to GECKO, across

various true covariances on x-axis, for genetic (B, D) and environmental covariances (F, H).
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An MSE ratio below one suggests that GECKO performs worse than the other method; above

one otherwise.

(TIF)

S2 Fig. Comparison of genetic and environmental correlation estimation of different

methods in simulations. Compared methods include GECKO (purple), GNOVA (grey), and

LDSC (green). Results are shown for the one study design (first row: A, B, G, H), two partially

overlapped study design (second row: C, D, I, J), and two separate study design (third row: E,

F). Boxplots display estimated genetic correlation (A, C, E) and environmental correlation (G,

I) on y-axis versus the true covariances on x-axis across simulation replicates. Estimation accu-

racy is measured by the ratio of mean square errors (MSE), which contrast the MSE from

GNOVA or LDSC with respect to GECKO, across various true correlation on x-axis, for

genetic (B, D, F) and environmental (H, J) correlation. An MSE ratio below one suggests that

GECKO performs worse than the other method; above one otherwise.

(TIF)

S3 Fig. Comparison of genetic and environmental correlation estimation of different meth-

ods in simulations. Compared methods include GECKO (purple), GNOVA (grey), and LDSC

(green). Results are shown for the one study design with positive genetic or environmental cor-

relation (first row: A, B, E, F) and the one study design with negative genetic or environmental

correlation (second row: C, D, G, H). Boxplots display estimated genetic correlation (A, C) and

environmental correlation (E, G) on y-axis versus the true correlation on x-axis across simula-

tion replicates. Estimation accuracy is measured by the ratio of mean square errors (MSE),

which contrast the MSE from GNOVA or LDSC with respect to GECKO, across various true

correlation on x-axis, for genetic (B, D) and environmental correlation (F, H). An MSE ratio

below one suggests that GECKO performs worse than the other method; above one otherwise.

(TIF)

S4 Fig. Comparison of genetic and environmental covariance estimation of different meth-

ods in simulations. Compared methods include GECKO (purple), GNOVA (grey), LDSC

(green), and mvlmm(blue). Results are shown for the one study design (first row: A, B, G, H),

two partially overlapped study design (second row: C, D, I, J), and two separate study design

(third row: E, F). Boxplots display estimated genetic covariances (A, C, E) and environmental

covariances (G, I) on y-axis versus the true covariances on x-axis across simulation replicates.

Estimation accuracy is measured by the ratio of mean square errors (MSE), which contrast the

MSE from GNOVA, LDSC or mvlmm with respect to GECKO, across various true covariances

on x-axis, for genetic (B, D, F) and environmental covariances (H, J). An MSE ratio below one

suggests that GECKO performs worse than the other method; above one otherwise.

(TIF)

S5 Fig. Power comparison of different methods in detecting non-zero genetic and environ-

mental covariances in simulations with functional annotations. Compared methods include

GECKO (purple, solid line), GNOVA (grey, dotted line).Results are shown for the one study

design (first row: A, D), two partially overlapped study design (second row: B, E) and two sepa-

rate study design (third row: C). Power (y-axis) of different methods are shown with respect to

the true covariances (x-axis) for detecting non-zero genetic covariances (A, B, C) and environ-

mental covariances (D, E). Power is shown based on a type I error of 0.05 but not a nominal p-

value of 0.05. The power of GNOVA for detecting non-zero environmental covariance is not

shown because GNOVA cannot test for environmental covariance.

(TIF)
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S6 Fig. Comparison of genetic and environmental covariance estimation of different meth-

ods in simulations with dense SNPs. Compared methods include GECKO (purple), GNOVA

(grey), and LDSC (green). Results are shown for the one study design (first row: A, B, G, H),

two partially overlapped study design (second row: C, D, I, J), and two separate study design

(third row: E, F). Boxplots display estimated genetic covariances (A, C, E) and environmental

covariances (G, I) on y-axis versus the true covariances on x-axis across simulation replicates.

Estimation accuracy is measured by the ratio of mean square errors (MSE), which contrast the

MSE from GNOVA or LDSC with respect to GECKO, across various true covariances on x-

axis, for genetic (B, D, F) and environmental covariances (H, J). An MSE ratio below one sug-

gests that GECKO performs worse than the other method; above one otherwise.

(TIF)

S7 Fig. Comparison of genetic and environmental covariance estimation of different meth-

ods in simulations with smaller heritability. Compared methods include GECKO (purple),

GNOVA (grey), and LDSC (green). Results are shown for the one study design (first row: A, B,

G, H), two partially overlapped study design (second row: C, D, I, J), and two separate study

design (third row: E, F). Boxplots display estimated genetic covariances (A, C, E) and environ-

mental covariances (G, I) on y-axis versus the true covariances on x-axis across simulation rep-

licates. Estimation accuracy is measured by the ratio of mean square errors (MSE), which

contrast the MSE from GNOVA or LDSC with respect to GECKO, across various true covari-

ances on x-axis, for genetic (B, D, F) and environmental covariances (H, J). An MSE ratio

below one suggests that GECKO performs worse than the other method; above one otherwise.

(TIF)

S8 Fig. Comparison of genetic and environmental covariance estimation of different meth-

ods in simulations using LD score from 1000 Genome reference panel. Compared methods

include GECKO (purple), GNOVA (grey), and LDSC (green). Results are shown for the one

study design (first row: A, B, G, H), two partially overlapped study design (second row: C, D, I,

J), and two separate study design (third row: E, F). Boxplots display estimated genetic covari-

ances (A, C, E) and environmental covariances (G, I) on y-axis versus the true covariances on

x-axis across simulation replicates. Estimation accuracy is measured by the ratio of mean

square errors (MSE), which contrast the MSE from GNOVA or LDSC with respect to

GECKO, across various true covariances on x-axis, for genetic (B, D, F) and environmental

covariances (H, J). An MSE ratio below one suggests that GECKO performs worse than the

other method; above one otherwise.

(TIF)

S9 Fig. Comparison of genetic covariance estimation under mis-specified number of over-

lapped samples. Compared methods include GECKO (purple), GNOVA (grey), and LDSC

(green). Results are shown for ns being 250 (A, B), 500 (C, D), 1000 (E, F), 1250 (G, H), 1500

(I, J); Boxplots display estimated genetic covariances (A, C, E, G, I) on y-axis versus the true

covariances on x-axis across simulation replicates. Estimation accuracy is measured by the

ratio of mean square errors (MSE), which contrast the MSE from GNOVA or LDSC with

respect to GECKO, across various true covariances on x-axis, for genetic covariances (B, D, F,

H, J). An MSE ratio below one suggests that GECKO performs worse than the other method;

above one otherwise.

(TIF)

S10 Fig. Comparison of environmental covariance estimation under mis-specified number of

overlapped samples. Compared methods include GECKO (purple), GNOVA (grey), and

LDSC (green). Results are shown for ns being 250 (A, B), 500 (C, D), 1000 (E, F), 1250 (G, H),
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1500 (I, J); Boxplots display estimated environmental covariances (A, C, E, G, I) on y-axis ver-

sus the true covariances on x-axis across simulation replicates. Estimation accuracy is mea-

sured by the ratio of mean square errors (MSE), which contrast the MSE from GNOVA or

LDSC with respect to GECKO, across various true covariances on x-axis, for environmental

covariances (B, D, F, H, J). An MSE ratio below one suggests that GECKO performs worse

than the other method; above one otherwise.

(TIF)

S11 Fig. Genetic correlation estimates from LDSC and GECKO for pairs of 22 human com-

plex traits. The upper triangular represents the genetic correlation estimates by LDSC while

the lower triangular respresents the estimates by GECKO. The cross in the square represents

the significant genetic correlation after Bonferroni Correlation.

(TIF)

S1 Table. Information for the summary statistics of 22 traits from 5 GWAS studies. The

table lists the phenotype name, category, abbreviation, number of individuals, reference, and

downloaded websites for each of the 22 traits.

(XLSX)

S2 Table. Genetic correlation estimates by GECKO and LDSC. The table lists the phenotype

name abbreviation of the first study, phenotype name abbreviation of the second study, genetic

covariance, heritability of the first trait, heritability of the second trait, genetic correlation esti-

mates and corresponding p-value of GECKO, LDSC and GNOVA.

(XLSX)

S3 Table. Environmental correlation estimates by GECKO. The table lists the phenotype

name abbreviation of the first study, second study, environmental covariance estimates, envi-

ronmental variance of the first trait, environmental variance of the second trait, environmental

correlation estimate, corresponding p-value, and supporting information.

(XLSX)

S4 Table. Genetic and environmental covariance estimate under dense SPNs set by

GECKO. The table lists the phenotype name abbreviation of the first study, second study,

genetic and environmental covariance and correlation estimate of GECKO and corresponding

p-value.

(XLSX)

S1 Text. Supplementary text for the methods.

(DOCX)
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