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Abstract

Background: We investigated the interplay between complement and antibodies upon priming
with single-cycle replicating viral vectors (SCIV) encoding SIV antigens combined with Adeno5-SIV
or SCIV pseudotyped with murine leukemia virus envelope boosting strategies. The vaccine was
applied via spray-immunization to the tonsils of rhesus macaques and compared with systemic
regimens.

Results: Independent of the application regimen or route, viral loads were significantly reduced
after challenge with SIVmac239 (p < 0.03) compared to controls. Considerable amounts of
neutralizing antibodies were induced in systemic immunized monkeys. Most of the sera harvested
during peak viremia exhibited a trend with an inverse correlation between complement C3-
deposition on viral particles and plasma viral load within the different vaccination groups. In
contrast, the amount of the observed complement-mediated lysis did not correlate with the
reduction of SIV titres.

Conclusion: The heterologous prime-boost strategy with replication-deficient viral vectors
administered exclusively via the tonsils did not induce any neutralizing antibodies before challenge.
However, after challenge, comparable SIV-specific humoral immune responses were observed in
all vaccinated animals. Immunization with single cycle immunodeficiency viruses mounts humoral
immune responses comparable to live-attenuated immunodeficiency virus vaccines.
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Background

Beside cellular immune responses, humoral immunity is
considered a key component in AIDS vaccine develop-
ment. Already during early stages of viral infection, anti-
envelope (env) antibodies (Abs) are thought to reduce
viremia [1-3]. Their effector functions are still not com-
pletely defined. Some of such neutralizing antibodies
(nAbs) may inhibit viral entry either by interfering with
structures of the gp120/gp41 complex [4] or with env-
epitopes that bind to chemokine receptors. Alternatively,
they may cross-link virus particles and induce clearance of
immune-complexed viruses by phagocytosis. Addition-
ally, antibody dependent cellular cytotoxicity (ADCC) is
thought to appear early during acute infection [5] and can
also be detected at later stages of disease progression.
ADCC has been studied in the SIV monkey model, was
associated with the control of HIV in infected humans [6-
8] and may contribute to a slower disease progression in
long-term non-progressors [9].

A further arm of the humoral immune response is the
complement system as an important mechanism of innate
immune defence. Complement (C) has been shown to
enhance the activity of nAbs [10]. In synergy to the bind-
ing of Abs to viruses, C3 deposition, opsonization and
immune complex formation are suggested to contribute
to reduced viral infection rates. There is evidence that C-
mediated lysis contributes mainly at early stages of HIV-1
infection to viremia control [11-13].

A major focus of current research is the design of safe and
efficient vaccines providing a high level of protection
against HIV. A promising approach is the application of
replication-deficient ~ single-cycle  immunodeficiency
viruses (SCIV) [14,15]. Upon application, these viral con-
structs undergo only one single round of replication
resulting in the production of non-infectious virus-like
particles in vivo. The induced immune response is thought
to protect from challenge by clearing infected cells.

A non-invasive application of live-attenuated SIV vaccines
to the mucosa via the tonsils has been established. This
approach induced protection against challenge with
homologous SIV and SHIV, a SIV/HIV-1 hybridvirus con-
taining HIV-1 envelope in the SIV backbone [16,17].
Although effective, the delivery of attenuated retroviruses
is not feasible in humans due to safety concerns [18,19].
Thus, we adopted a heterologous prime-boost regimen
through priming with SCIV and boosting with Adeno5
(Ad5)-SIV or SCIV. The vectors were either given systemi-
cally or exclusively mucosally.

To elucidate the induction of immune responses upon
vaccination, 12 rhesus macaques were primed with SCIV.
Four of the animals received the immunizations via the

http://www.retrovirology.com/content/6/1/60

tonsillar route and eight intravenously (iv) (Table 1). The
SCIVs used for priming were pseudotyped with the G pro-
tein of vesicular stomatitis virus (VSV-G) to favour and
enhance expression of SIV-virus like particles in a broad
spectrum of cells, including dendritic cells [20]. The four
tonsillar and four of the iv immunized monkeys were
boosted with two adenoviral vectors expressing SIV-gag-
pol, and SIV env and rev, respectively. The remaining four
iv SCIV immunized animals were boosted with SCIV
pseudotyped with amphotropic murine leukemia virus
envelope (SCIV [MLV]), since we previously observed
rapid induction of VSV-G-nAbs after immunization with
VSV-G pseudotyped SCIVs [15].

The results of the systemic spread of SCIV after oral immu-
nization, as well as analyses concerning the cellular
immune responses, immunohistochemical and in situ
hybridisation assays have been recently published by
Stahl-Hennig et al. [21]. In the present study, we charac-
terized the humoral immune response in immunized and
challenged rhesus macaques and investigated the contri-
bution of the induced neutralizing and non-neutralizing
antibodies, C-deposition on the viral surface and C-medi-
ated lysis with regard to the control of retroviral infection.

Results

Viral load levels

At 20 weeks post infection (wpi) all vaccinated monkeys
and the respective control animals were challenged with
pathogenic SIVmac239 via the tonsils. Viremia peaked
approximately 2 weeks post challenge (wpc) as deter-
mined in plasma and by analyzing cell-associated SIV
(Figure 1A, B). Peak RNA levels of SIV in immunized
monkeys were significantly reduced by 1 to 2 log com-
pared to control monkeys (p < 0.03 for all comparisons,
Figure 1A). The difference among the vaccinated animals
in cell-associated viral loads was less pronounced and sta-
tistically not significant 2 wpc (p = 0.09, Figure 1B).
Plasma and cell-associated viral loads correlated over the
complete observation period. During the chronic phase of
infection (16 wpc, 28 wpc) monkeys of group 1 and 2
could significantly reduce plasma viremia compared to
the control group (all p < 0.05). After 2 wpc differences
between the control cohort and group 3 as well as differ-
ences between the three vaccinated cohorts were statisti-
cally not significant.

SIV neutralizing antibodies

By a yield reduction assay using SIVmac251, the first
detectable nAbs were measurable in group 2 and 3 with
mean fold inhibitions of 171.8 and 110.5, respectively, 4
weeks after the first boost (12 wpi). In group 1, nAbs
remained undetectable upon immunization. However,
after challenge with pathogenic SIVmac239, nAbs rapidly
increased, and by 8 wpc these monkeys had increased nAb
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Table I: Immunization regimen
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weeks post immunization

monkeys 0 4 8 12
group | 12127 SCIV [VSV-G] SCIV [VSV-G] Ad5-SIV Ad5-SIV
12128 tonsillar tonsillar tonsillar tonsillar
12131 1.8 x 10%2 1.2 x 1082 | x 10!.b I x |Q!l.b
12137
group 2 12133 SCIV [VSV-G] Ad5-SIV
12136 intravenous intramuscular
12142 2 x |0%a 6x |0l.b
12143
group 3 12132 SCIV [VSV-G] SCIV [MLV]
12138 intravenous intravenous
12139 2% 10%a 3 x 1072
12140
group 4a 12129 Ad5GFP tonsillar Ad5GFP tonsillar
12130 | x 10!.¢c 2 x [Qllc
group 4b 12134 Ad5GFP intramuscular
12141 6% 10!hc

2infectious units/ml
bnumber of particles per construct
cnumber of particles

yields compared to cohort 2 and 3. After challenge, mean
nAbs of control monkeys rose continuously, reaching the
maximum mean fold inhibition 0f 499.0 at 20 wpc. At the
end of the observation period (28 wpc) cohort 1, 2 and 3
developed maximum mean fold inhibition of 733.3,
572.8 and 523.8, respectively.

SIV env-specific IgG

Hardly any SIV-specific IgG antibodies targeting the env
were measured in vaccinated animals during the immuni-
zation period (Figure 2). The highest value measured was
in monkeys of group 2 at 12 wpi, with a value of 16.0 MFI
+ 15.6 (median: 10.9). Upon challenge, SIV-specific IgG
antibody levels increased rapidly in monkeys of group 1
(maximum with 99.4 MFI + 100.4 (median: 51.3)) and 3
(maximum with 80.7 MFI + 29.8 (median: 85.1)), while
those of group 2 were rather low but stable (ranging
between 19.2 and 34.8 MFI) between 4 and 28 wpc. As
expected, IgG antibody levels increased slowly in control
animals. At 2 wpc, env-specific IgGs were significantly
lower in controls when compared to immunized mon-
keys in all groups (p < 0.03); at subsequent points in time
(4 and 8 wpc) controls showed minor differences with p-
values being attenuated to borderline significance (p =
0.08 and p = 0.06, respectively) and the IgG-titres reached
a maximum level of 58.5 MFI + 39.2 (median: 50.3) at 12
wpcC.

Complement-mediated lysis

The contribution of C in reducing viral load was deter-
mined by lysis assays in vitro. Sera were collected before
vaccination, directly before SIVmac239 challenge, 2 wpc
and 28 wpc (Table 2). Before vaccination, complement-
mediated lysis levels were below the detection limit of
10% in cohort 1, 2, and 3 (data not shown). Similarly, in
control animals no lysis was measurable at the day of
challenge. Simultaneously between 16% and 35% lysis
was detected using sera of immunized monkeys. Notably,
the lowest lysis results were measured in the orally immu-
nized group 1 animals. Complement-mediated lysis levels
were significantly higher in the immunized monkeys
compared to controls by 20 wpi (all p < 0.05). Two weeks
later, during peak viremia, sera of three orally immunized
animals (#12127, #12128, #12131) still induced lysis lev-
els lower than 30% (mean plasma RNA levels of group 1
= 3.2 x 10%og), while all except one monkey serum
(#12142) of group 2 animals cleared between 40% and
96% of the input virus and cohort 2 exhibited mean
plasma RNA levels of 2.5 x 10%log at that time. Similarly,
sera harvested from animals of group 3 showed a clear
increase in the lysis capacity and neutralized between 45%
and 63% of the input virus. Samples from control mon-
keys induced mean lysis levels of 24.5% and had mean
plasma RNA levels of 2.7 x 10¢log + 2.4 x 10°log (median:
1.6 x 10%log) at peak viremia. During the chronic phase,
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Figure |

Determination of plasma and cell-associated viral loads. The mean plasma viral load levels (A) and mean cell-associated
viremia (B) of three immunized and one control cohort are shown after tonsillar challenge with pathogenic SIVmac239. Viral
RNA was determined by real-time PCR whereas cell-associated viremia was analysed by a limiting dilution co-culture assay
with mononuclear cells from blood.
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Figure 2

IgG response to the viral env-proteins. During vaccination, SIV-specific IgG antibodies targeting the envelope were deter-
mined in all vaccine groups and in the control group after challenge with SIVmac239. For this assay SIVmac251 infected HSC-F
were incubated with heat-inactivated sera from vaccinated and infected animals. SIV-specific antibodies bound to infected T-
cells were stained with a FITC-labelled anti-human IgG and determined by flow cytometry. Values are given as mean fluores-
cence intensities (MFl). Dotted arrows mark points in time of boosts and additional asterisks refer to boosts of group | only,

whereas the black arrow indicates the point in time of challenge.

between 35% and 81% lysis (mean 58.5%) was measured
in immunized monkeys; lysis levels in control monkeys
ranged between 68% and 87% (mean 76.8%). Although
the control animals exhibit a profound lysis capacity in
the in vitro assay, the immunized animals had signifi-
cantly lower mean plasma RNA levels (2.1 x 10%log + 4.8
x 10%log (median: 3.6 x 103log)) when compared to the
levels in control monkeys (4.3 x 105log + 6.5 x 10°log
(median: 8.0 x 10%log)) (p = 0.02). Differences between
cohort 1 and 2 and cohort 2 and 3 were never statistically
significant. Only at 2 wpc and 28 wpc were significantly
higher lysis values observed in group 3 compared to group
1 (all p < 0.05). Thus, C-mediated lysis did not correlate
with the control of virus replication in vivo.

Virus capture assay

For the virus capture assays, sera from immunized and SIV
challenged animals were collected during peak viremia (2
wpc) and 28 wpc when the chronic infection was estab-
lished. Interestingly, within the groups, most of the sam-
ples harvested during peak viremia exhibited a trend of an
inverse correlation (Spearman correlation coefficient
ranging between r, = -0.80 and r, = -0.60; p-values ranged
between 0.2 and 0.4) when comparing C3-deposition on
viral particles with plasma viral load (Figure 3). The
immunized monkey (#12137) in group 1, which had the
lowest C3-deposition at peak viremia, had plasma viral
load levels of 6.6 x 104log, while the animal with the
strongest C3 signal (#12127) had a 1 log decreased viral

load (2.7 x 103log). Similarly, sera from the two animals
(#12142, #12143) in group 2 with the lowest viral levels
induced detectable C3-deposition. Within group 3, sera
from monkey #12132 and #12140 showed more pro-
nounced C3 levels on SIV and had plasma viral loads of
1.9 x 10%log and 4.3 x 10%log, respectively. The remaining
four control monkeys had C3 levels below detection limit
and a mean plasma viral load of 2.7 x 10¢log at the point
in time of peak viremia.

During chronic infection, the C3 opsonization was more
pronounced when compared to the C3-deposition
induced by sera collected during the peak viremia. How-
ever, the correlation between C3-deposition and viral
load was no longer observable (data not shown).

Discussion

In this study we analyzed the efficacy of humoral immune
responses induced by different vaccination strategies
either combining a SCIV [VSV-G] prime with an adenovi-
ral boost or administering SCIV only (Table 1). The used
SCIV [VSV-G] vaccine provides a safer immunization strat-
egy when compared to live-attenuated vaccines, as no rep-
lication-competent  particles are generated [15].
Adenoviral vectors have been used in the past, but were
usually applied intramuscularly [22] and not via the ton-
sils. Although our approach did not induce sterilizing
immunity, the vaccinated animals had a significantly
reduced peak viremia after challenge with the highly path-
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Table 2: Induction of complement-mediated lysis
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monkey %lysis day of challenge %lysis 2 wpc viral load 2 wpc2 %lysis 28 wpc viral load 28 wpc2
group | 12127 16 18 2.7 % 103 49 1.8 x 103
12128 26 18 4.7 x 104 41 6.6 x 103
12131 18 I 1.3 x 104 51 3.1 x 103
12137 20 46 6.6 x 104 53 20
group 2 12133 25 96 34 x 104 35 1.9 x 103
12136 25 40 6.9 x |04 66 I.1 % 104
12142 35 23 1.2 x 103 58 2.1 x 104
12143 25 50 6.8 x 102 68 > 10
group 3 12132 23 48 1.9 x 104 8l 1.8 x 05
12138 35 45 5.5x 10° 63 4.1 x 103
12139 20 51 2.4 x 105 66 24 x 04
12140 30 63 4.3 x |04 71 7.7 x 102
group 4 12129 <10 12 9.0 x 0% 71 1.2 x 105
12130 <10 18 6.7 x 106 68 1.6 x 108
12134 <10 28 2.1 x 10¢ 8l 1.4 x |04
12141 <10 40 1.0 x |06 87 42 x |04

2RNA copies/ml plasma

ogenic SIVmac239 when compared to the non-immu-
nized but infected control animals. Peak viral load levels
were reduced between 1 log in group 3 and 2 log in groups
1 and 2 (Figure 1A) [21]. Similar reductions in the viral
titre were achieved by an iv prime-boost strategy using
SCIV as a vaccine [23]. As many studies have emphasised
that the long-term prognosis is significantly improved the
lower the peak viral load levels are [24,25], the decrease of
the viral load by oral administration of our vaccine may
provide profound benefit.

While vaccination via the tonsils induced no nAb
responses before challenge, the prime-boost application
of the vaccine iv and intramuscularly, respectively,
resulted in detectable nAb-titres in the animals of group 2.
Similar to the animals of group 1, the monkeys in group
3, which were primed by SCIV [VSV-G] and boosted with
the MLV-pseudotyped SCIV, developed hardly any nAbs
upon immunization (Figure 4). The peak viremia of
group 3 was tenfold higher when compared to animals in

group 1 or 2. Surprisingly, animals in group 1 or 2 con-
trolled the viral replication to a comparable extent upon
challenge with pathogenic SIV, although the vaccination
in the tonsillar group induced no detectable nAb titres in
the serum. However, the Ab levels in this group increased
rapidly after challenge and reached a constant high titre
already 2 wpc. Additionally, the application of the vaccine
via the tonsils may induce IgA or cytotoxic T-lymphocyte
response at the mucosal site, which may contribute to the
reduction of the viral titre upon tonsillar challenge with
SIVmac239. Unfortunately, we were not able to measure
IgA responses of these vaccinated animals. The presence of
nAbs before challenge and/or their fast induction after
challenge may contribute to the decrease of the virus in
the plasma. This would be in line with reports indicating
that only high concentrations of nAbs reduce the peak
viremia [26,27].

Along with the nAb titres, the levels of the total env-spe-

cific IgG were weak but mainly detectable in the systemi-
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Capture: peak viremia, group 2

0.101 F1.0x1097
£ mm capture
0.08 [1.0x10% é W= viral loac
F1.0x10% E
0.06- 5
e F1.0x10% &
0.04- i g
o F1.0x109% 5
2 2 g
0.029 o 1o o
1 . o &1 ouor T
12133 12136 12142 12143
Capture: peak viremia, group 4
0.101 F1.0x1097
£ mm capture
0.084 1.0x10% r_ﬁ_ == viral loac
o L1.0x105 E
0.064 = @
o F1.0x100% 5
0.04 = g
o F1.0x10%% 5
o g
0.02 o F1.0x102 o
2 4
x 1.0x100"

12129

Virus capture results at point in time of peak viremia. Complement C3-deposition on viral particles is depicted on the
left-y-axis and values are given as optical densities (OD). Plasma viral load levels are given on the right-y-axis and those exhib-
ited a trend of an inverse correlation with C3 measured within the different cohorts at point in time of peak viremia.

cally immunized animals of group 2 already 12 wpi. The
detection of the Abs by FACS analysis using SIV-infected
cells allows the detection of native, in vivo accessible
epitopes only and may be less sensitive compared to
ELISA detection systems. Stahl-Hennig et al. [21] used a
gp130 ELISA with proteins expressed in E. coli for this ani-
mal study. However, these proteins do not reflect the in
vivo conformation of the env-protein complex and may
thus account for overestimated IgG titres and explain the
controversial findings reported previously [21]. It is possi-
ble that neutralizing antibodies are not detected by FACS,
but will be recognized in ELISA assays. One example is the
monoclonal antibody 2F5 [28] which binds to the mem-
brane proximal external region of gp41 during the fusion
process but not in the native state. After infection with
SIVmac239, the overall IgG response was dramatically
boosted in all animals and ran parallel to the induction of
nAbs. Interestingly, group 1 and 2 which both controlled
the virus similarly well exhibited marked differences in
the amount of total env-specific IgG. Due to the limited
number of animals available for this study, these differ-
ences in the IgG titres reached significance only at
week 28.

A neonatal macaque study showed that passively trans-
ferred non-nAbs did not protect the animals against oral

challenge with SIVmac251 indicating that ADCC is not a
main mechanism in reducing infection [29].

This is in contrast to recently reported findings which
indicate that ADCC or the interaction of FcR with the Fc-
region of the Abs may contribute to the elimination of ret-
roviral infections [8,30].

Furthermore, the data presented in the present study sug-
gests that C activation is part of the humoral immune
response. As shown by a virus capture assay, sera of the
animals collected at 2 wpc induced C3-deposition on the
viral surface. Although based on only four animals per
group, a trend to an inverse correlation of C3-deposition
on viral particles and viral load during peak viremia was
observed at least within the individual groups of vacci-
nated monkeys (Figure 3). During the chronic phase of
infection, sera of all vaccinated macaques induced C3 acti-
vation and opsonisation on SIV, independent of the viral
load. C-mediated defence mechanisms have been dis-
cussed controversially in the literature. Opsonized virus
particles may interact with C-receptor expressing cells,
such as B-cells or dendritic cells [31-34], followed by an
efficient transmission of opsonized HIV to autologous
primary T-cells. At least in wvitro, the infection is signifi-
cantly enhanced by this mechanism. However, prelimi-
nary data indicate that in in vitro interaction assays the C-
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Figure 4

NADb response determined by a yield reduction assay. Before challenge (indicated by a black arrow) nAbs were meas-
ured in monkeys vaccinated with a heterologous prime-boost regimen (boosts are marked by dotted arrows, additional aster-
isks indicate boosts of group | only). After challenge nAbs were investigated for all four cohorts for the indicated period of

time.

mediated increase of SIV infection is not observable in the
monkey system using primary isolated macaque B- and T-
cells and opsonised SIV (unpublished observation). A fur-
ther mechanism of C to reduce infectivity of C-receptor-
negative T-cells is the masking of viral epitopes due to the
deposition of C3-fragments on the viral envelope [35,36].
This neutralization mechanism has also been described
for other viruses [37] and is an attractive hypothesis to
explain, at least in part, the reduced viral loads observed
during peak viremia.

A further result of C activation is the induction of the ter-
minal C pathway, resulting in the destruction of patho-
gens. The in vitro lysis assays reduced the viral titres by a
mean of 24.8% (range between 16 and 30%) when sera of
immunized monkeys were tested before challenge (Table
2). Two weeks later, during peak viremia, mean lysis was
38.0% (ranging between 11 and 96%) tested in control
and vaccinated monkeys. Lysis values increased further
during chronic infection up to mean levels of 63.1%
(range between 35 and 87%). Although C-induced lysis
may contribute to the control of SIV replication, C-medi-
ated destruction of the virus did not correlate with the
control of the infection in vivo. Some animals had low
peak viremia (#12127, #12142) but exhibited a poor
induction of C-mediated lysis when compared to sera
from other monkeys with extremely high lysis activities
(#12133, #12140) but ten times higher viral loads. In line
with earlier studies [11,12,38], no correlations between
nAbs and C-mediated lysis was observed during the
chronic phase of infection. Thus, Ab-mediated neutraliza-
tion and C-induced lysis of retroviruses appear to repre-
sent two independent parameters which are not

necessarily linked [38]. This does not exclude the possibil-
ity that lysis may play an important role during early
phases of infection before or early after seroconversion
[13].

Beside Abs, effective SIV-specific T-cell responses are
important for controlling viremia [39]. Recently pub-
lished INF-y ELISPOT data from the present vaccination
trial revealed increased cellular immune responses in
cohort 2 compared to group 1 [21]. As both groups con-
trolled the viral loads at comparable levels, it is presently
unclear to which extent the cytotoxic T-lymphocyte
response is the main contributor for the reduced peak
viremia and viral load reduction in the chronic phase of
infection.

Conclusion

With this rhesus macaque study it was demonstrated that
priming with SCIV [VSV-G] and boosting with both Ad5-
SIV vectors or SCIV [MLV] mount humoral immune
responses comparable to that of live-attenuated immuno-
deficiency virus vaccines [40,41], which may contribute to
the significant reduction in viral load observed in animals
of group 1 and 2 after challenge. This encourages tonsil-
lar/mucosal immunization strategies which may simplify
vaccine application in the future. Thus, more efforts in
research further investigating this mucosal delivery route
are warranted.

Materials and methods

Animals

Young adult rhesus monkeys (Macaca mulatta) were
imported from China through R.C. Hartelust BV, Tilburg,
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the Netherlands. Monkeys of both sexes were antibody
negative for simian T-lymphotropic virus type 1, simian
D-type retrovirus and SIV. Viral application, physical
examinations and bleeding were done under ketamine
anaesthesia. The nonhuman primate study was performed
at the German Primate Centre according to paragraph 8 of
the German Animal Protection law which complies with
EC Directive 86/609, with project licence 509.42502/08-
04.03 issued by the District Government Braunschweig,
Lower Saxony.

Vaccination strategies, challenge and specimen collection
The study was conducted on 16 monkeys (Table 1). In
group 1, four macaques were immunized with SCIV [VSV-
G] [42] via tonsillar spray application at 0 and 4 wpi, as
described recently [16,43], and boosted by the same route
with Ad5-SIV expressing gag-pol or env-rev at 8 and 12
wpi. Group 2 consisted of four monkeys which were
immunized iv with SCIV [VSV-G] and boosted intramus-
cularly with Ad5-SIV 8 wpi. In group 3, four monkeys
were primed with SCIV [VSV-G] iv and boosted with SCIV
[MLV] iv at 8 wpi. SCIV [MLV] were prepared as described
for SCIV [VSV-G] by just replacing the VSV-G expression
plasmid by pHIT456 [44], an expression plasmid for
amphotropic MLV env. Group 4 monkeys served as con-
trols, two (#12129 and #12130) of which were immu-
nized with an adenoviral vector containing a green
fluorescent protein gene (Ad5-GFP) [45] via the tonsils at
8 and 12 weeks after the initiation of the experiment. The
other two controls (#12134 and #12141) were immu-
nized with Ad5-GFP intramuscularly at week 8. All
macaques were challenged with approximately 2000
TCIDg, of SIVmac239 [46,47] via the tonsils 20 wpi. Sera
from vaccinated and control animals were collected peri-
odically as indicated in the figures. The heat-inactivated
(hi; 56°C, 30 min) serum samples of the monkeys were
used to analyze for Ab responses. As a source of comple-
ment, a pool of normal monkey serum (NMS) from
untreated donors was used.

Determination of viral loads

Viral RNA in plasma was determined by quantitative real-
time PCR as previously reported [17]. In order to quantify
plasma viral load, standard RNA templates were generated
from the p239Sp5' plasmid (kindly provided by R. M.
Ruprecht, Dana-Farber Cancer Institute, Boston, USA;
[48]) with a detection limit of 10 viral particles per ml of
plasma.

Cell-associated virus loads were determined by a limiting
dilution co-culture assay with mononuclear cells from
blood as described previously [16,40,41].

SIV p27 antigen assay
SIVmac251 replication was determined by ELISA against
the p27 core protein as described recently [41].

http://www.retrovirology.com/content/6/1/60

SIV neutralization assays

Levels of nAbs against SIVmac251 in the sera of immu-
nized and infected macaques were measured using a yield
reduction assay [42]. Briefly, sera diluted 1:50 were incu-
bated with serial dilutions of STVmac251 (25 pl serum, 25
ul virus, six replicates per dilution) in U96 microtitre
plates (1 hour at 37°C). Then 150 pl of a C8166 cell sus-
pension (2000 cells) was added. The cultures were lysed
after a 7 day incubation at 37°C and virus replication in
individual wells was measured by a sensitive gag-based
antigen capture ELISA. Wells, giving OD values above
threshold (mean of uninfected wells + 5x standard devia-
tions), were scored positive, and the TCIDj, for the virus
in the presence of each serum was calculated. The yield
reduction for each sample was then calculated as the virus
titre in the absence of serum divided by the titre in the
presence of serum.

Measurement of SIV-specific IgG

Flow cytometry was used to evaluate SIV-specific IgG
responses. HSC-Fcells (provided by the EU-program EVA/
MRC (QLKZ-CT-1999-00609)) [49] were infected with
SIVmac251. After washing, cells (5 x 105/analysis) were
incubated on ice with hi-sera from vaccinated and
infected animals (1:50, 30 minutes, two replicates per
sample performed in duplicate). SIV-specific antibodies
bound to infected cells were stained with a FITC-labelled
anti-human IgG (Dako F0202, Glostrup, Denmark). As a
negative control, hi-NMS of healthy untreated donors was
used. Samples were analysed by flow cytometry using Cell
Quest software (Becton Dickinson, Franklin Lakes, New
Jersey, USA). Data given in the figures represent mean-flu-
orescence intensities (MFIs).

Lysis assay

Hi-sera of immunized rhesus macaques (1:50, two repli-
cates per sample performed in double) were incubated
with SIVmac251 (40 ng/ml p27, TCID5, = 1.5 x 10°log)
for 30 minutes at 4°C. Subsequently NMS was added
(1:10, 30 minutes at 37°C) as a source of C. The viral RNA
accessible due to the formation of the membrane attack
complex was digested by the addition of RNAse. As a neg-
ative control, NMS was replaced by hi-NMS or RPMI1640
medium without any supplements (background lysis). As
a control for 100% lysis, SIV was incubated with 1% of
Igepal (Sigma, Vienna, Austria). Samples were centrifuged
(13.000 rpm, 90 minutes at 4°C) and RNA from non-
lysed pelleted SIV was extracted using QIAamp®Viral RNA
kit (Qiagen, Valencia, California, USA) according to the
manufacturer's instructions. Remaining intact virus was
quantified by real-time reverse transcriptase PCR (iCycler,
BioRad, Hercules, CaliforniaA, USA) using the iScript™
One-StepRT-PCR Kit (Bio-Rad, Hercules, California, USA)
as previously described [17]. As the efficacy of the PCR is
close to 100%, a decrease of 3 threshold cycles (Ct) in the
real-time PCR corresponds to reduction of 1 log in the
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viral titre. Thus, a decrease of 1Ct-value corresponds to
approximately 33% lysis and was calculated as follows:

%]lysis = [Ct(monkey sera) — Ct(background)]x 33%.

In vitro opsonisation and virus capture assay

Hi-monkey samples (1:50, two replicates per sample per-
formed in double) from the vaccinated, and infected ani-
mals were incubated with SIVmac251 (160 ng/ml p27,
TCIDs, = 5.9 x 105log) for 30 minutes at 4°C in order to
allow for the binding of the induced env-specific IgGs.
Subsequently, NMS was added in a 1:10 dilution as a
source of C. Hi-NMS was used as control. Samples were
further incubated for 30 minutes at 37°C. To remove
unbound antibodies and remaining C proteins, the virus
was pelleted and re-dissolved in RPMI1640 medium. The
opsonisation of the virus with C3 fragments was deter-
mined by a virus capture assay as described previously
[50]. Depending on the amount of C3 deposited on the
viral surface, opsonised virus was retained in the ELISA
plate. Virus was lysed by RPMI/1%lgepal and quantified
by a p27-ELISA.

Statistical analysis

Continuous data are presented as means + standard devi-
ations, with medians in parenthesis. Kolmogorov-Smir-
nov-tests were conducted in order to test for Gaussian
distribution of plasma and cell-associated viral load,
nAbs, SIV-specific IgG titres, lysis, as well as capture
parameters. Since the above variables showed significant
deviation from normality at an Alpha-Level of 0.05, non-
parametric tests were used throughout the analyses. We
used the Kruskal-Wallis-H-Test to assess overall differ-
ences between control monkeys and immunized groups,
with post-hoc Mann-Whitney-U-Tests to compare pair-
wise differences between groups. Non-parametric Spear-
man correlation was used to investigate associations of
lysis parameters. Two-sided p-values < 0.05 were consid-
ered statistically significant. All statistical analyses were
conducted using SPSS 15.0 (SPSS Inc., Chicago, Illinois,
USA).
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