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Abstract

Deciphering a function of a given protein requires investigating various biological aspects.

Usually, the protein of interest is expressed with a fusion tag that aids or allows subsequent

analyses. Additionally, downregulation or inactivation of the studied gene enables functional

studies. Development of the CRISPR/Cas9 methodology opened many possibilities but in

many cases it is restricted to non-essential genes. Recombinase-dependent gene integra-

tion methods, like the Flp-In system, are very good alternatives. The system is widely used

in different research areas, which calls for the existence of compatible vectors and efficient

protocols that ensure straightforward DNA cloning and generation of stable cell lines. We

have created and validated a robust series of 52 vectors for streamlined generation of stable

mammalian cell lines using the FLP recombinase-based methodology. Using the sequence-

independent DNA cloning method all constructs for a given coding-sequence can be made

with just three universal PCR primers. Our collection allows tetracycline-inducible expres-

sion of proteins with various tags suitable for protein localization, FRET, bimolecular fluores-

cence complementation (BiFC), protein dynamics studies (FRAP), co-immunoprecipitation,

the RNA tethering assay and cell sorting. Some of the vectors contain a bidirectional pro-

moter for concomitant expression of miRNA and mRNA, so that a gene can be silenced and

its product replaced by a mutated miRNA-insensitive version. Our toolkit and protocols have

allowed us to create more than 500 constructs with ease. We demonstrate the efficacy of

our vectors by creating stable cell lines with various tagged proteins (numatrin, fibrillarin, coi-

lin, centrin, THOC5, PCNA). We have analysed transgene expression over time to provide a

guideline for future experiments and compared the effectiveness of commonly used induc-

ers for tetracycline-responsive promoters. As proof of concept we examined the role of the

exoribonuclease XRN2 in transcription termination by RNAseq.
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Introduction

Deciphering a protein’s function requires investigating its subcellular localisation, identifying

its binding partners, and performing multiple functional assays. There are many ways to

achieve these goals, with different amounts of required time and effort as well as variable bio-

logical relevance of the results obtained. The usual course of action is to express the protein of

interest with a fusion tag, a short peptide or a domain, that aids or allows biochemical, cellular

or functional analysis. Study of one protein often leads to follow-up experiments that involve

other proteins, which can quickly multiply the amount of work required to comprehensively

answer the original question. Consequently, straightforward methods or tools that can provide

answers to a number of questions are called for.

Ectopic expression is widely used for investigations of human proteins. It can be achieved

by transient or stable transfection of cultured cells with a plasmid or virus. Alternatively, one

can perform targeted genomic manipulation to engineer the gene of interest in its natural

locus. This used to be difficult and time-consuming for most vertebrate cell lines before the

advent of CRISPR-based approaches [1, 2, 3]. Genome editing has the crucial advantage in

that the studied gene is expressed at its natural levels and naturally responds to all stimuli.

However, this approach can prove to be problematic if control of gene expression is required

or specific alleles are to be tested. On the other hand, transfection, transient or stable, offers a

lot of flexibility in transgene sequence, allowing for the use of stronger, weaker, or even regu-

lated promoters.

Of the two transfection modes–transient and stable–the first one is obviously easier and

faster but suffers from low reproducibility and heterogeneity of cell populations. Also, cells are

analysed shortly after transfection, and can still be suffering from stress induced by transfec-

tion procedure. Generating stable cell lines eliminates such caveats but requires a considerable

amount of time, especially if creating the DNA constructs and cell selection following transfec-

tion run into unforeseen problems. These two steps can be streamlined with some careful plan-

ning and creating an overarching strategy.

The first step is choosing a reliable cloning method. The traditional one, involving digestion

with restriction enzymes and ligation with DNA ligase strongly depends on the target’s

sequence; the efficiency of the procedure is highly variable and establishing a universal proto-

col is quite difficult. Sequence-independent or recombination based cloning methods like In-

Fusion, Gibson assembly, PIPE (polymerase incomplete primer extension) or SLIC (sequence

and ligation independent cloning) overcome these difficulties [4, 5, 6, 7, 8, 9].

The second step is to use parental cell lines that have been pre-engineered to improve geno-

mic integration of the transgene [10, 11, 12]. One commonly used solution is site-specific

recombination employing the FLP recombinase (S1 Fig) [13, 14, 15]. In this approach, which

is commercially available from Thermo Fisher Scientific as the Flp-In System, the genome of

the parental cells contains an FRT sequence (FLP recombination target), which is recognized

by the yeast FLP recombinase. The gene of interest is cloned into a plasmid that contains a

non-functional antibiotic resistance gene, devoid of a promoter and the initiation codon.

Upon FLP-mediated recombination, the plasmid DNA is inserted into the chromosome in

such a way that the coding sequence of the new selection marker is substituted for that of the

old one. As a result the cells lose one antibiotic resistance and gain another (S1 Fig).

When generating transgenic cell lines, a common concern is the cells’ isogenicity, i.e. hav-

ing the transgene integrated in the same locus. With random integration of a plasmid an iso-

genic cell line is obtained by selecting a single cell and growing it for an appropriate time. This

leads to a monoclonal cell line. Usually several clones must be expanded and tested to ensure

that the integration event results in expression of the desired protein and that no relevant side
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effects of the integration have arisen. Since parental Flp-In cells are isogenic to begin with, the

FRT site occupying the same locus in all cells, clonal selection can be omitted, which greatly

simplifies the procedure. Furthermore, monoclonal lines can suffer from occasional genome

rearrangements that occur in cells cultured in vitro, which could lead to substantial differences

between lines [16, 17]; in polyclonal cell lines the effect is diluted across the population. In all,

establishing of stable cell lines with the help of the Flp-In approach is much more straightfor-

ward than the traditional approach, where a plasmid is randomly integrated into the genome.

Several cell lines compatible with the Flp-In system are available [15, 18, 19, 20], including

commercial ones. Among them are HeLa and 293 [21, 22, 23, 24], which are the most fre-

quently used non-primary cell lines in basic science and biotechnology [25]. Plenty of detailed

transcriptomic and genomic data have been acquired with HeLa and 293 cells, providing rich

context for interpretation of new results [25, 26, 27, 28, 29, 30, 31]. However, it should be

noted that the Flp-In system is not limited to currently available Flp-In competent cells, an

FRT sequence can be introduced into genomes other cell lines.

Importantly, expression of the transgene can be driven by inducible promoters, allowing a

degree of control over the level, time of expression and its onset. Several inducible systems are

used in mammalian cells [32, 33], including ones which respond to ponasteron A (ecdysone

analogue) [34, 35, 36], IPTG [37, 38, 39] or tetracycline [40]. The system that we implement,

commercially available from Invitrogen (T-REx), utilizes parts of the bacterial tetracycline

resistance operon: the repressor protein (TetR) and the operator element found in the pro-

moter of the operon’s structural genes [41]. The operator sequence is inserted into the trans-

gene promoter, where it recruits the repressor protein. This results in constitutive repression

of transcription, which is alleviated by tetracycline [42, 43, 44]. Other tetracycline-dependent

systems employ fusions of TetR with a transcriptional activator or repressor and allow for posi-

tive (TetON) as well as negative (TetOFF) regulation of transgene expression [45].

We have established a straightforward method to generate Flp-In-based cellular models for

functional studies of human proteins. We have created and validated a robust series of vectors

designed for an efficient cloning strategy that enables cheap and easy generation of DNA con-

structs, and we have combined the efficient cloning with the Flp-In T-REx system for stable

generation of inducible cell lines. The cloning procedure has been successfully applied to more

than 500 DNA constructs, most of which were obtained in the first attempt. Our vectors facili-

tate localization studies, protein purification, in vitro and in vivo protein interaction studies

(co-IP, BiFC, FRET), protein dynamics studies (FRAP, photoactivation, etc.) and studies that

involve RNA tethering. We have analysed transgene expression over time in order to provide a

guideline for future experiments. We also compare the utility of two commonly used inducers

for tetracycline-responsive promoters, namely tetracycline and doxycycline.

A subset of our vectors enables inducible downregulation of the endogenous gene of inter-

est and concomitant expression of its protein product from an ectopic allele. This approach

can be useful e.g. for functional validation of newly identified mutations. We used these vectors

to establish a cellular model for investigation of the 5’-3’ exoribonuclease XRN2. Deep RNA

sequencing analysis of cells devoid of the XRN2 ribonucleolytic activity revealed that this activ-

ity is required for transcriptional termination. Our detailed protocols will allow smooth trans-

fer of this strategy to other laboratories.

Materials and methods

Vector construction

pKK and pKK-RNAtag vectors were constructed by modifying pcDNA5/FRT/TO (Thermo

Fisher Scientific); pKK-BI16, pKK-RNAi, pKK-BiFC and pKK-FRET vectors were constructed
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by modifying BI16 (a kind gift from Ed Grabczyk), which is in turn derived from pcDNA5/

FRT/TO [46]. Standard cloning and SLIC methods were used. Coding sequences of fluorescent

proteins and BirAR118G were PCR-amplified from plasmids acquired from Addgene (ID

22010, 22011, 27793, 27795, 27798, 36047, 56172, 62383, 74252, 74279), deposited by: Kyle

Roux, Jonathan Weissman, Steven Vogel, Michael Lin, Michael Davidson, Chang-Deng Hu.

The MBP tag sequence came from MS2MBP plasmid [47]. The 3xMS2 stem-loop sequence

came from pAdML-M3 [48] and the 24xMS2 stem-loop sequence came from pCR24MS2SL–a

kind gift of Witold Filipowicz. The N-terminator peptide sequence came from plasmids

described previously [49]. All vector sequences are presented in S1 Supporting Information

(annotated GenBank format) as well as will be available on our lab’s website, http://adz.ibb.

waw.pl (SnapGene format). Vectors will be made available from Addgene.

Sequence and ligation independent cloning (SLIC)

A simplified SLIC protocol was applied [7]. Detailed description of the SLIC protocol and

instructions for using the pKK-RNAi backbone can be found in S2 and S3 Supporting Infor-

mation, respectively. Sequences of synthetic DNA (primers and miRNA cassettes) used for

construction of plasmids applied in validation experiments are shown in S4 Supporting

Information.

Cell culture

HeLa Flp-In T-REx (a kind gift from Matthias Hentze) [19] and 293 Flp-In T-REx cells

(R78007, Thermo Fisher Scientific) were cultured in Dulbecco’s Modified Eagle’s Medium

(Gibco) supplemented with 10% fetal bovine serum (FBS; standard FBS hereafter) (Gibco) at

37˚C in a humidified 5% CO2 atmosphere. Where indicated, certified tetracycline-free FBS

(Clontech and Biochrom GmbH) was used instead of standard FBS. The identity of cells was

confirmed by DSMZ (Germany).

Gene expression inducers

Tetracyline (550205, Thermo Fisher Scientific) or doxycycline (D9891, Sigma) was added to

96% ethanol at a concentration of 1–5 mg/ml, rotated for 30 minutes at room temperature and

incubated overnight at -20˚C. On the following day the solutions were rotated again for 30

minutes at room temperature, filtered (0.22 μm) and diluted with ethanol to a final concentra-

tion of 0.1 mg/ml. This stock solution (0.1 mg/ml) was stored at -20˚C.

Stable cell line generation

Parental cells were plated onto 6-well plates and cultured for 24 hours. On the next day cells

were co-transfected using 2 μl of TransIT-2020 reagent (Mirus) with 0.3 μg of gene-of-interest

construct and 1.0 μg of pOG44 (Thermo Fisher Scientific). Twenty four hours after transfec-

tion, cells were replated to 60 mm dishes and subjected to selection with hygromycin B (50

and 175 μg/ml for 293 and HeLa cells, respectively) (Thermo Fisher Scientific) and blasticidin

(10 μg/ml) (Invivogen) for up to a month. A detailed day-by-day protocol is described in S5

Supporting Information. Where applicable, colonies were stained with crystal violet (0.5%

w/v).

Western blot

Total protein cell extracts were prepared as described previously [50]. Protein concentration

was determined by the Bradford method. The protein extracts, 20 μg per well, were separated
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by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS–PAGE) and transferred to

a nitrocellulose membrane (Protran, Whatman GmbH). Western blotting was performed

according to standard protocols using the following primary antibodies: anti-EGFP (dilution

1:1000, sc-9666, Santa Cruz Biotechnology), anti-THOC5 (dilution 1:1500, ab86070, Abcam),

anti-XRN2 (dilution 1:1000, sc-365258, Santa Cruz Biotechnology). Appropriate horseradish

peroxidase-conjugated secondary antibodies (dilution 1:10000, 401393, 401215, Calbiochem)

were detected by enhanced chemiluminescence (170–5061, BioRad) according to the manu-

facturer’s instructions.

Measurement of luciferase activity

293 Flp-In T-REx cells were stably transfected with the BI16 vector. Cells were plated on a

96-wells plate at 5,000 cell per well. Luciferase activity was measured with Dual-Glo Luciferase

Assay System (E2920, Promega) according to the manufacturer’s instructions. DTX880 plate

reader (Beckman Coulter) was used for measurement of luminescence. Luciferase activity was

normalized to the number of cells, which was assessed using AlamarBlue (see next section).

Cell viability assay

The assay was performed using the AlamarBlue reagent (DAL1100, Thermo Fisher Scientific)

according to the manufacturer’s instructions. Briefly, AlamarBlue (1/10 of culture volume)

was added to cell culture which was subsequently continued to grow for one hour. Fluores-

cence was measured with a DTX880 plate reader (Beckman Coulter) using 535/25 and 595/35

filters (excitation and emission, respectively).

Flow cytometry

Comparison of gene expression inducers. 293 stable cell lines were plated onto 6-well

plates at 250,000 cells per well. 24 hours later the cells were treated with indicated concentra-

tions of tetracycline or doxycycline. 24 hours after the cells were detached by trypsin treatment,

washed with PBS and subjected to western blot analysis. 293 EGFP-THOC5 were also sub-

jected to flow cytometry analysis using a BD FACSCalibur flow cytometer (BD Biosciences). A

gate was applied to the FSC/SSC plot to exclude dead cells and debris. 10,000 events were col-

lected. Data were analysed using the Flowing Software (www.flowingsoftware.com). Mean

fluorescent intensity of EGFP-positive cells was calculated.

Expression kinetics. HeLa stable cell lines were plated onto 24-well plates at 50,000 cells

per well. 24 hours later the cells were induced with tetracycline at a final concentration of 50

ng/ml in 6 hour intervals. 24 hours after the first induction the cells were detached by trypsin

treatment, diluted with PBS, and analysed an Attune NxT flow cytometer equipped with 488

nm and 561 nm laser diodes (Thermo Fisher Scientific). A gate was applied to the FSC/SSC

plot to exclude dead cells and debris. Doublet discrimination was performed based on the

FSC-A/FSC-H plot. 20,000 events were collected. Data were analysed using Attune NxT soft-

ware. Mean fluorescent intensity of EGFP-positive cells was calculated.

Validation of XRN2 stable cell lines. Cells were plated onto 6-well plates at 500,000 cells

per well and induced upon plating with tetracycline (25 ng/ml). 24 hours later the cells were

detached by trypsin treatment, washed with PBS, and analysed with an Attune NxT flow

cytometer equipped with 488 nm and 561 nm laser diodes (Thermo Fisher Scientific). A gate

was applied to the FSC/SSC plot to exclude dead cells and debris. Doublet discrimination was

performed based on the FSC-A/FSC-H plot. 20,000 events were collected. Data were analysed

using Attune NxT software.
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Fluorescence microscopy

Stable cell lines expressing XRN2 were analysed by the following protocol: 24 hours prior to

imaging cells were seeded on poly-L-lysine-coated (see below) 8-well Lab-Tek II Chambered

Coverglass culture vessels (155409, Thermo Fisher Scientific) at 30,000 per well and induced

with tetracycline (25 ng/ml). Before imaging, Hoechst 33342 dye was added to the medium (2

ng/ml) for 30 minutes to stain cell nuclei. After staining medium was replaced. Images were

collected using a FluoView1000 Olympus confocal system with a PLANAPO 60x/1.40 oil

immersion lens. Live cell imaging was performed in a temperature (37˚C) and CO2 (5%)

incubator.

All other stable cell lines were analyzed as follows: cells were plated onto 8-well Lab-Tek II

Chambered Coverglass culture vessels coated with poly-L-lysine at 7,000 (HeLa) or 10,000

(293) cells per well. Tetracycline at a final concentration of 25 ng/ml was added to the medium

upon plating. On the following day the cells were stained with Hoechst 33342 for 30 minutes

(final concentration of 50 ng/ml). Live imaging was done with an FV10i system (Olympus),

maintaining the cells at 37˚C in a humidified 5% CO2 atmosphere delivered from a The Brick

gas mixer (Life Imaging Services). Fluorescence was excited with 405 and 483 laser diodes and

collected with a SuperApochromat 60x/1.2 water immersion lens. Where applicable, Z stacks

were collected with 350 nm spacing.

Preparation of poly-L-lysine-coated coverglasses

Poly-L-lysine hydrobromide (P1274, Sigma) was dissolved in sterile water to 0.01% (w/v). The

solution was sterilized with a 0.22 micron filter before freezing aliquots at -20˚C. Before use,

the solution was thawed and 200 μl was added to each well of 8-well Lab-Tek II Chambered

Coverglass to fully coat the surface of each well. Coating was performed for 1 hour at 37˚C,

after that the solution was removed and coverglasses were dried at room temperature for 20

minutes under a laminar flow hood. The poly-L-lysine solution was collected and stored at

-20˚C for repeated use. Dried coverglasses were stored at room temperature or directly used

for cell seeding.

RNA isolation, library construction and deep-sequencing

Total RNA was isolated with the TRI Reagent (T9424, Sigma) according to the manufacturer’s

instructions. DNA contamination from 2 μg of nucleic acids was removed by 2 U of TURBO

DNase (AM2238, Ambion) in 20 μl of the supplied buffer in 37˚C for 30 min. RNA was

extracted with phenol-chloroform, precipitated with ethanol and resuspended in RNase free

water. Concentration was measured with NanoDrop 2000 Spectrophotometer (Thermo Fisher

Scientific). Prior to library preparation, to provide an internal performance control for further

steps, 1 μg of RNA was mixed with 4 μl of 1:99 diluted ERCC RNA Spike-In Control Mix 1

(4456740, Ambion). Subsequently, rRNA was depleted using Ribo-Zero Gold rRNA Removal

Kit (MRZG12324, Human/Mouse/Rat, Illumina) according to the manufacturer’s protocol.

RNA-seq libraries were constructed as previously described in Sultan et al., 2012 [51] with

minor modifications. Fragmentation and first strand cDNA synthesis were performed as in

TruSeq RNA Library Prep kit v2 protocol (Illumina, RS-122-2001, instruction number

15026495 Rev. D), using SuperScript III reverse transcriptase (18080–085, Thermo Fisher Sci-

entific). For second strand synthesis, reaction mixtures were supplemented with 1 μl of 5x

First Strand Synthesis Buffer (18080–085, Thermo Fisher Scientific), 15 μl 5x Second Strand

Synthesis Buffer (10812–014, Thermo Fisher Scientific), 0.45 μl 50 mM MgCl, 1 μl 100 mM

DTT, 2 μl of 10 mM dUNTP Mix (dATP, dGTP, dCTP, dUTP, 10 mM each, R0182, R0133,

Thermo Fisher Scientific), water to 57 μl, 5 U E. coli DNA Ligase (M0205L, NEB), 20 U E. coli
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DNA Polymerase I (NEB, M0209L), 1 U RNase H (18021–071, Thermo Fisher Scientific), and

incubated at 16˚C for 2h. Further steps: purification, end-repair, A-tailing and adapter ligation

were performed as described in the previously mentioned TruSeq kit protocol with one modi-

fication: the first purification eluate was not decanted from the magnetic beads and subsequent

steps were performed with the beads in solution. Instead of a new portion of magnetic beads,

an equal volume of 20% PEG 8000 in 2.5 M NaCl was added and the DNA bound to the beads

already present in the mixture. After the second clean up procedure after adapter ligation, the

supernatant was separated from the beads and treated with USER Enzyme (M5505L, NEB) in

1x UDG Reaction Buffer (M0280S, NEB) at 37˚C for 30 min. The digestion step ensures that

the second strand synthetized with dUTP instead of dTTP is removed from cDNA, resulting

in strand-specific libraries. The product was amplified using 1 U of Phusion High-Fidelity

DNA Polymerase (F530L, Thermo Fisher Scientific) in 1x HF Buffer supplemented with 0.2

mM dNTP Mix, and the following primers: PP1 (5’-AATGATACGGCGACCACCGAGATCTA
CACTCTTTCCCTACACGA-3’), PP2 (5’-CAAGCAG AAGACGGCATACGAGAT-3’). TruSeq

kit protocol temperature scheme with 12 amplification cycles and subsequent purification pro-

cedure was applied. Enriched library quality was verified using 2100 Bioanalyzer and High

Sensitivity DNA kit (5067–4626, Agilent). The libraries’ concentration was estimated by qPCR

means with KAPA Universal Library Quantification Kit (KK4824, Kapa Biosystems), accord-

ing to the supplied protocol. Sequencing was carried out on an Illumina NextSeq 500 sequenc-

ing platform, using NextSeq 500 High Output Kit (150 cycles) (FC-404-1002, Illumina) and

standard libraries denaturation and pair-end sequencing procedures (Instructions: 15048776

Rev. D, 15046563 Rev. F) of 2x75 cycles.

Analysis of deep sequencing data

Strand-specific RNAseq libraries (dUTP RNA) were prepared in triplicate for each condition

and sequenced in the 75-nt paired-end mode to the average depth of 10 million reads (GEO

accession number: GSE99421, security token: ghmheeqytvkfbof, https://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc=GSE99421). Reads were mapped to the reference human genome

(GRCh38) using the STAR short read aligner [52]. Quality control, read processing and filter-

ing, visualization of the results and counting of reads for the Genecode v22 comprehensive

annotation were performed using custom scripts using elements of the RSeQC, BWtools,

BEDtools and SAMtools packages. Transcripts were annotated using StringTie [53]. The

merged unmodified 293 Flp-In T-REx cells annotation was used to perform meta-gene analy-

sis of the transcriptional read-through in wild-type and mutant XRN2 cells. Cumulative,

strand-specific signal was calculated across 250 nt windows placed directly downstream to 3’

ends of highly expressed (TPM> 10), spliced transcripts and normalized to the signal within

the last 250 nt of the analyzed transcripts.

Results and discussion

Construction of SLIC-competent vectors

A new set of vectors was designed to fulfil four requirements: 1) compatibility with sequence-

independent, straightforward and efficient cloning; 2) minimal number of primers required

for cloning into different vectors; 3) compatibility with FLP-mediated stable cell line genera-

tion; 4) regulated transgene expression. To achieve these goals we modified the pcDNA5/FRT/

TO vector (Thermo Fisher Scientific) that enables FLP-mediated cell line generation and con-

tains a tetracycline-regulated CMV promoter to drive expression of the cloned CDS (S1 Fig).

The aim of our modification was to make the vector suitable for the SLIC approach (sequence

and ligation independent cloning) [4]. The multiple cloning site of the vector was modified by
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introducing two 21-nucleotide long sequences, the SLIC arms (Fig 1). These fragments are

complementary to the ends of the linear DNA fragment to be cloned. They encompass TEV-L

and TEV-R sequences which encode a 7 amino acid long peptide which is recognized by the

tobacco etch virus (TEV) protease [54] (Fig 1A).

Depending on the vector, the SLIC arms lie upstream or downstream of a tag coding

sequence (Fig 1B; maps of all reported vectors are presented in S6 Supporting Information).

Several vectors with different tags were constructed: 1) short tags, e.g. FLAG; 2) fluorescent

proteins, e.g. EGFP; 3) humanized biotin ligase–BirA, which can be used for identification of

proximal and interacting proteins; 4) other proteins, e.g. protein A or maltose binding protein

(MBP), for which several molecular tools are described (vectors pKK, Table 1 and S7 Support-

ing Information). The coding sequence of the protein of interest is inserted between the SLIC

arms. For the N-terminal fusions the initiation codon originates from the vector and the termi-

nation codon is introduced within the cloned fragment, and vice-versa in the case of C-termi-

nal fusions. The same forward primer can be used to create both N- and C-terminal fusions,

however, a specific reverse primer is required (with or without the stop codon). Thus, only 3

primers are sufficient to prepare constructs encoding a protein of interest in N- or C-terminal

fusion with different tags and each tag encoded by pKK-series vectors can be cleaved off

with the TEV protease. Importantly, synonymous codons were used for designing of TEV-L

and TEV-R sequences to mitigate the possibility of intramolecular homologous DNA

recombination.

To extend the variety of possible functional analyses we also devised a vector with a bidirec-

tional promoter which enables simultaneous, inducible expression of two introduced genes

(Fig 1C). To this end we used the BI16 plasmid [46], a derivative of pcDNA5/FRT/TO with the

original CMV promoter duplicated back-to-back. The tetracycline operator sequence was

maintained so that transcription in both directions is regulated by the tetracycline repressor.

We removed the luciferase coding sequences from BI16 and redesigned the cloning sites. As

a result, we created a series of pKK-BI16 vectors (Table 1 and S7 Supporting Information).

They utilize the cloning strategy described above on one side of the bidirectional promoter

and have a traditional multiple cloning site on the other (Fig 1C, bottom diagram). These vec-

tors should significantly simplify construction of plasmids for expression of two independent

coding sequences. The pKK-BI16 vectors were further modified to obtain the pKK-RNAi,

pKK-BiFC, and pKK-FRET vector series (Table 1 and S7 Supporting Information), which are

intended for functional studies and in vivo protein interaction studies using bimolecular fluo-

rescence complementation or Förster resonance energy transfer approach.

Efficiency of the cloning procedure

The cloning procedure starts with PCR amplification of a DNA fragment to be cloned using

primers with overhangs complementary to the SLIC arms in the vector (Fig 2). The PCR prod-

uct has to be purified from nucleotides, which inhibit the subsequent SLIC reaction. The puri-

fication method depends on the specificity of the PCR reaction; all unspecific PCR products

must be removed. After purification the product is mixed with a linearized vector and treated

with T4 DNA polymerase. In the absence of nucleotides the polymerase trims 3’ ends of DNA,

producing sticky ends both in the vector and the PCR product (Fig 2). The sticky ends hybrid-

ize and form a nicked, potentially gapped, DNA molecule. After introduction to bacteria such

lesions are repaired by the host system (Fig 2).

In the course of our studies we used this strategy to clone 155 different protein coding

sequences to pKK series vectors, some with several different tags, bringing the total number of

constructed plasmids to 456, a number high enough to assess the efficiency of our strategy. In
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Fig 1. The pKK vector series. (A) Nucleotide sequences of the TEV-L and TEV-R. Translation to protein and TEV

protease cleavage site are shown. Shaded letters indicate nucleotides common to both sequences. (B) Cloning sites of

selected pKK vectors. Potentially useful unique restriction sites are marked. For all pKK vectors BshTI and NheI

restriction enzymes are used for vector linearization before DNA cloning with the help of our universal SLIC protocol.

All pKK vectors have promoters with the TetR repressor binding site. (C) Example of a pKK-BI16 vector. Map of

pKK-BI16-TEV-mCherry vector and its cloning region (bottom diagram). Useful unique restriction sites are marked.

The tetracycline operator sequences are present in all vectors of pKK-BI16 series, thus, transcription in both directions

is regulated by the tetracycline repressor.

https://doi.org/10.1371/journal.pone.0194887.g001
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Table 1. List of created vectors.

Vector name Tag position Features encoded References

pKK Vector Series

pKK-NoTag - - - only SLIC arms (TEV-L and TEV-R) - - -

pKK-FLAG-TEV N-terminus FLAG tag [55]

pKK-HA-TEV N-terminus HA tag derived from a fragment of human influenza virus hemagglutinin [56]

pKK-FLAG-BirA-TEV N-terminus humanized biotin ligase, FLAG-tagged [57], [58];

Addgene ID: 36047

pKK-MBP-TEV N-terminus maltose binding protein [47], [59], [60]

pKK-mTagBFP-TEV N-terminus blue fluorescent protein (λExc = 402 nm, λEm = 457 nm) [61], [62]

Addgene ID: 62383

pKK-mCerulean-TEV N-terminus cyan fluorescent protein (λExc = 433 nm, λEm = 475 nm) [63], [64], [65]

Addgene ID: 27795

pKK-mVenus-TEV N-terminus green fluorescent protein (λExc = 515 nm, λEm = 528 nm) [64], [65], [66]

Addgene ID: 27793

pKK-mAmber-TEV N-terminus non-absorbing, non-emitting Venus mutant used as negative control for FRET

measurements

[64], [65]

Addgene ID: 27798

pKK-EGFP-TEV N-terminus green fluorescent protein (λExc = 488 nm, λEm = 507 nm) [67], [68]

pKK-mEGFP-TEV N-terminus green fluorescent protein (λExc = 488 nm, λEm = 507 nm) [69], [70]

pKK-mClover3-TEV N-terminus green fluorescent protein (λExc = 506 nm, λEm = 518 nm) [71]

Addgene ID: 74252

pKK-mCherry-TEV N-terminus red fluorescent protein (λExc = 587 nm, λEm = 610 nm) [72]

pKK-mRuby3-TEV N-terminus red fluorescent protein (λExc = 558 nm, λEm = 592 nm) [71]

Addgene ID: 74252

pKK-mCardinal-TEV N-terminus red-shifted fluorescent protein (λExc = 604 nm, λEm = 659 nm) [73]

Addgene ID: 56172

pKK-CyOFP1-TEV N-terminus orange-red fluorescent protein which has large Stokes shift

λExc = 497, 523 nm, λEm = 589 nm

(excitation is quite efficient in the 485–525 range)

[74]

Addgene ID: 74279

pKK-Dendra2N-TEV N-terminus green fluorescent protein that can be irreversibly photoconverted to a red (mCherry-

like) state by irradiation with 405 nm or 440 nm light

green state: λExc 490 = nm, λEm = 507 nm;

red state: λExc 553 = nm, λEm = 573 nm

[75], [76], [77]

pKK-TEV-FLAG C-terminus see above

pKK-TEV-3XFLAG C-terminus see above [78], [79], [80]

pKK-TEV-HA C-terminus see above

pKK-TEV-BirA-FLAG C-terminus see above

pKK-TEV-MBP C-terminus see above

pKK-TEV-ProteinA C-terminus two IgG binding domains of Staphylococcus aureus Protein A [81], [82]

pKK-TEV-mTagBFP C-terminus see above

pKK-TEV-mCerulean C-terminus see above

pKK-TEV-mVenus C-terminus see above

pKK-TEV-mAmber C-terminus see above

pKK-TEV-EGFP C-terminus see above

pKK-TEV-mEGFP C-terminus see above

pKK-TEV-mClover3 C-terminus see above

pKK-TEV-mCherry C-terminus see above

pKK-TEV-mRuby3 C-terminus see above

pKK-TEV-mCardinal C-terminus see above

pKK-TEV-CyOFP1 C-terminus see above

pKK-TEV-Dendra2N C-terminus see above

(Continued)
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the analysis of cloning efficiency we considered the kind of PCR template (plasmid versus

cDNA) and the number of constructs produced that we were able to obtain easily. The first

attempt was successful in 99% of cases with a plasmid template and in 75% of cases with a

cDNA template. Overall 84% of constructs were successfully obtained on the first attempt and

Table 1. (Continued)

Vector name Tag position Features encoded References

pKK-BI16 Vector Series

pKK-BI16-TEV-mCherry C-terminus one protein is expressed with mCherry fusion tag, cleavable by TEV protease; second

tag introduced by user

pKK-BI16-FLAG-

3C-ORF1_mClover3-TEV-ORF2

both at N-

terminus

one protein expressed with FLAG fusion tag, cleavable by 3C protease (PreScission)

or enterokinase; second protein expressed with mClover3 fusion tag, cleavable by

TEV protease

pKK-BI16-ORF1-3C-

mRuby3_ORF2-TEV-mClover3

both at C-

terminus

one protein expressed with mRuby3 fusion tag, cleavable by 3C protease

(PreScission); second protein expressed with mClover3 fusion tag, cleavable by TEV

protease

pKK-BI16-ORF1-3C-FLAG_ORF2-TEV-

mClover3

both at C-

terminus

one protein expressed fusion with FLAG fusion tag, cleavable by 3C protease

(PreScission); second protein expressed with mClover3 fusion tag, cleavable by TEV

protease

pKK-BiFC Vector Series

pKK-BiFC-Venus C-terminus fragments of Venus (VN173, VC155) become fluorescent upon reconstitution [83], [84], [85]

Addgene ID: 22010

and 22011

pKK-FRET Vector Series

pKK-FRET-ORF1-

3C-Cerulean_ORF2-TEV-Venus

both at C-

terminus

one protein expressed with Cerulean fusion tag, cleavable by 3C protease

(PreScission); second protein expressed with Venus fusion tag, cleavable by TEV

protease

pKK-FRET-ORF1-

3C-Cerulean_ORF2-TEV-Amber

both at C-

terminus

one protein expressed with Cerulean fusion tag, cleavable by 3C protease

(PreScission); second protein expressed with Amber fusion tag, cleavable by TEV

protease

pKK-RNAi Vector Series

pKK-RNAi-nucEGFPmiR-FLAG-TEV N-terminus miRNA expression cassette with nuclear EGFP marker;

N-terminal FLAG tag

pKK-RNAi-nucEGFPmiR-mCherry-TEV N-terminus miRNA expression cassette with nuclear EGFP marker;

N-terminal mCherry tag

pKK-RNAi-nucCHERRYmiR-FLAG-TEV N-terminus miRNA expression cassette with nuclear mCherry marker;

N-terminal FLAG tag

pKK-RNAi-nucCHERRYmiR-EGFP-TEV N-terminus miRNA expression cassette with nuclear mCherry marker;

N-terminal EGFP tag

pKK-RNAi-nucEGFPmiR-TEV-FLAG C-terminus miRNA expression cassette with nuclear EGFP marker;

C-terminal FLAG tag

pKK-RNAi-nucEGFPmiR-TEV-mCherry C-terminus miRNA expression cassette with nuclear EGFP marker;

C-terminal mCherry tag

pKK-RNAi-nucCHERRYmiR-TEV-FLAG C-terminus miRNA expression cassette with nuclear mCherry marker;

C-terminal FLAG tag

pKK-RNAi-nucCHERRYmiR-TEV-EGFP C-terminus miRNA expression cassette with nuclear mCherry marker;

C-terminal EGFP tag

pKK-RNAtag Vector Series

pKK-RNAtag-3UTR-24MS2SL 3’-terminus 24 repeats of the MS2 stem-loops to be attached to the 3’ end of RNA expressed from

the plasmid. RNA can be localized in cells upon cotransfection with fusion of MS2

with fluorescent protein.

pKK-RNAtag-nTER-HA-TEV N-terminus short arginine-rich N-terminal domain (amino acids 1–22) of the bacteriophage λ
transcriptional antiterminator protein N, a 12 amino-acid linker and HA peptide

[49]

A full description of the vectors can be found in S7 Supporting Information. In all vectors BshTI and NheI restriction enzymes are used for vector linearization before

SLIC cloning according to our universal protocol. Expression of transgenes in all vectors is under control of a tetracycline repressor regulated promoter.

https://doi.org/10.1371/journal.pone.0194887.t001
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the remaining 16% were not obtained at all. This failure resulted mostly from unsuccessful

PCR amplification of the insert (59 cases out of 72 unsuccessful cloning attempts). Thus, some

constructs require additional optimization steps to produce the insert. Nevertheless, the analy-

sis demonstrates the high efficiency of our SLIC strategy and points to insert preparation as

the limiting step of the procedure.

Fig 2. SLIC-based DNA cloning strategy. See main text for detailed description. RE–restriction enzymes used for

vector linearization. These are BshTI and NheI in our protocol for universal SLIC. EGFP is an example of tag that can

be used. A detailed protocol for the SLIC procedure can be found in S2 Supporting Information.

https://doi.org/10.1371/journal.pone.0194887.g002
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New vectors are competent for stable cell line generation

We set out to examine whether the modifications to the pcDNA5/FRT/TO backbone interfere

with stable cell line generation. In order to establish a baseline for FLP-mediated integration

efficiency, we transfected the 293 Flp-In T-REx parental cell line with the original pcDNA5/

FRT/TO vector and counted the number of colonies that originated from cells that had under-

gone FRT-targeted plasmid integration and became resistant to the selection antibiotic. We

tested a range of selection antibiotics concentrations as well as the amounts of the targeting

vector used for transfection (Fig 3A). We found that decreasing the antibiotic concentration

yields more colonies, while providing enough selective pressure to kill off non transfected cells

(Fig 3A). As for DNA amount, we found that there was no effect on the number of colonies

obtained between the two tested concentrations (Fig 3A).

Having optimized transfection and selection conditions, we compared stable transfection

efficiency between the original vector and our vectors bearing N- or C-terminal EGFP tags

(pKK-EGFP-TEV and pKK-TEV-EGFP, respectively). We found that our vectors produced a

lower number of colonies (Fig 3B), however, this number is enough to establish functional sta-

ble cell lines, as evidenced by our further experiments (see below). We also observed that the

Fig 3. Efficiency of stable cell line generation. (A) Influence of plasmid quantity and selection stringency on the

number of colonies obtained following stable transfection of 293 Flp-In T-REx cells. 1.0 μg of pOG44 was mixed with

the indicated amounts of pcDNA5/FRT/TO and used for transfection. Cells were selected by treatment with the

indicated concentration of hygromycin B and constant concentration of blasticidin S (10 μg/ml). Colonies were

stained with crystal violet. (B) Comparison of stable transfection efficiency with pcDNA5/FRT/TO or its pKK

derivatives. Cells were transfected with 300 ng of indicated plasmids and 1.0 μg of pOG44 and subjected to selection

with hygromycin B (50 μg/ml) and blasticidin S (10 μg/ml).

https://doi.org/10.1371/journal.pone.0194887.g003
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number of colonies obtained for a given plasmid can vary significantly from transfection to

transfection (72 versus 46 colonies for pcDNA5/FRT/TO in Fig 3A and 3B, respectively),

which was not due to any obvious reasons like different plasmid preparations or number of

cells subjected to transfection.

Subsequently, we verified that DNA constructs created from our vectors are suitable for sta-

ble transfection. For this purpose, we obtained several constructs encoding EGFP-tagged pro-

teins with different subcellular localization and used them for stable transfection of 293 and

HeLa parental cell lines. We studied the localization of the tagged proteins by live cell imaging

(Fig 4 for HeLa and S2 Fig for 293). In agreement with previous reports [86], [87], [88], numa-

trin and fibrillarin each localized to nucleoli (Fig 4 and S2 Fig). Potential differences in the

respective sub-nucleolar localizations exhibited by each protein were consistent with previous

reports [86], [87], [88]. Coilin produced foci within the nucleus (Fig 4 and S2 Fig) consistent

with the expected localization of the protein to Cajal bodies [89], [90]. In cells that express the

fusion to higher levels a diffuse nuclear localization was observed which is in agreement with

previous report showing that overexpression of coilin disrupts Cajal bodies [91]. A punctate

signal in the cytoplasm was observed for centrin (Fig 4 and S2 Fig), a known component of the

centrosome [92], [93]. The proliferating cell nuclear antigen protein (PCNA), which functions

as a scaffold for the DNA replication machinery, localized to replication foci (Fig 4 and S2

Fig), as expected [94]. THOC5, a component of the THO complex involved in transcription

and RNA export [95], was found to localize to the nucleus regardless of the tagged end (Fig 4

and S2 Fig).

Regulation of transgene expression

The strong CMV promoter, often used to drive transgene transcription and present in our vec-

tors, ensures high transcription levels. This in turn can lead to massive overexpression [96],

which may result in artefacts such as protein mislocalization; hence it is of great importance to

be able to regulate transgene expression. Here, we use one of the most common inducible gene

expression systems, wherein transcription is controlled by elements of the tetracycline resis-

tance operon, which relies on tetracycline or its derivative, doxycycline, as inducers [97]. Nota-

bly, this regulatory system not only allows switching the transgene on or off, it also grants a

certain degree of quantitative control [96], [97]. To determine to what extent gene expression

can be regulated, we induced transgenes with a range of concentrations of tetracycline and

doxycycline as they are both widely used in the literature (Fig 5).

Stable 293 cell lines producing different proteins fused to EGFP at the N-terminus were

treated with the inducer for 24 hours and collected for western blot analysis. The levels of

fusion proteins were assessed using anti-EGFP antibodies (Fig 5A). We found that the level of

the protein of interest was the same at all doxycycline concentrations tested, whereas tetracy-

cline yielded a dose-dependent, albeit not always linear response (Fig 5A). The maximal level

of expression induced with tetracycline was similar to that observed for cells treated with the

lowest concentration of doxycycline (Fig 5A). This suggested that within the tested concentra-

tions range, tetracycline enables better fine-tuning of transgene expression. To examine this

issue further, we analysed expression of THOC5 in N- or C-terminal fusion with EGFP (Fig

5B–5D).

We performed western blot analysis with THOC5- and EGFP-specific antibodies to com-

pare levels of endogenous and tagged protein (Fig 5B). In addition, we took advantage of the

fluorescent tag to measure transgene expression with flow cytometry (Fig 5C and 5D). Unlike

western blot, where the measured signal reflects the population average, flow cytometry gives

quantitative output at the single cell level, and therefore can extract information on population
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homogeneity and discern whether the overall increase in steady-state levels of a protein results

from a small increase across the whole population or a large increase in a fraction of cells. The

cytometry results were in line with the western blot data: a dose-dependent response was

observed for tetracycline but not doxycycline (Fig 5B–5D). Importantly, we found that

Fig 4. Intracellular localization of EGFP tagged proteins. Live cell imaging of HeLa-derived stable cell lines

expressing EGFP fusions of the indicated proteins. Nuclei were stained with Hoechst 33342.

https://doi.org/10.1371/journal.pone.0194887.g004
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expression changes on a per cell basis rather than per population basis, that is the growing con-

centration of tetracycline causes each cell to express more protein rather than causing a grow-

ing fraction of the population to turn on expression at maximum capacity (Fig 5C and 5D).

Within the tested concentration range, our results indicate that tetracycline is superior to

doxycycline for studies that require adjustment of transgene expression. On the other hand, if

massive overproduction is needed, doxycycline has the advantage. It is worth noting that for

some transgenes it may be difficult to tune their expression to the levels comparable to their

Fig 5. Comparison of gene expression inducers. (A-D) Cells were treated with different concentrations of tetracycline or doxycycline and gene

expression was monitored by western blot (A: anti-EGFP, B: anti-THOC5 antibodies, Ponceau S staining of the membrane was performed as a loading

control) or flow cytometry (C, D: EGFP fluorescence). (D) Quantitative representation of data shown in panel C. Data are represented as mean ± SD

(n = 3). (E) Analysis of the kinetics of expression of the indicated transgenes. Cells were treated with tetracycline, collected after indicated time and

analyzed by flow cytometry. Mean fluorescent intensity of EGFP positive cells is shown (mean ± SD, n = 3).

https://doi.org/10.1371/journal.pone.0194887.g005
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endogenous counterparts. For example, we were able to achieve the endogenous level of

expression for THOC5-EGFP but not for EGFP-THOC5 (Fig 5B).

The difference in biological activity of the examined inducers can be related to their differ-

ent affinity to TetR [43] and/or their different stability [98]. We tested differently aged tetracy-

cline solutions and found that while induction efficiency deteriorates with prolonged storage,

reliable, reproducible results can be obtained with solutions as old as 40 days (S3 Fig). More-

over, we examined a wide range of tetracycline and doxycycline concentrations to see if they

affect 293 cell viability (S4 Fig). We did not found deleterious effect of tetracycline or doxycy-

cline treatment, even at concentrations as high as 10 μg/ml, which is two orders of magnitude

above the normal working range of up to 0.1 μg/ml (S4 Fig).

Next, we performed a time-course experiment in order to monitor transgene expression

over time. To this end, we used HeLa stable cell lines expressing EGFP-tagged proteins and

monitored them using flow cytometry, so that population homogeneity could also be tracked.

Four different transgenes were analysed (Fig 5E). Expression of all studied transgenes is evi-

dent after 6 hours of induction and increases with time until the maximum is achieved at

about 24 hours after induction (Fig 5E). During that time cells respond at different rates, i.e.

population homogeneity can vary, but by the time maximum expression is achieved, maxi-

mum homogeneity is as well. Notably, for all tested cells lines, a fraction of cells that do not

express the transgene exists. This fraction appears to depend solely on the transgene under

investigation and can be minimized by cell sorting, but rebuilds over time (data not shown).

The use of an inducible gene expression system is of great importance for studies of trans-

genes, the expression of which can affect cell fitness and viability. In these cases, it is crucial to

keep transgene expression as low as possible under non-induced state. A common concern is

that serum can contaminate culture media with tetracycline or its derivatives, and it is thus

usually recommended that specially tested tetracycline-free grade (Tet-free) FBS is used. Such

serum is much more expensive than regular one and can greatly increase the cost of prolonged

or large-scale culture. We decided to test the alleged superiority of Tet-free FBS to regular

FBS in terms of the basal level of transgene expression. To this end, we generated stable 293

Flp-In T-REx cells expressing firefly and renilla luciferase and assessed the activity of the

enzymes in uninduced cells cultured in media prepared with regular FBS or certified Tet-free

FBS obtained from two different vendors. As a positive control, we treated cells with three dif-

ferent concentrations of tetracycline, including 25 ng/ml, which resulted in a maximum trans-

gene expression in our previous experiments. We did not observe any differences in basal

expression of the transgenes (Fig 6), but we did find differences in induced expression: cells

cultured in medium supplemented with regular FBS achieved higher transgene expression

upon induction with 5 and 25 ng/ml tetratycline than likewise treated cells cultured in medium

containing Tet-free FBS. The obtained results suggest that there is no clear benefit from using

Tet-free FBS in terms of leaky expression. However, it is important to note that FBS can vary

from batch to batch and it is prudent to pre-test every lot of standard FBS for its suitability for

tetracycline-based expression systems.

Vectors for simultaneous expression of mRNA and miRNA

One of the most important approaches in discovering gene function is its downregulation so

that the respective protein product is depleted. This can be achieved by several experimental

strategies that differ in downregulation efficiency and the effort required. A complete inactiva-

tion of a gene by its deletion or insertional inactivation has a strong advantage in terms of

downregulation but, if the gene of interest is essential, requires a conditional–or inducible–

knock-out, which is quite laborious. Alternatively, expression of the gene can be downregulated
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by RNA interference (gene silencing). This is a straightforward strategy, in which short RNA

molecules complementary to a particular mRNA target it for degradation or repress its transla-

tion [99]. Unlike gene disruption, this approach can target specific isoforms but has a major

drawback in the risk of off-target activity of the short RNA [100]. Therefore, in this kind of

experiments it is very important to introduce controls that confirm that the observed pheno-

types are bona fide effects of downregulation of the gene of interest. One such control is a “res-

cue” sample, in which an ectopic, RNAi-resistant allele of the gene in question is expressed,

while the endogenous one is silenced. A simple rescue sample is obtained by transient co-trans-

fection with siRNA and plasmid DNA, however, this may suffer from a range of problems, like

irreproducibility, imperfect co-transfection, and transfection-related cell stress.

To create a straightforward tool for RNAi-based rescue experiments, we designed the

pKK-RNAi vector series (Table 1, Fig 7A), derived from pKK-BI16. The logic behind these

vectors was previously described by us in studies concerning the catalytic subunits of the exo-

some complex [101], [102] and other nucleases [103], [104]. We use plasmids with a bidirec-

tional promoter in order to concurrently express two genes: 1) a cassette encoding miRNAs

that target the gene of interest, and 2) an allele of the gene of interest with the protein coding

sequence harbouring silent mutations that make the mRNA insensitive to the miRNAs (Fig

7B). As a result, the endogenous alleles of the gene are silenced, whereas the ectopic copy is

expressed (Fig 7B). Furthermore, the miRNAs are cotranscriptionally expressed with a fluores-

cent protein reporter so that analysis can be narrowed down to cells that express miRNA, pro-

vided that applied assay can distinguish cells expressing reporter (Fig 7).

The pKK-RNAi vectors apply a cloning procedure (S5 Fig and S3 Supporting Information)

that is simpler than the previous one [101], which involved multiple steps and was strongly

dependent on the target sequences. Both inconveniences were reduced as much as possible in

the new vectors. Notably, the place where the coding sequence of interest is inserted is com-

mon to all pKK vectors, so that, once prepared, an insert can be cloned into any vector. We

Fig 6. Influence of different FBS on transgene expression. 293 Flp-In T-REx cells stably transfected with a plasmid

encoding firefly and renilla luciferase under control of a TetR-regulated bidirectional promoter were cultured in

medium supplemented with different fetal bovine sera (FBS), and transgene expression was assessed by measurement

of luciferase activity. Two FBS certified for absence of tetracycline or its derivatives were compared to regular FBS.

Cells were treated with the indicated concentrations of tetracycline to measure induction response on different sera.

Luciferase activity was normalized to the number of cells, which was assessed using AlamarBlue. Data are represented

as mean ± SD.

https://doi.org/10.1371/journal.pone.0194887.g006
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also improved the utility of the miRNA expression reporter by adding the SV40 nuclear locali-

sation signal to the fluorescent reporter (Figs 7 and 8). It is now more concentrated and as

such easier to detect with fluorescent microscopy (stronger fluorescent signal per area unit),

and can be used as a nuclear marker which can be of great value for example for studies that

involve image analysis. If necessary, the fragment encoding the miRNA expression reporter

can be removed or substituted by restriction enzyme cloning.

We created several pKK-RNAi vectors with different miRNA reporters and fusion tags for

the protein of interest (Table 1 and S7 Supporting Information). So far we have used these vec-

tors to create 50 miRNA-encoding constructs, which were obtained by subcloning of the

miRNA cassette, for 27 genes (Table 2). 45 of these constructs were further modified by insert-

ing a CDS with silent mutations (Table 3). This step was performed by splice-PCR, which is

thoroughly described in Supplementary Data 4. The majority of constructs were obtained on

the first attempt (Tables 2 and 3), which highlights the high efficiency of our cloning procedure

(S5 Fig and S3 Supporting Information). All subcloning of miRNA cassettes required only one

attempt to obtain the correct construct (Table 2), whereas in the case of CDS cloning the first

attempt was successful almost 90% of the time (Table 3). Notably, the number of plasmids that

had to be sequenced to obtain the correct construct indicates that mutations introduced by

PCR are not the rate-limiting step (Tables 2 and 3).

To test the pKK-RNAi cellular model in functional studies we analysed the effect of depriv-

ing the cell of the catalytic activity of the nuclear 5’ to 3’ exoribonuclease XRN2. Catalytic

Fig 7. pKK-RNAi vectors as a tool for generation of a cellular model for functional studies. (A) Diagram of cloning regions. Potentially useful

unique restriction sites are marked. (B) Principles of the approach. Three levels of gene expression are shown. The plasmid integrated into a genome

contains: 1) a gene for miRNAs that target the mRNA of a gene of interest; 2) an allele of the gene of interest where the CDS contains silent mutations

so that it is insensitive to the miRNAs. As a result the endogenous version of the protein of interest is depleted whereas its ectopic form expressed. NLS

marks a nuclear localization signal.

https://doi.org/10.1371/journal.pone.0194887.g007
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Fig 8. Involvement of XRN2 in transcription termination. (A) Flow cytometry measurement of transgenes expression after 24 hours of induction

(EGFP tags XRN2, mCherry is a reporter of miRNA expression). (B) Confocal live cell imaging of EGFP tagged XRN2 and Hoechst 33342 stained

nuclei. (C) Western blot analysis of XRN2 protein with anti-XRN2 antibodies. Parental 293 cells and their derivatives analyzed in panel A and B were

treated with tetracycline for 72 hours and subjected to western blot. Ponceau S staining of the membrane was performed as a loading control. (D) Meta-

gene analysis of transcriptional read-through in wild-type and mutant XRN2 cells. Strand-specific read densities were averaged across 250-bp genomic

windows placed directly downstream of 3’ ends of highly expressed (TPM> 10), spliced transcripts. The signal is normalized to the average expression

detected in the last 250 nt of the analyzed transcripts (250-bp windows upstream to the expected termination site). The shaded part of the graph marks

transcripts downstream of transcription termination site (products of transcriptional read-through). It is important to note that lines representing RNA

steady-state levels overlay in the part of the graph which correspond to RNAs originating from the transcription upstream of the transcription

termination site. This is in contrast to the part of the graph which represent RNA resulting from the unsuccessful transcription termination (shaded

part of the graph).

https://doi.org/10.1371/journal.pone.0194887.g008

Table 2. Efficiency of the miRNA cassette subcloning into pKK-RNAi vectors.

Constructs attempted First attempt successful

(fraction)

Correct sequence on first clone checked

(fraction)

50 50

(100%)

50

(100%)

https://doi.org/10.1371/journal.pone.0194887.t002

Table 3. Efficiency of CDS cloning into pKK-RNAi vectors.

Constructs attempted First attempt at CDS assembly successful

(fraction)

First attempt at SLIC reaction successful

(fraction)

Correct sequence on n-th clone checked

(fraction)

n = 1 n = 2 n = 3 n = 4 n = 5 n = 6

45 40

(89%)

42

(93%)

34

(75.5%)

5

(11%)

2

(4.5%)

2

(4.5%)

1

(2.25%)

1

(2.25%)

Splice-PCR was used for in vitro assembly of miRNA-insensitive coding sequences that were subsequently cloned into the pKK-RNAi vector by our universal SLIC

protocol.

https://doi.org/10.1371/journal.pone.0194887.t003
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amino acids in this protein had been defined previously, so it was possible to design a mutated

catalytically inactive form of the protein (XRN2D233A-D235A) [105]. We created 293 Flp-In

T-REx stable cell lines that induciby silence endogenous XRN2, and concomitantly express

wild-type or inactive XRN2 in fusion with EGFP at the C-terminus. Thus, complementation of

silencing of endogenous XRN2 with the expression of mutant version of the protein allows to

directly link potential phenotypes with the lack of XRN2 enzymatic activity. Flow cytometry

analysis showed that almost all cells expressed the miRNA reporter (mCherry) and the ectopic

protein (EGFP signal) (Fig 8A). We confirmed correct subcellular localization of the ectopi-

cally expressed proteins by confocal microscopy. This analysis revealed their anticipated

nuclear localization (Fig 8B). Subsequently, we examined the efficiency of XRN2 downregula-

tion at the protein level. It showed very efficient depletion of XRN2, which was hardly detect-

able (Fig 8C), while the ectopic forms of XRN2 were expressed, importantly, at levels similar to

that of endogenous XRN2 in parental cells (Fig 8C).

It was shown that human XRN2 is a bona fide component of the transcription termination

machinery [106], [107]. We checked if it is possible to reproduce this observation using our

experimental system. To this end we isolated total RNA from tetracycline-treated cells,

depleted it from rRNA and conducted strand-specific deep sequencing. A meta-gene analysis

of the transcriptional read-through was performed (Fig 8D). In agreement with other reports

[106], [107], we found that the ribonucleolytic activity of XRN2 is required for canonical

RNAPII transcription termination. A clear accumulation of RNA downstream to the

expected transcription termination site resulting from unsuccessful termination events was

observed in cells that expressed inactive, miRNA-insensitive XRN2 instead of the endoge-

nous protein (Fig 8D). This class of transcripts is clearly less abundant in cells that express

the catalytically active form of XRN2. This indicates that the cellular model which we

obtained using pKK-RNAi vectors is functional and faithfully reproduces independent exper-

iments obtained by others using different methods. Taken together, our analysis of cloning

efficiency and the performed functional studies prove that pKK vectors and our associated

procedures allow for easy creation of reliable cellular models that can be used in determining

protein function.

Conclusions

We have created a series of vectors that facilitate various functional and biochemical studies

of human proteins. The combination of an efficient DNA cloning strategy with the Flp-In

system for stable cell line generation guarantees high utility of the vectors. The Flp-In system

is widely used in different research areas, like mitochondria [108], [109], [110], [111], [112],

RNA metabolism [113], [114], [115], proteomic studies [116], [117], [118], cell signaling

[119], [120] and others [121], which calls for the existence of compatible vectors that ensure

straightforward cloning. The pKK-RNAi vectors have a high potential of being particularly

useful in functional analyses. They provide a simple way to substitute a protein with its

engineered version. This can help to elucidate the function of particular parts of the

protein, confirm pathogenic nature of newly identified mutations, or simplify rescue experi-

ments in studies involving gene silencing. Moreover, in in vivo protein-protein interaction

studies it can prove beneficial to deplete the endogenous form of the protein, which com-

petes for interactors [122]. Furthermore, expressing miRNAs, rather than transient transfec-

tion with siRNAs, can produce a more homogenous cell population and result in a higher

overall silencing efficiency. Still, one should keep in mind that all RNAi techniques may

be less efficient in some cases, e.g. with highly abundant mRNAs or extraordinarily stable

proteins.
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In agreement with a previous report [97] we observed that doxycycline is more effective

in gene induction than tetracycline. This can be detrimental when fine-tuning transgene

expression is required, as small differences in the inducer concentration can cause significant

differences in transgene expression. Although the expressed transgenes respond to tetracycline

in a concentration-dependent manner, the expression level can be transgene-specific, which

is likely related to the stability of particular fusion proteins or their mRNAs. Therefore, the

response of each transgene should be tested; the concentrations we used can serve as a guide-

line. A dose-dependent response can likely be achieved with doxycycline as well but lower con-

centrations would have to be tested.

Using our experimental approach, we confirmed the involvement of XRN2 in canonical

RNAPII transcriptional termination.
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tomic landscape of a HeLa cell line. G3 Bethesda Md. 2013; 3:1213–24.

29. Adey A, Burton JN, Kitzman JO, Hiatt JB, Lewis AP, Martin BK, et al. The haplotype-resolved genome

and epigenome of the aneuploid HeLa cancer cell line. Nature. 2013; 500:207–11. https://doi.org/10.

1038/nature12064 PMID: 23925245

30. Lin Y-C, Boone M, Meuris L, Lemmens I, Van Roy N, Soete A, et al. Genome dynamics of the human

embryonic kidney 293 lineage in response to cell biology manipulations. Nat. Commun. 2014; 5:4767.

https://doi.org/10.1038/ncomms5767 PMID: 25182477

31. Frattini A, Fabbri M, Valli R, De Paoli E, Montalbano G, Gribaldo L, et al. High variability of genomic

instability and gene expression profiling in different HeLa clones. Sci. Rep. 2015; 5:15377. https://doi.

org/10.1038/srep15377 PMID: 26483214

32. Saez E, No D, West A, Evans RM. Inducible gene expression in mammalian cells and transgenic

mice. Curr. Opin. Biotechnol. 1997; 8:608–16. PMID: 9353233

33. Meyer-Ficca ML, Meyer RG, Kaiser H, Brack AR, Kandolf R, Küpper J-H. Comparative analysis of
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